梅毒螺旋体膜蛋白Tp0965体外活化血管内皮细胞及对细胞通透性影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     梅毒是由梅毒螺旋体(Treponema pallidum subsp.pallidum, Tp)感染所致慢性系统性炎症性疾病,血管内皮细胞的活化和损伤在梅毒发病中起重要作用。既往研究发现Tp可以直接活化血管内皮细胞,亦可通过其膜蛋白作用于血管内皮细胞,导致血管内皮细胞的活化和损伤。由于Tp在体外培养基上无法培养,对Tp膜蛋白的研究成为研究梅毒发病机制及免疫反应机制的重点之一。基因工程技术的发展为Tp膜蛋白的研究提供技术保障。Tp0965是一种膜融合蛋白,位于Tp的细胞周质,我们前期研究结果显示,Tp0965可与临床各病期的梅毒患者阳性血清发生抗原抗体反应。本研究利用基因重组技术获得高纯度的Tp0965,随后将重组蛋白Tp0965(recombinant Tp0965, rTp0965)与人脐静脉内皮细胞(HUVEC)混合培养,观察rTp0965对HUVEC活化及HUVEC单层通透性的影响,探讨Tp0965在Tp所致血管内皮细胞的活化和损伤中的作用,为梅毒发病机制研究提供实验基础。
     目的
     研究梅毒螺旋体膜蛋白Tp0965体外对血管内皮细胞活化及血管内皮屏障通透性的影响,探讨膜蛋白Tp0965在血管内皮细胞活化及损伤中的作用,为梅毒发病机制研究提供依据。
     方法
     1.rTp0965的表达和纯化
     将已构建成功的重组质粒pET-28a(+)/Tp0965转化表达宿主菌株E.coli Rosetta(DE3),超声震碎细菌,取上清液进行SDS-PAGE分析,蛋白印迹法鉴定。将鉴定成功重组质粒pET-28a(+)/Tp0965表达于DE3,大规模诱导表达,利用蛋白纯化试剂盒对获得蛋白进行纯化,BCA法检测重组蛋白的浓度,然后采用多粘菌素B柱去除大肠杆菌内毒素,获得具有生物学活性的rTp0965o
     2.HUVEC体外活化
     将HUVEC接种于细胞培养板,加入rTp0965,使终浓度为5Ong/mL.100ng/mL、200ng/mL、400ng/mL、800ng/mL,分别培养3h、6h、12h、24h、48h。取培养上清液,ELISA检测细胞因子MCP-1的分泌水平。Cell ELISA法检测粘附分子ICAM-1及E-selectin在HUVEC膜上的表达水平;荧光定量Real-time PCR检测细胞中MCP-1、ICAM-1及E-selectin的mRNA转录水平。
     3.THP-1细胞向HUVEC的迁移和粘附
     将HUVEC接种于细胞培养板上,加入rTp0965混合培养24h,加入calcein-AM (5μmol/L)标记的THP-1细胞,继续培养6h,PBS洗去未粘附的THP-1细胞,荧光显微镜下计数未粘附的THP-1细胞,按公式THP-1细胞的黏附率=(加入总THP-1细胞数-未粘附THP-1细胞数/加入总THP-1细胞数×100%),计算THP-1细胞的黏附率。
     将HUVEC接种于Transwell小室的下室,加入rTp0965,混合培养24h,在Transwell小室的上室加入calcein AM (5μm)标记的THP-1细胞,继续培养1h,取下室培养基20μL,荧光倒置显微镜下计数THP-1细胞,按公式THP-1细胞的迁移率=穿过的THP-1细胞数/加入总THP-1细胞数×100%,计算THP-1细胞的迁移率。4.构建HUVEC单层模型
     HUVEC接种于将已包被基质胶的Transwell小室,置于37℃、5%CO2孵育箱培养,观察HUVEC铺满整个小室底部,然后进行4h液面渗漏试验检测,选择4h液面渗漏试验阳性的模型,作为实验模型。
     5.HUVEC单层通透性改变
     将rTp0965加入HUVEC单层模型的Transwell小室内,混合培养后,加入HRP溶液,继续培养,于培养1h和4h时取下室培养基50gL于96孔板中置于4℃避光保存,取样全部完毕,向96孔板样本中加入四甲基联苯胺,显色后加入硫酸终止显色反应,酶标仪测量450nm波长处样本A值。
     6.HUVEC紧密连接蛋白表达及细胞骨架系统重排
     将HUVEC接种于96孔细胞培养板上,加入rTp0965,继续培养24h,胰蛋白酶消化细胞,裂解细胞,提取总蛋白,蛋白印迹法检测紧密连接蛋白Claudin-1蛋白表达水平。同时将HUVEC接种于激光共聚焦专用培养皿上,加入rTp0965,继续培养,多聚甲醛固定,加入FITC-Phalloidin工作液染色细胞,激光共聚焦显微镜下观察细胞骨架蛋白F-actin的变化。
     7.RhoA/ROCK信号通路的调控作用
     将HUVEC接种于细胞培养板上,加入RhoA/ROCK信号通路抑制剂Y-27632,培养30min,加入rTp0965,继续培养24h,提取细胞总蛋白,蛋白印迹法检测紧密连接蛋白Claudin-1蛋白表达水平。同时将HUVEC接种于激光共聚焦专用培养皿上,加入Y-27632,培养30min,加入rTp0965,继续培养,多聚甲醛固定,加入FITC-Phalloidin工作液染色细胞,激光共聚焦显微镜下观察细胞骨架蛋白F-actin的变化。
     将Y-27632加入HUVEC单层模型的Transwell、室内,培养3Omin,加入rTp0965,继续培养24h,向Transwell小室内加入calcein AM标记的THP-1细胞,下室内加入MCP-1,继续培养,分别于培养1h及4h时取下室培养基20μL,荧光倒置显微镜下计数THP-1细胞,按公式THP-1细胞的迁移率=穿过的THP-1细胞数/加入总THP-1细胞数×100%,计算THP-1细胞的迁移率。
     结果
     1.重组蛋白Tp0965的表达和纯化
     SDS-PAGE分析显示清晰的相对分子量约40kDA的条带,蛋白印迹法结果显示可与二期梅毒阳性血清发生抗原抗体反应。BCA法检测重组蛋白的浓度为1.1mg/mL,多粘菌素B柱去除大肠杆菌内毒素鲎试剂检测显示内毒素含量为2.0EU/mL。
     2.rTp0965体外对HUVEC活化的影响
     rTp0965刺激IUVEC后,培养上清中MCP-1分泌水平显著高于阴性对照组,差异有统计学意义(t=14.5P<0.05);rTp0965刺激组的ICAM-1及E-selectin的HUVEC膜表达水平亦显著高于阴性对照组,差异有统计学意义(t1=6.6,t2=7.0,均P<0.05); Real-time PCR检测结果显示,rTp0965刺激组HUVEC中MCP-1、ICAM-1及E-selectin的mRNA转录水平均显著高于阴性对照组(t1=14.0,t2=5.6,t3=8.7,均P<0.05),差异有统计学意义。
     3.rTp0965对HUVEC与THP-1细胞趋化和粘附的影响
     实验结果显示,rTp0965刺激HUVEC后,HUVEC与THP-1细胞的粘附率为48.5±7.5%,显著高于阴性对照组(233±7.9%),经χ2检验,差异有统计学意义(χ2=13.8,P<0.05)。rTp0965刺激后,THP-1细胞的迁移率显著增加,为56.9±3.1%,显著高于阴性对照组(13.8±1.8%),经χ2检验,差异有统计学意义(χ2=40.6,P<0.05)。
     4.rTp0965对HUVEC单层通透性的影响
     ELISA检测结果显示rTp0965刺激组HUVEC单层HRP流量在1h时即显著高于阴性对照组(0.42±0.08与0.15±0.07,t=4.40P<0.05);4h时HRP流量差距明显加大(1.2±0.11与0.52±0.06,t=9.40,P<0.05),差异有统计学意义。
     5.rTp0965对HUVEC紧密连接蛋白表达及细胞骨架系统的影响
     蛋白印迹法结果显示,rTp0965刺激组HUVEC内的紧密连接蛋白Claudin-1的表达水平显著低于阴性对照组。激光共聚焦显微镜下显示,阴性对照组HUVEC内的F-actin主要富集于细胞膜的周边,分布均匀,rTp0965组细胞周边的F-actin明显减少,胞浆中出现密集的应力纤维。6.rTp0965对THP-1细胞跨HUVEC迁移的影响实验结果显示,rTp0965刺激组THP-1细胞穿过HUVEC细胞单层的迁移率显著高于阴性对照组(34.8±1.2%与12.7±0.9%,χ2=13.5,P<0.05),差异有统计学意义。
     7.RhoA/ROCK信号通路的调控作用
     用RhoA/ROCK信号通路特异性抑制剂Y27632预处理30min后,再加入rTp0965刺激HUVEC,HUVEC的紧密连接蛋白Claudin-1的表达水平较单用rTp0965刺激组高,THP-1细胞穿过HUVEC细胞单层的迁移率较单用rTp0965刺激组低(19.0±1.0%与34.8±1.2%,χ2=6.3P<0.05),细胞骨架蛋白F-actin的重排程度较单用rTp0965刺激组低。说明RhoA/ROCK信号通路参与调节rTp0965介导的HUVEC单层通透性的增加。
     结论
     1.利用原核生物表达外源基因tp0965可获得高纯度rTp0965,此蛋白可适用于梅毒发病机制的相关研究。
     2.rTp0965可促进HUVEC分泌MCP-1,上调ICAM-1及E-selectin的膜表达水平及mRNA转录水平,促进THP-1细胞向HUVEC的趋化运动,提高HUVEC对THP-1细胞的粘附能力,rTp0965可体外活化血管内皮细胞。
     3.rTp0965可能通过改变细胞骨架蛋白重排及紧密连接蛋白表达提高血管内皮细胞的通透性,hoA/ROCK信号转导通路参与调节rTp0965介导的血管内皮通透性改变。
     4.梅毒螺旋体膜蛋白Tp0965在血管内皮细胞的活化及损伤中起一定作用,为梅毒发病机制研究提供依据。
Backgroud
     Syphilis is a chronic systemic, sexually transmitted disease caused by the bacterial spirochete Treponema pallidum subsp. pallidum (T. pallidum). Many evidences demonstrated that activation and damage of endothelial cells may play an important role in pathogenic mechanism of T. pallidum infections. Previous investigations reported that T. pallidum was capable of activating directly host vascular endothelium, up-regulate the expression of adhesion molecules, and promote the adherence of T-lymphocytes to human dermal microvascular endothelial cells. Meanwhile several T. pallidum outer member proteins have been shown to regulate the expression of cell adhesion molecules and binding of T-lymphocytes to human dermal microvascular endothelial cells. T. pallidum is an obligate human pathogen and cannot be cultivated in vitro. This has severely impeded progress in understanding precise pathogenesis of this microbe. The availability of the T. pallidum genome sequence made it possible to examine predicted T. pallidum open reading frames (ORFs) for potential application as diagnostic or immunization tools. This approach permits identification of low-abundant T. pallidum antigens, since they may be expressed as recombinant proteins in much larger quantities. The Protein BLAST data revealed that Tp0965is a membrane fusion protein and is located on periplasm of T. pallidum. Previous studies suggest that Tp0965is reactive with sera from syphilitic individuals at all stages and shows strong immunoreactivity. However, reports concerning the role of Tp0965in the pathogenesis of syphilis are lacking. In the present study, we examined the effects of rTp0965on expression and mRNA levels of adhesion molecules in HUVECs. In addition, we examined the changes in permeability of HUVEC monolayers and transendothelial migration of monocytes. We also investigated effects of rTp0965on the reorganization of F-actin and expression of Claudin-1. The results indicated that rTp0965has the capability of triggering endothelial cell activation and regulates the function of the endothelial barrier. Objective
     To study the effects of recombinant T. pallidum membrane protein Tp0965on activating of endothelial cells and increasing the permeability of endothelial cell monolayer in vitro, in order to understand its roles in the immunopathogenesis of syphilis.
     Methods
     The gene of Tp0965was amplified by polymerase chain reaction (PCR) from T. pallidum genomic DNA and the nucleotide sequence was cloned into the expression plasmid pET28a. The new constructs were transformed into E. coli Rosetta (DE3) and the recombinant fusion proteins were purified on Ni-NTA chromatographic column. SDS-PAGE and immunoblot analysis using the anti-polyhistidine tag antibody were employed to identify the protein and assess its purity. Protein concentrations were determined using a BCA Protein Assay Kit. To remove LPS contamination, the recombinant protein was subsequently treated by polymyxin B-agarose and the LPS level was detected by the Limulus amebocyte lysate test kit.
     After co-culture of the rTp0965with HUVECs, the expression and mRNA transcription levels of ICAM-1and E-selectin were detected on HUVECs' membrane and in HUVECs by cell enzyme-linked immunosobent assay (Cell ELISA) and fluorescent real-time quantitative PCR, respectively; meanwhile, the level of MCP-1in supernatants was determined by ELISA. To test the effects of rTp0965on monocyte adhesion to HUVECs, we pretreated confluent monolayers of HUVECs and then stimulated them with rTp0965, followed by incubation with THP-1cells and then the adhesion of monocytic THP-1cells was also observed by fluorescence microscopy. To examine the effects of rTp0965on HUVECs chemoattraction of monocytes, monocyte THP-1cells were added to the inserts of transwell systems that contained HUVECs (that had been pretreated with rTp0965) in the wells. Monocyte THP-1cells migration was monitored for2h by fluorescence microscopy.
     For endothelial permeability and transendothelial migration measurements, HUVECs were treated with rTp0965and then HRP was added on top of the HUVEC monolayers and50μl of samples were taken from the wells. The collected samples were analyzed for the flux of HRP with a TMB kit. For the transmigration assay, CCL-2was added into the wells as a chemoattractant. Monocyte THP-1cells stained with calcein AM were added on top of HUVEC monolayers. Next, the numbers of monocyte THP-1cells in the wells and beneath the HUVEC monolayers were counted using a fluorescence microscope. In some experiments, HUVEC monolayers were pre-incubated with the ROCK inhibitor Y-27632for30mins before the endothelial permeability and transendothelial migration assays were performed as described above.
     To assess the effects of rTp0965on expression of tight junction proteins of HUVECs, HUVECs were treated with rTp0965and then harvested for detection of Claudin-1expression by Western blot, In some experiments, HUVECs were pre-incubated with Y-27632for30mins before HUVECs were harvested and Western blot was performed. To analyze F-actin distribution, HUVECs were treated with rTp0965then were fixed in4%buffered paraformaldehyde and stained with rhodamine-phalloidin. Finally, the coverslips were examined using a confocal laser scanning microscope system. In some experiments, HUVECs monolayers were preincubated with Y-27632for30mins before F-actin distribution was tested as described above.
     Results
     After expression and purification, the concentrations of rTp0965was210μg/mL and the final LPS level was lower than2.0EU/mL, which is an amount that did not stimulate proinflammatory cytokine production by itself.
     Real-time RT-PCR study showed that the mRNA transcription levels of ICAM-1and E-selectin were increased significantly after incubation with rTp0965(800ng/ml)(P<0.05) compared to controls. Cell ELISA analysis showed similar results. The rTp0965induced a remarkable increase of ICAM-1and E-selectin, compared to the controls. Adherence assay results showed that rTp0965stimulated an increase in adherence of THP-1cells to HUVECs (48.5±7.5%versus23.3±7.9%, P<0.05).
     ELISA data showed that the amount of soluble MCP-1was increased significantly after incubation with rTp0965(800ng/ml) compared with the control (P<0.05). Real-time RT-PCR analysis showed similar results. A remarkable increase of MCP-1mRNA, compared to the control, was induced by rTp0965. The chemotaxis assay showed that some monocyte THP-1cells migration was evoked by HUVECs in control group, but significantly more monocyte THP-1cells migrated towards the HUVECs pretreated with rTp0965.
     To analyze the effects of rTp0965on the permeability of HUVECs monolayers the flux of HRP was calculated. After HRP was added to the transwell inserts for4h, the permeability in rTp0965group was1.2±0.11, and that in control was0.52±0.06(P<0.05). In an in vitro static assay of transendothelial migration, addition of rTp0965(800ng/ml) to confluent monolayers of HUVECs cultured in transwell inserts resulted in an approximately two-fold increase in the migration of monocyte THP-1cells at the4h time point (35.3%versus12.7%, P<0.001). The ROCK inhibitor Y-27632partially blocked the increase in migration of monocyte THP-1cells after24h of rTp0965exposure compared with the group treated with rTp0965but without Y-27632(19.0%versus35.3%, P<0.05).
     To evaluate the effect of rTp0965on F-actin reorganization in HUVECs, we preincubated HUVECs with rTp0965and then stained the HUVECs with rhodamine-phalloidin. The results showed that in the absence of rTp0965, a rim of F-actin staining was present at the margins of the treated cells, with a few randomly disoriented stress fibers within the cytoplasm. However, in the presence of rTp0965, F-actin rapidly formed organized filamentous networks. Y-27632partially prevented the F-actin reorganization and redistribution after treatment with rTp0965. Western blot proved that after treatment with rTp0965for24h, the level of Claudin-1was markedly decreased in HUVECs and the effect was significantly prevented by the ROCK inhibitor Y-27632.
     Conclusion
     1. T. pallidum membrane protein Tp0965could be successfully expressed through E. coli expression system; the protein could be used for the study of the pathogenesis of syphilis.
     2. The protein Tp0965could increase the levels of ICAM-1, E-selectin, and MCP-1mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1cells) to HUVECs preincubated with rTp0965. The protein Tp0965may activate endothelial cells.
     3. The protein Tp0965induced reorganization of F-actin and decreased expression of Claudin-1in HUVECs and inhanced higher endothelial permeability. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced reorganization of F-actin and expression of Claudin-1as well as transendothelial migration of monocytes, indicating that the Rho signaling was involved in the dysfunction of endothelial barrier induced by rTp0965.
     4. The Tp0965protein may play a certain role in the immunopathogenesis of syphilis via activation as well as demage of vasicular endothelial cells.
引文
[1]Workow KA, Berman SM. Sexually transmitted diseases treatment guidelines, 2006. MMWR Recomm Rep,2006,55(36):997-1002.
    [2]Torrone EA, Bertolli JM, Li J, et al. Increased HIV and primary and secondary syphilis diagnoses among young men in United States,2004-2008. J AIDS[J]. 2011,58(03):328-335.
    [3]Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines,2006. MMWR Recomm Rep,2006,55(11):1-94.
    [4]Behling-Kelly E, Czuprynski CJ. Endothelial cells as active participants inveterinary infectionsand inflammatory disorders [J]. Anim Health Res Rev,2007, 8(01):47-58.
    [5]Collart P, Franceschini P, Durel P. Experimental rabbit syphilis [J]. Br J Vener Dis, 1971,47(6):389-400.
    [6]Wenhai Li, Jianzhong Z, Cao Y. Detection of Treponema pallidum in skin lesions of secondary syphilis and characterization of the inflammatory infiltrate [J]. Dermatology (Basel),2004,208(02):94-97.
    [7]Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability [J]. Physiol Bey,2006,86(01):279-367
    [8]Terry SJ, Zihni C, Elbediwy A, et al. Spatially restricted activation of Rho A signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis [J]. Nat Cell Biol,2011,13(2):159-166.
    [9]Citi S, Paschoud S, Pulimeno P, et al. The tight junction protein cingulin regulates gene expression and RhoA signaling [J]. Ann N Y Acad Sci,2009,1165:88-98.
    [10]Hopkins AM, Walsh SV, Verkade P, et al. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function [J]. J Cell Sci,2003,116(4):725-742.
    [11]Lee YH, Kayyali US, Sousa AM, et al. Transforming growth factor-beta 1 effects on endothelial monolayer permeability involve focal adhesion kinase/Sre [J]. Am J Respir Cell Mol Biol,2007,37(04):485-493.
    [12]Schubert-Unkmeir A, Konrad C, Slanina H, et al. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin:a role for MMP-8 [J]. PLoS Pathog,2010,6(4):e1000874.
    [13]Gu YT, Xue YX, Wang YF, et al. Role of ROS/RhoA/PI3K/PKB signaling in NS1619-mediated blood-tumor barrier permeability increase [J]. J Mol Neurosci, 2012,48(1):302-312.
    [14]Stamatovic SM, Dimitrijevic OB, Keep RF, et al. Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability [J]. J Biol Chem,2006,281(13):8379-8388.
    [15]Riley BS, Oppenheimer-Marks N, Radolf JD, et al. Virulent Treponema pallidum promotes adhesion of leukocytes to human vascular endothelial cell [J]. Infect Immun,1994,62(10):4622-4625.
    [16]Riley BS, Oppenheimer-Marks N, Hansen EJ, et al. Virulent Treponema pallidum activates human vascular endothial cells [J]. J Infect Dis,1992,165(3):484-493.
    [17]Thomas DD, Navab M, Haake DA, et al. Treponema pallidum invades intercellular junctions of endothelial cell monolayers [J]. Proc Natl Acad Sci USA, 1988,85 (10):3608-3612.
    [18]Lafond RE, Lukehart SA. Biological basis for syphilis [J]. Clin Microbiol Rev, 2006,19(1):29-49.
    [19]Giacani L, Molini B, Godornes C, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates:Differences among isolates and correlation with T-cell responsiveness in experimental syphilis [J]. Infect Immun, 2007,75(1):104-112.
    [20]Tomson FL, Conley PG, Norgard MV, et al. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins [J]. Microbes Infect,2007,9(11):1267-1275.
    [21]Brinkman MB, McGill MA, Pettersson J, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun,2008,76(5):1848-1857.
    [22]Fraser CM, Norris SJ, Weinstock GM, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete[J]. Science,1998,281(5375):375-388.
    [23]Ho EL, Lukehart SA. Syphilis:using modern approaches to understand an old disease[J]. J Clin Invest,2011,121(12):4584-4592.
    [24]Cameron CE, Kuroiwa JM, Yamada M, et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin TpO751 in the culturable spirochete Treponema phagedenis [J]. J Bacteriol.2008,190(7):2565-2571.
    [25]Giacani L, Molini B, Godornes C, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates:Differences among isolates and correlation with T-cell responsiveness in experimental syphilis [J]. Infect Immun, 2007,75(1):104-112.
    [26]Giacani L, Hevner K, Centurion-Lara A. Gene organization and transcriptional analysis of the tprJ, tprI, tprG, and tprF loci in Treponema pallidum strains Nichols and Sea 81-4[J]. J Bacteriol,2005,187(17):6084-6093.
    [27]Giacani L, Lukehart S, Centurion-Lara A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp.pallidum [J]. FEMS Immunol Med Microbiol,2007,51(2):289-301.
    [28]Tomson FL, Conley PG, Norgard MV, et al. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins [J]. Microbes Infect,2007,9(11):1267-1275.
    [29]Cullen PA, Cameron CE. Progress towards an effective syphilis vaccine:the past, present and future [J]. Expert Rev Vaccines,2006,5(1):67-80.
    [30]Lee KH, Choi HJ, Lee MG, et al. Virulent Treponema pallidum 47 kDa antigen regulates the expression of cell adhesion molecules and binding of T-lymphocytes to cultured human dermal micro vascular endothelial cells [J]. Yonser Med J,2000, 41(5):623-633.
    [31]Brautigam CA, Deka RK, Ouyang Z, et al. Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J Bacteriol,2012,194:6771-6781.
    [32]Long FQ, Zhang JP, Shang GD, et al. Seroreactivity and immunogenicity of Tp0965, a hypothetical membrane protein of Treponema pallidum. Chin Med J (Engl),2012,125:1920-1924.
    [1]Lafond RE, Lukehart SA. Biological basis for syphilis [J]. Clin Microbiol Rev, 2006,19(1):29-49.
    [2]Giacani L, Molini B, Godornes C, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates:Differences among isolates and correlation with T-cell responsiveness in experimental syphilis [J]. Infect Immun, 2007,75(1):104-112.
    [3]Tomson FL, Conley PG, Norgard MV, et al. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins [J]. Microbes Infect,2007,9(11):1267-1275.
    [4]Brinkman MB, McGill MA, Pettersson J, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun,2008,76(5):1848-1857.
    [5]Brautigam CA, Deka RK, Ouyang Z, et al. Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis [J]. J Bacteriol,2012,194(24):6771-6781,
    [6]Long FQ, Zhang JP, Shang GD, et al. Seroreactivity and immunogenicity of Tp0965, a hypothetical membrane protein of Treponema pallidum[J]. Chin Med J (Engl),2012,125(12):1920-1924.
    [7]McGill MA, Edmondson DG, Carroll JA, et al. Characterization and serologic analysis of the Treponema pallidum proteome [J]. Infect Immun,2010,78 (6):2631-2643.
    [8]Cameron CE, Kuroiwa JM, Yamada M, et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis [J]. J Bacteriol,2008,190(7):2565-2571.
    [9]Giacani L, Molini B, Godornes C, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates:Differences among isolates and correlation with T-cell responsiveness in experimental syphilis [J]. Infect Immun, 2007,75(1):104-112.
    [10]Giacani L, Hevner K, Centurion-Lara A. Gene organization and transcriptional analysis of the tprJ, tprl, tprG, and tprF loci in Treponema pallidum strains Nichols and Sea 81-4[J]. J Bacteriol,2005,187(17):6084-6093.
    [11]Giacani L, Lukehart S, Centurion-Lara A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. Pallidum [J]. FEMS Immunol Med Microbiol,2007,51(2):289-301.
    [12]Tomson FL, Conley PG, Norgard MV,et al. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins [J].Microbes Infect,2007,9(11):1267-1275.
    [13]Cullen PA, Cameron CE. Progress towards an effective syphilis vaccine:the past, present and future [J]. Expert Rev Vaccines,2006,5(1):67-80.
    [14]Lee KH, Choi HJ, Lee MG,et al. Virulent Treponema pallidum 47 kDa antigen regulates the expression of cell adhesion molecules and binding of T-lymphocytes to cultured human dermal microvascular endothelial cells [J].Yonser Med J,2000,41(5):623-633.
    [15]Sathiamoorthy S, Shin JA. Boundaries of the origin of replication:creation of a pET-28a-derived vector with p15A copy control allowing compatible coexistence with pET vectors [J]. PLoS One,2012,7(10):e47259
    [16]Pang Y, Wang H, Li Z, et al. Immune response to liposome-associated recombinant SEF21 following oral immunization in chickens [J]. Avian Dis,2012,56(2):347-353.
    [17]Ataka K, Stripp ST, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins[J]. Biochim Biophys Acta,2013,1828(10):2283-2293.
    [18]Ulrich HD, Davies AA. In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae[J]. Methods Mol Biol,2009,497:81-103.
    [19]Ryan LK, Karol MH. Production of antibody to lipopolysaccharide (LPS) after imm unization with a LPS-polymyxin B-agarose immunogen[J]. J Appl Bacteriol,1988,64(6):487-495.
    [20]Konno S, Hoshi T, Taira T, et al. Endotoxin contamination contributes to the in vitro cytokine-inducing activity of osteopontin preparations [J]. J Interferon Cytokine Res,2005,25(05):277-282.
    [1]Pober JS, Cotran RS. Cytokines and endothelial cell biology [J]. Physiol Rev, 1990,70(2):427-451.
    [2]Chines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders [J]. Blood,1998,91(10):3527-3561.
    [3]Giacani L, Molini B, Godornes C, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates:Differences among isolates and correlation with T-cell responsiveness in experimental syphilis [J]. Infect Immun, 2007,75(1):104-112.
    [4]Lee JH, Choi HJ, Jung J, et al. Receptors for Treponema pallidum attachment to the surface and matrix proteins of cultured human dermal microvascular endothelial cells [J]. Yonsei Med J,2003,44(03):371-378.
    [5]Riley BS, Oppenheimer-Marks N, Hansen EJ, et al. Virulent Treponema pallidum activates human vascular endothelial cells [J]. J Infect Dis,1992, 165(3):484-493.
    [6]Thomas DD, Navab M, Haake DA, et al. Treponema pallidum invades intercellular junctions of endothelial cell monolayers [J]. Proc Natl Acad Sci U S A,1988,85(10):3608-3612.
    [7]Brautigam CA, Deka RK, Ouyang Z, et al. Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis [J]. J Bacteriol,2012,194(24):6771-6781.
    [8]Wnuczko K, Szczepanski M. Endothelium--characteristics and functions [J]. Pol Merkur Lekarski,2007,23(133):60-65.
    [9]Shireman PK, Pearce WH. Endothelial cell function:biologic and physiologic functions in health and disease. AJR Am J Roentgenol,1996, 166(1):7-13.
    [10]Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation [J]. Nat Rev Immunol,2007,7(10):803-815.
    [11]Cameron CE, Kuroiwa JM, Yamada M, et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis [J]. J Bacteriol,2008,190(7):2565-2571.
    [12]Leader BT, Godomes C, VanVoorhis WC, et al. CD4+ lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis [J]. Infect Immun,2007,75(6):3021-3026.
    [13]Long FQ, Zhang JP, Shang GD, et al. Seroreactivity and immunogenicity of Tp0965, a hypothetical membrane protein of Treponema pallidum[J]. Chin Med J (Engl),2012,125(12):1920-1924.
    [14]McGill MA, Edmondson DG, Carroll JA, et al. Characterization and serologic analysis of the Treponema pallidum proteome [J]. Infect Immun,2010,78 (6):2631-2643.
    [15]Paleolog EM, Katsikis P, Harris G, et al. Antilipid A monoclonal antibody HA-1A decreases the capacity of bacterial lipopolysaccharide to activate human vascular endothelial cells by an immune adherence mechanism[J]. Cytokine,1993, 5(6):570-577.
    [16]Wooten RM, Modur VR, McIntyre TM, et al. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells [J]. J Immunol,1996, 157(10):4584-4590.
    [17]Vieira Monica L, D'Atri Lina P, Schattner Mirta, et al. Anovel leptospiral protein increases ICAM-land E-selectin expression in human umbilical vein endothelial cells [J]. FEMS Microbiol Lett,2007,276(02):172-180.
    [18]Lee KH, Choi HJ, Lee MG, et al. Virulent Treponema pallidum 47 kDa antigen regulates the expression of cell adhesion molecules and binding of T-lymphocytes to cultured human dermal micro vascular endothelial cells [J]. Yonser Med J,2000, 41(5):623-633.
    [19]Ferreira AM, Rollins BJ, Faunce DE, et al. The effect of MCP-1 depletion on chemokine and chemokine-related gene expression:evidence for a complex network in acute inflammation [J]. Cytokine,2005,30(2):64-71.
    [20]Ding T, Sun J, Zhang P. Study on MCP-1 related to inflammation induced by biomaterials[J]. Biomed Mater,2009,4(03):035005.
    [21]van Zoelen MA, Verstege MI, Draing C, et al. Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA [J]. Mol Immunol,2011,48 (12-13):1468-1476.
    [22]Pradyumna Rao T, Okamoto T, Akita N, et al. Amla (Emblica officinalis Gaertn.) extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular endothelial cells [J]. Br J Nutr,2013,110 (12):2201-2206.
    [23]Chernova AA, Starikova EA, Sokolov DI, et al. Influence of products of bacterial origin on the expression of surface molecules in monocyte-derived and endothelial cells[J]. Zh Mikrobiol Epidemiol Immunobiol,2008(04):60-63.
    [1]Bockeler M, Stroher U, Seebach J, et al. Breakdown of paraendothelial barrier function during Marburg virus infection is associated with early tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1[J]. J Infect Dis,2007,196(2):S337-46.
    [2]Lopez-Ramirez MA, Fischer R, Torres-Badillo CC, et al. Role of caspases incytokine-induce barrier breakdown in human brain endothelial cells [J]. J Immunol,2012,189(6):3130-3139.
    [3]Sarangi PP, Lee HW, Kim M. Activated protein C action in inflammation[J]. Br J Haematol,2010,148(6):817-833.
    [4]He P. Leucocyte/endothelium interactions and microvessel permeability:coupled or uncoupled? [J] Cardiovasc Res,2010,87(2):281-290.
    [5]Lum H, Malik AB. Regulation of vascular endothelial barrier function[J].Am J Physiol,1994,267(3 Pt 1):L223-L241.
    [6]Lum H, Malik AB. Mechanisms of increased endothelial permeability [J]. Can J Physiol Pharmacol,1996,74(07):787-800.
    [7]Schubert-Unkmeir A, Konrad C, Slanina H, et al. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin:a role for MMP-8[J]. PloS Pathog,2010,6(4):e1000874.
    [8]Elsheikha HM, Khan NA. Protozoa traversal of the blood-brain barrier to invade the central nervous system[J]. FEMS Microbiology Review,2010,34(4):532-553.
    [9]Jong A, Wu CH, Prasadarao NV, et al. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells requires protein kinase C-alpha activation[J]. Cell Microbiol,2008,10(9):1854-1865.
    [10]Matussek A, Strindhall J, Stark L, et al. Infection of human endothelial cells with Staphylococcus aureus induces transcription of genes encoding an innate immunity response[J]. Scand J Immunol,2005,61(6):536-544.
    [11]Nassif X, Bourdoulous S, Eugene E, et al. How do extracellular pathogens cross the blood-brain barrier[J]? Trends Microbiol,2002,10(5):227-232.
    [12]Doulet N, Donnadieu E, Laran-Chich MP, et al. Neisseria meningitidis infection of human endothelial cells interferes with leukocyte transmigration by preventing the formation of endothelial docking structures[J]. J Cell Biol,2006, 173(4):627-637.
    [13]Xu R, Feng X, Xie X, et al. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9[J]. Brain Res,2012,1436:13-19.
    [14]Mahajan SD, Aalinkeel R, Sykes DE, et al. Tight junction regulation by morphine and HIV-1 tat modulates blood-brain barrier permeability[J]. J Clin Immunol, 2008,28(05):528-541.
    [15]Grab DJ, Perides G, Dumler JS, et al. Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier[J]. Infect Immun,2005,73(02):1014-1022.
    [16]Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation[J]. J Cell Mol Med,2009,13(7):1211-1220.
    [17]Waschke J, Curry FE, Adamson RH, et al. Regulation of actin dynamics is critical for endothelial barrier functions[J]. Am J Physiol Heart Circ Physiol,2005, 288(03):HI296-305.
    [18]Minshall RD, Tiruppathi C, Vogel SM, et al. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function[J]. Histochem Cell Biol,2002,117(02):105-112.
    [19]Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers:function and dysfunction[J]. Semin Immunopathol,2009,31(4):497-511.
    [20]Felinski EA, Cox AE, Phillips BE, et al. Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element[J]. Exp Eye Res,2008,86(06):867-878.
    [21]Liebner S, Kniesel U, Kalbacher H, et al. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells[J]. Eur J Cell Biol,2000,79(10):707-717.
    [22]Williams MR, Kataoka N, Sakurai Y, et al. Gene expression of endothelial cells due to interleukin-1 beta stimulation and neutrophil transmigration[J]. Endothelium,2008,15(01):73-165.
    [23]Asaka M, Hirase T, Hashimoto-Komatsu A, et al. Rab5a-mediated localization of Claudin-1 is regulated by proteasomes in endothelial cells[J]. Am J Physiol Cell Physiol,2011,300(1):C87-96.
    [24]Pati S, Gerber MH, Menge TD, et al. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock[J]. PLoS One,2011,6(9):e25171.
    [25]Chen C, Lu XH, Yan S, et al. HIV protease inhibitor ritonavir increases endothelial monolayer permeability [J]. Biochem Biophys Res Commun,2005, 335(03):874-882.
    [26]Agrawal T, Sharvani V, Nair D, et al. Japanese encephalitis virus disrupts cell-cell junctionsand affects the epithelial permeability barrier functions[J]. PLoS One, 2013,8(7):e69465.
    [27]Lu Q, Harrington EO, Jackson H, et al. Transforming growth factor-betal-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation[J]. J Appl Physiol,2006,101(02):375-384.
    [28]Szulcek R, Beckers CM, Hodzic J, et al. Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity [J]. Cardiovasc Res,2013, 99(3):471-482.
    [29]Sun H, Breslin JW, Zhu J, et al. Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability[J]. Microcirculation,2006, 13(03):237-247.
    [30]Carbajal JM, Gratrix ML, Yu CH, et al. ROCK mediatesthrombin's endothelial barrier dysfunction[J]. Am J Physiol Cell Physiol,2000,279(01):C195-204.
    [1]Pulzova L, Bhide MR, Andrej K. Pathogen translocation across the blood-brain barrier[J]. FEMS Immunol Med Microbiol,2009,57(3):203-213.
    [2]Sukumaran SK, Prosadarao NV. Escherichia coli Kl invasion increases human Brain microvascular endothelial cell monolayer permeability by disassembling vascular-endothelial cadherins at tight junctions[J]. J Infect Dis,2003, 188(9):1295-1309.
    [3]He F, Yin F, Omran A, et al. PKC and RhoA signals cross-talk in Escherichia coli endotoxin induced alterations in brain endothelial permeability [J]. Biochem Biophys Res Commun,2012,425(2):182-188.
    [4]Terry S, Nie M, Matter K, et al. Rho signaling and tight junction functions[J]. Physiology (Bethesda),2010,25(1):16-26.
    [5]Schubert-Unkmeir A, Konrad C, Slanina H, et al. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin:a role for MMP-8[J]. PloS Pathog,2010,6(4):e1000874.
    [6]Coureuil M, Mikaty Q Miller F, et al. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium[J]. Science,2009, 325(5936):83-87.
    [7]Jong A, Wu CH, Prasadarao NV, et al. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells requires protein kinase C-alpha activation[J]. Cell Microbiol,2008,10(9):1854-1865.
    [8]Chen SH, Stins MF, Huang SH, et al. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells[J]. J Med Microbiol,2003,52(11):961-970.
    [9]徐赤宇,温海,王溪涛,等.新生隐球菌胞外蛋白水解酶对脑微血管内皮细胞的作用.中国真菌学杂志,2006,1(4):206-210.
    [10]Banerjee A, Zhang X, Manda KR, et al. HIV proteins (gp 120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain:potential role of the thiol antioxidant N-acetylcysteine amide[J]. Free Radic Biol Med,2010, 48(10):1388-1398.
    [11]Xu R, Feng X, Xie X, et al. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9[J]. Brain Res,2012,1436:13-9.
    [12]Ju SM, Song HY, Lee JA, et al. Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes[J]. Exp Mol Med,2009,41(2):86-93.
    [13]Bai L, Zhang Z, Zhang H, et al. HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium:an in vitro study [J]. BMC Infect Dis, 2008,8:77.
    [14]Gandhi N, Saiyed ZM, Napuri J, et al. Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brainbarrier dysfunction:implications for HIV-1-associated neurocognitive disorder[J]. J Neurovirol,2010,16 (4):294-305.
    [15]Zhong Y, Zhang B, Eum SY, et al. HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation[J]. J Neurosci,2012,32(1):143-150.
    [16]Verma S, Lo Y, Chapagain M, et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules:Transmigration across the in vitro blood-brain barrier[J]. Virology,2009,385(2):425-433.
    [17]Roe K, Kumar M, Lum S, et al.West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases[J]. J Gen Virol,2012,93(Pt 6):1193-1203.
    [18]Shifflett DE, Clayburgh DR, Koutsouris A, et al. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo[J]. Lab Invest,2005, 85(10):1308-1324.
    [19]Peralta-Ramirez J, Hernandez JM, Manning-Cela R, et al. EspF Interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability [J]. Infect Immun, 2008,76(9):3854-3868.
    [20]Guttman JA, Li Y, Wickham ME,et al. Attaching and effacing pathogen-induced tight junction disruption in vivo[J]. Cell Microbiol,2006,8(4):634-645.
    [21]Fierer J, Guiney DG Diverse virulence traits underlying different clinical outcomes of Salmonella infection[J]. J Clin Invest,2001,107(7):775-780.
    [22]Holzer SU, Hensel M. Divergent roles of Salmonella pathogenicity island 2 and metabolic traits during interaction of S. enterica serovar typhimurium with host cells[J]. PLoS One,2012,7(3):e33220.
    [23]Kohler H, Sakaguchi T, Hurley BP, et al. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage[J]. Am J Physiol Gastrointest Liver Physiol,2007,29(1):G178-187.
    [24]Boyle EC, Brown NF, Finlay BB. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function[J]. Cell Microbiol,2006,8(12):1946-1957.
    [25]Meredith LW, Wilson GK, Fletcher NF, et al. Hepatitis C virus entry:beyond receptors[J]. Rev Med Virol,2012.22(3):182-193.
    [26]Benedicto I, Molina-Jimenez F, Bartosch B, et al. The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection[J]. J Virol,2009,83(16):8012-8020.
    [27]Cohen CJ, Shieh JT, Pickles RJ, et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction[J]. Proc Natl Acad Sci U S A, 2001,98(26):15191-15196.
    [28]Coyne CB, Shen L, Turner JR, et al. Coxsackievirus entry across epithelial tight junctions requires occluding and the small GTPases Rab34 and Rab5[J]. Cell Host Microbe,2007,2(3):181-192.
    [29]Obert G, Peiffer I, Servin AL. Rotavirus-indaced structural and functional alterations in tight junctions of polarized intestinal Caco-2 cell monolayers[J]. J Virol,2000,74(10):4645-4651.
    [30]Dickman KG, Hempson SJ, Anderson J, et al. Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells[J]. Am J Physiol Gastrointest Liver Physiol,2000,279(4):G757-766.
    [1]Beglin M, Melar-New M, Laimins L. Human papillomaviruses and the interferon response[J]. J Interferon Cytokine Res,2009,29(9):629-635.
    [2]Olmos L,Vilata J,Rodriguez A,et al. Double-blind, randomized clinical trial on the effect of interferon-beta in the treatment of condylomata acuminata[J]. Int J STD AIDS,1994,5(3):182-185.
    [3]Bornstein J,Pascal B,Zarfati D, et al. Recombinant human interferon-beta for condylomata acuminata:a randomized, double-blind, placebo-controlled study of intralesional therapy[J]. Int J STD AIDS,1997,8(10):614-621.
    [4]郭在培,刘宏杰,张谊之,等.重组人干扰素a-2b软膏治疗生殖器疱疹和尖锐湿疣近期疗效观察[J].临床皮肤科杂志,2002,31(3):166-167.
    [5]尤志学,郑漪霖,王淑玉,等.重组人干扰素a-2a栓治疗阴道尖锐湿疣的临床研究[J].实用妇产科杂志,2004,20(1):55-56.
    [6]眭道顺,秦兆江,崔志斌,等.C02激光联合重组人-2b干扰素凝胶外用治疗尖锐湿疣115例[J].中华皮肤科杂志,2004,37(9):542.
    [7]Handley JM, Horner T, Maw RD, et al. Subcutaneous interferon alpha 2a combined with cryotherapy vs cryotherapy alone in the treatment of primary anogenital warts:a randomised observer blind placebo controlled study[J]. GenitourinMed,1991,67(4):297-302o
    [8]李育林,王红梅.异维A酸联合干扰素治疗尖锐湿庆及预防复发的疗效比较 [J].中国皮肤性病学杂志,2006,20 (9):552-553.
    [9]O'Mahony C, Yesudian PD, Stanley M. Imiquimod use in the genital area and development of lichen sclerosus and lichen planus[J]. International journal of STD & AIDS,2010,21(3):219-21.
    [10]Gotovtseva, Elena P, Asha S,et al. Optimal Frequency of Imiquimod (Aldara) 5% Cream for the Treatment of External Genital Warts in Immunocompetent Adults: A Meta-Analysis[J]. Sex Transm Dis,2008,35(4):346-351.
    [11]Garland SM, Waddell R, Mindel A, et al. An open-label phase Ⅱ pilot study investigating the optimal duration of imiquimod 5% cream for the treatment of external genital warts in women[J]. Int J STD & AIDS,2006,17(7):448-521.
    [12]Saiag P, Bauhofer A, Bouscarat F, et al. Imiquimod 5% cream for external genital or perianal warts in human immunodeficiency virus-positive patients treated with highly active antiretroviral therapy:an open-label, noncomparative study [J]. Br J Dermatol,2009,161(4):904-909.
    [13]Ahn WS, Huh SW, Bae SM, et al. A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G1 arrest, and regulation of gene expression[J]. DNA Cell Biol,2003, 22(3):217-224.
    [14]Gross G, Meyer K-G, Pres H, et al. A randomized, double-blind, four-arm parallel-group, placebocontrolled phase Ⅱ/Ⅲ study to investigate the clinical efficacy of two galenic formulations of Polyphenon E in the treatment of external genital warts[J]. J Eur Acad Dermatol Venereol,2007,21(10): 1404-1412.
    [15]Stockfleth E, Beti H, Orasan R, et al. Topical Polyphenon E in the treatment of external genital and perianal arts:a randomized controlled trial [J]. Br J Dermatol, 2008,158(6):1329-1338.
    [16]Tatti S, Swinehart JM, Thielert C, et al. Sinecatechinsa defined green tea extract, in the treatment of external anogenital warts:a randomized, controlled trial[J]. Obstet Gynecol,2008; 111(6):1371-1379.
    [17]张瑞雪,徐基乔, 陈道品, 等.黄芪注射液联合白介素-2治疗脾虚毒蕴型尖锐湿疣疗效观察.中医药临床杂志,2007,19(5): 472-474.
    [18]Stanley MA, Pett MR, Coleman N. HPV:from infection to cancer[J]. Biochemical Society Transactions,2007,35(6):1456-1460.
    [19]Stanley M. HPV:immune response to infection and vaccination[J]. Infectious agents and cancer,2010,5(1):19.
    [20]Karim R, Meyers C, Backendorf C. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes[J]. Plos One,2011,6(3):e17848.
    [21]Nees M, Geoghegan JM, Hyman T, et al. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes[J]. Journal of Virology,2001,75(9):4283-4296.
    [22]Erick De la Cruz-Hernandez, Alejandro Garcia-Carranca, Alejandro Mohar-Betancourt, et al. Differential splicing of E6 within human papillomavirus type 18 variants and functional consequences[J]. J Gen Virel,2005, 86(9): 2459-2468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700