HAPS资源管理及容量估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地面无线接力、卫星和地面蜂窝等传输技术的突破,无线通信得到了飞速发展。近二十多年来,无线和有线两种通信系统相结合,构成了几乎覆盖全球的现代通信网,形成了信息事业蓬勃发展的大好形势。但是,目前已有的通信系统仍各有弱点。有线通信只适用于固定用户。蜂窝移动通信需要建设大量的基站和天线,才能有足够大的覆盖范围;同步卫星的覆盖范围虽然很大,但它离地面太远,传输损耗很大,延时长;中低轨卫星必须采用几十颗星组成星座才能持续为一个区域服务。正在发展中的高空平台站(HAPS),其高度介于地面和各种通信卫星之间。它利用良好的电波传输特性,通过平台实现地面用户之间、平台之间或平台与卫星之间的通信连接,具有布局灵活、应用广泛、成本低廉、安全可靠等优点。由高空平台构成的信息系统将是新一代的无线通信系统,它融合了陆地和卫星通信系统的优势,又不同程度地避免了两者的缺点,在通信领域的应用得到了广泛认同,是现有通信方式的有效补充。积极开展高空平台与有关信息系统的研究,有助于我国在通信事业上与国际先进技术保持同步,为通信事业开拓一个新的领域。
     高空平台通过使用多波束天线对覆盖区域进行分区覆盖,实现了CDMA和SDMA混合多址接入技术,使得宽带通信网系统容量和频谱利用率的大幅度提高成为可能。天线技术,小区划分,覆盖方案,链路特性,干扰特性等都是高空平台通信系统的关键技术,对于HAPS通信系统的设计和应用具有非常重要的意义。在此背景下,本文重点对高空平台通信的小区划分,覆盖,链路特性及小区干扰等从理论给予推导和数值分析,并在此基础上对高空平台准静止状态的呼叫接入控制(CAC),热点区域通信及系统容量估算等关键技术进行深入和系统的研究。
     首先,本文给出了HAPS通信的基本结构,对HAPS通信覆盖和链路特性做了大量的研究。通过给出3种小区划分方法并对其性能和实现等方面给予比较。分析了功率控制对小区链路的影响,给出了有无功率控制下对系统性能的分析。为下一步的研究工作做充分的铺垫。
     其次,由于高空平台的准静止状态导致平台接收信号的变化,要实现信号动态变化情况下的呼叫接入控制机制,并且保证各种业务的服务质量,需要采取特定的措施来避免平台准静止状态对接入控制机制的影响。针对现阶段对HAPS研究基本都假设平台静止不动或调整波束指向能够补偿由于高空平台移动造成的剩余指向误差。本文重点研究高空平台通信的准静止状态,并在链路特性中反应准静止状态带来的影响。本文通过建模把平台的不稳定特性通过上行链路的非理想功率控制来体现。为解决平台不稳定等造成接收信号随机变化很大导致接入困难的问题,本文提出了基于平均Eb/N0测量值的呼叫接入控制策略,与基于瞬时Eb/N0测量值相比,准确真实的反映平台接收信号的情况,消除平台准静止状态而导致信号变化对呼叫接入控制的影响。同时通过对每种业务的新呼叫和切换呼叫设置不同的Eb/N0接入门限,该CAC机制很好的支持了多媒体业务。
     再次,在高空平台通信系统中,当多个高空平台为同一区域服务或覆盖区域有重叠的时候,位于覆盖区域内的用户可以和多个高空平台进行通信。利用高空平台通信结构这种独有的优势,网络能够极大的增加系统服务区内的移动用户容量,解决由于负载不均衡造成的无线信道资源无法满足用户需求的情况,为热点区域通信问题提供很好的解决方案。本文提出了基于资源代理的资源分配算法,实时监测高空平台通信系统的网络性能,处理资源分配过程中出现的各种情况,解决由于负载不均衡造成的无线资源无法满足用户需求的问题。本文对热点区域移动用户群的通信做了扩展研究,通过对移动用户群采用业务量预测与呼叫量变化预测的方法,可以为移动用户群预留合适的资源,避免了移动用户群切换时所需要大量资源而系统无法提供导致移动群通信中断的问题,具有很好的应用前景。
     最后,在当前的无线通信体制中,系统容量主要受到来自带宽与功率这两方面物理条件的制约。HAPS作为无线通信的一个分支,系统容量主要也是受到上面两个物理指标的约束。而且在不同的系统和不同的技术体制下均需要建立相似但又不同的估算模型,涉及到大量的参量,实现复杂,工作量巨大。本文基于高空平台通信的特点,在联合带宽和功率下给出了系统在频分,时分,码分和空分等多种混合多址技术体制下的容量估算,避免了以前单一指标、单一技术体制的系统容量估算。本文给出的容量估算方法简单,系统设计者利用该容量估算方法能够很快地对系统容量进行预先估算,对系统性能作出整体评估。因此,本文给出的系统容量估算方法具有很强的工程实用价值。
With such transmission breakthroughs as the radio relay, communications satellite and terrestrial cellular system, the wireless communications has been rapidly developing. In the last two decades, thanks to the combination of the fixed-line and wireless technologies, a modernized communications network has been almost covered the whole globe and has been enabling the information industry to develop in a flourishing way. Nevertheless, each of the existing communications system has shortcomings. A wire-line system is only applicable to fixed users. A terrestrial cellular mobile communications needs construction of numerous base stations and antennae for achieving sufficient coverage. A geostationary satellite has quite vast coverage, however, it is far from the earth, great transmission attenuation and time delay can be caused. With regard to a medium or low orbit satellite system, dozens of satellites are required to form a constellation so a number of problems may appear. The developing of high altitude platform stations (HAPS) network is intended to be located at a position that is at a point between the different kinds of satellites and the earth. By using good radio wave transmission behavior, this new system can realize communications connections between the platform and its terrestrial users, between two platforms as well as between a platform and a communications satellite, therefore, it possesses advantages of flexible arrangement, vast-range, cost-effective, safe and reliable communicating, etc. An information system formed by HAPS will be a new generation-system for the wireless communications and HAPS communication system combines the advantages of both terrestrial and satellite communication systems and avoids, to different extents, their disadvantages. It has been identified as a promising communication style in the field of telecommunication and an effective complement to the existing communication system. To actively carry out the research and development work for the HAPS and its related information system is helpful to China to keep pace with internationally advanced technologies in the communications field and open up a new field for the telecom business.
     It is possible that system capacity is enhanced and utilization of frequency is increased because HAPS covers a wide area by multi-beam antennas and realizes CDMA and SDMA hybrid access technology. Therefore it is no doubt that antenna technology, cell partition technology, covering scheme, link characteristics and interference are the key techlologies for HAPS. It is very important to design and application of HAPS. Therefore such key technologies are researched theoreticly and some important conclusions are given.Based on this background, call access control (CAC) of quasi-stationary platform, hot spot area communications and system capacity estimation are deeply and systematically developed in this dissertation.
     Firstly, HAPS communications system structure is depicted in the dissertation and much research work is done on covering and link characteristics. Three cell partition technologies are provided which performace and difficulty of implementation are compared deeply. Also the influence of power control on link characteristics is analyzed and system performance analysises are maken under perfect and imperfect power control. Therefore some important and useful inclusions are drawn about some basic HAPS communication acknowledge and characteristics through first research. This work is sufficient for next research work in the dissertation.
     Secondly, access control mechanism is adopted in HAPS networks due to the limited wireless resource. Based on the guarantee of quality of service of users in the service, the function of access control is to judge whether admit a new call or not. The received signals at the high altitude platform are not stable because of the quasi-stationary state of the high altitude platform. By far, all the research work assumed that the high altitude platform is stationary and offset caused by movement of the high altitude platform is compensated. Therefore, traditional power control mechanism can not resolve the problems caused by the movement of high altitude platform and power control error will appear in HAPS networks. Due to the quasi-stationary state of the high altitude platform, The paper emphasis on the resolution of user access difficulties caused by the variety of the received signals. A new CAC mechanism based on average Eb/N0 tested value is proposed for HAPS CDMA in this paper. Comparison to instantaneous Eb/N0 mechanism, it exactly reflects the received signals of the high altitude platform and cancels the influence caused by the power control error. Also this proposed CAC mechanism sets up different access threshold for new user call and handoff user call of different service and multimedia service is satisfied sufficiently.
     Thirdly, In HAPS system, when more than one HAP are employed to serve a common coverage area or the coverage areas of HAPS have an overlapping area, the user in this region can communicate with multiple HAPS. Using this unique characteristic of HAPS system, the network can significantly increase the capacity available to mobile users, and deal with the situation that the wireless resource can hardly guarantee the users’requirements of the quality of service on account of non-uniformly distributed traffic, which provides good solution to the communication problems at hot spots. A new resource allocation algorithm based on resource agent (RA) is proposed to resolve the problem caused by load unbalance in the HAPS network. RA monitors the performance of the networks timely and deals with the resource allocation. With respect to the military request of HAPS networks, extension research work is considered to deal with the mobile user group communications in hot spot areas. By predicting of service and call variety, the HAPS networks can reserve appropriate resource for handoff mobile users group. Consequently the HAPS networks avoid group call failure because of resource lack caused by great handoff group request. This method has a bright applicable future. Lastly, system capacity of wireless networks is limited by two physical
     parameters, namely transmission bandwidth and transmission power. As a branch of wireless networks, HAPS has the same problem. Before designing a network, capacity must be estimated. Therefore a lot of similar capacity estimation models are established to estimate different networks and different technologies. So the work is very complex and redundant. A new capacity estimation method based on the characteristics of HAPS communications is proposed in this paper which combines transmission bandwidth and transmission power for hybrid multiple access technology. This proposed method is simple and applicable in engineering. A network designer can find the system capacity easily by the proposed method and can evaluate general performance of the system.
引文
1. Karapantazis, S, Pavlidou, F. N. Broadband from heaven. IEEE Communications Engineer, 2004, 2(2): 18-23
    2. G. P. White, Y. V. Zakharov. Data communications to trains from high-altitude platforms. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2253-2266
    3. Tozer, T. C., Grace, D., Smith, A. C. High altitude platforms for VHDR in-theatre communications. IET Seminar on Military Satellite Communication Systems, London, UK, 2008, 7: 1-34
    4. D. Grace, M. H. Capstick, M. Mohorcic, J. Horwath. Integrating users into the wider broadband network via high altitude platforms. IEEE Wireless Communications, 2005, 12(5): 98-105
    5. D. Avagnina, F. Dovis, A. Ghiglione, P. Mulassano. Wireless networks based on high-altitude platforms for the provision of integrated navigation/communication services. IEEE Communications Magazine, 2002, 40(2): 119-125
    6. Bayhan, S., Giir, G., Alagoz. F. High altitude platform (HAP) driven smart radios: A novel concept. International Workshop on Satellite and Space Communications, 2007, 9: 201-205
    7. C. Oestges, D. Vanhoenacker-Janvier. Coverage modelling of high-altitude platforms communication systems. IEEE Electronics Letters, 2001, 37(2): 119- 121
    8. D. Grace, T. C. Tozer. High-altitude platforms for wireless communications. IEEE Electronics & Communication Engineering Journal, 2001, 13(3): 127-137
    9. Tozer, T. High altitude platforms for broadband-pie in the Sky? Wireless Broadband Conference, York, UK, 2006,4: 167-174
    10. Panagopoulos, A. D., Georgiadou, E. M., Kanellopoulos, J. D. Selection combining site diversity performance in high altitude platform networks. IEEE Communications Letters, 2007, 11(10): 787-789
    11. A. K. Widiawan, R. Tafazolli. Analytical investigation on sharing band overlaid high altitude platform station terrestrial CDMA system. IEEE Electronics Letters, 2005, 41(2): 77-79
    12. Jeng-Ji Huang, Wei-Ting Wang. Interference reduction for terrestrial cellularCDMA systems via high altitude platform station. IEEE 65th Vehicular Technology Conference, Dublin, 2007,4: 1350-1354
    13. Taha-Ahmed, B., Calvo-Ramon, M. High altitude platforms (HAPs) W-CDMA system over cities. IEEE 61st Vehicular Technology Conference, Atlanta, 2005, 5: 2673-2677
    14.樊昌信.一种发展中的新移动通信方式—平流层通信研发概况.现代电子技术, 2005, 21(19): 1-4
    15.孙震强.一种有效的抗震应急通信系统:高空平台系统.电信科学, 2008, (06): 15-18
    16.巴勇,张中兆,张乃通.平流层通信系统在军事应用中的可行性探讨.系统工程与电子技术, 1999, 21(10): 10-14
    17.张中兆,张乃通,巴勇.平流层通信及相关技术.电信科学,1998,14(11): 6-8
    18.吴佑寿.高空平台信息系统—新一代无线通信体系.中国无线电管理, 2003, (7): 3-8
    19. M. Antonini, E. Cianca, A. De Luise, M. Pratesi, M. Ruggieri. Stratospheric relay: potentialities of new satellite-high altitude platforms integrated scenarios. IEEE Aerospace Conference, Montana, 2003, 3: 1211-1219
    20. R. Miura, M. Suzuki. Preliminary flight test program on telecom and broadcasting using high altitude platform stations. IEEE Wireless Personal Communications Journal, 2003, 24(2): 341-361
    21. G. Kandus, A. Svigelj, M. Mohorcic. Telecommunication network over high altitude platforms telecommunications in modern satellite, International Conference on Cable and Broadcasting Services, 2005, 2: 344-347
    22. I. Bisio, M. Marchese. Study and performance evaluation of bandwidth controls over high altitude platforms. IEEE Symposium on Computers and Communications, 2006, 1: 641-646
    23. D. A. J. Pearce, D. Grace. Optimum antenna configurations for millimetre-wave communications from high-altitude platforms. IET Communications, 2007, 1(3): 359-364
    24. Recommendation ITU-R F.1500. Preferred characteristics of systems in the FS using high altitude platforms operating in the bands 47.2-47.5 GHz and
    47.9-48.2 GHz. International Telecommunications Union, 2000
    25. E. Falletti, M. Laddomada, M. Mondin, F. Sellone. Integrated services fromhigh-altitude platforms: a flexible communication system. IEEE Communications Magazine, 2006, 44(2): 85-94
    26. Elshaikh. Zain Elabdin Omer, Islam. Md Rafiqul, Ismail. Ahmad Faris. High altitude platform for wireless communications and other services. International Conference on Electrical and Computer Engineering, 2006, 1: 432-438
    27. S. Karapantazis, F. N. Pavlidou . The role of high altitude platforms in beyond
    3G networks. IEEE Personal Communications, 2005, 12(6): 33-41
    28. M. Antonini, E. Cianca, A. De Luise, M. Pratesi, M. Ruggieri. Stratospheric relay: potentialities of new satellite-high altitude platforms integrated scenarios. IEEE Aerospace Conference, 2003, 3: 1211-1219
    29.周宇江,杨文革,苏晓旭.用于精确导航和通信的高空平台.吉林大学学报(信息科学版), 2006, 24(6): 586-589
    30.柴霖.临近空间飞行器测控与信息传输系统频段选择.航空学报, 2008, 29(4): 1007-1012
    31. Ryu Miura, Masayuki Oodo. Wireless communications system using stratospheric platforms–R&D program on telecom and broadcasting system using high altitude platform stations. Journal of the Communications Research Laboratory, 2001, 48(4): 33-48
    32. D. Grace, N. E. Daly, T. C. Tozer, A. G. Burr. Providing multimedia communications services from high altitude platforms. International Journal of Satellite Communications, 2001,19(6): 559-580
    33. Sun Z, Zhu X. A novel telecommunication system: HAPS. China Communications, 2007, 17(1): 423-430
    34. http://www.helinet.polito.it
    35. http://www.capanina.org
    36. Likitthanasate, P., Grace, D., Mitchell, P. D. Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band. Electronics Letters, 2005, 41(15): 858-s860
    37. Grace, D., Chen, G., White, G. P., Thornton, J., Tozer, T. C. Improving the system capacity of mm-wave broadband services using multiple high altitude platforms. IEEE Global Telecommunications Conference, 2003, 1: 169-173
    38. T. C. Tozer, D. Grace. High-altitude platforms for wireless communications. IEE Electronics & Communication Engineering Journal, 2001, 13(3): 127-137
    39. T. C. Tozer, D. Grace, J. Thompson, P. Baynham. UAVs and HAPs-potential convergence for military communications. IEE Colloquium on Military Satellite Communications, London, UK, 2000, 6: 79-95
    40.童志鹏,曹黄强,王晓钧.以科学发展观统领平流层平台信息系统的发展.装备指挥技术学院学报, 2007, 18(1): 1-5
    41.詹世革,孟庆国,刘青泉,汲培文.临近空间飞行器的发展趋势和重大基础科学问题研讨会在京召开.自然科学进展, 2006, 16(9): 1185
    42. Jong-Min Park, Bon-Jun Ku, Yang-Su Kim, Do-Seob Ahn. Technology development for wireless communications system using stratospheric platform in Korea. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Seoul, 2002, 9: 1577-1581
    43. Khamis, S., Al-Shaer, A. Soft development of a high altitude platform network for national wireless communication service.the 20th Radio Science Conference, 2003, 8: 1-11
    44. Holis, J., Pechac, P. Elevation Dependent shadowing model for mobile communications via gigh altitude platforms in built-up areas. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1078-1084
    45. Thornton, J. A low sidelobe asymmetric beam antenna for high altitude platform communications. Microwave and Wireless Components Letters, 2004, 14(2): 59–61
    46. Bon-Jun Ku, Jong-Min Park, Yang-Su Kim, Do-Seob Ahn. Design of APAA with 4 channel digital beamformer for HAPS. The 5th International Symposium on Wireless Personal Multimedia Communications, 2002, 10: 427-431
    47. Bon-Jun Ku, Jong-Min Park, Yang-Su Kim, Do-Seob Ahn. Design of linear array antenna system for HAPS in S band. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Seoul, 2002, 9: 1582-1585
    48. Byung-Su Kang, Bon-Jun Ku, Do-Seob Ahn. Ka band active phase array antenna with digital beam former for the HAPS systems. The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003, 9: 2475-2479
    49. Bon-Jun Ku, Yang-Su Kim, Byung-Su Kang. Multi-faced and multibeam DBF antenna for high altitude platforms station stages of antenna development. TheIVth International Conference on Antenna Theory and Techniques, 2003, 9: 87–90
    50. Xu, Z., Zakharov, Y., White, G. Antenna array optimisation using semidefinite programming for cellular communications from HAPs. Electronics Letters, 2007, 43(2): 67-69
    51. Spillard, C. L., Grace, D., Thornton, J., Tozer, T. C. Effect of ground station antenna beamwidth on rain scatter interference in high-altitude platform links. Electronics Letters, 2002, 38(20): 1211-1213
    52. Jin, R., Miura, R., Oodo, M., Hongwen Zhu, Suzuki, M. Modified MRC beamformer to suppress strong interferences for on-board DBF antenna in HAPS. Electronics Letters, 2002, 38(16): 847-848
    53.李含青,郭庆,杨明川.一种高空平台站通信系统的空时信道仿真模型研究.移动通信, 2008, 6, (12): 68-71
    54.牛俊坡,顾学迈,杨明川.基于高空平台站通信的三状态宽带信道模型.移动通信, 2008, 5, (10): 81-84
    55. Nofal, M., Dessouky, M., Hadhood, M., Albagory, Y. Performance and feasibility of different switched-beam antennas for the stratospheric platform mobile communications covering newly developing regions. The 9th National Radio Science Conference, 2002, 3: 133-140
    56. Thornton, J., Grace, D., Capstick, M.H., Tozer, T. C. Optimizing an array of antennas for cellular coverage from a high altitude platform. IEEE Transactions on Wireless Communications, 2003, 5, 2(3): 484-492
    57. Cuevas-Ruiz, J. L., Delgado-Penin, J. A. Channel model based on semi-Markovian processes: An approach for HAPS systems. The 14th International Conference on Electronics, Communications and Computers, 2004, 2: 52–56
    58.程月波,金荣洪,耿军平,刘波.平流层通信系统的收发链路性能研究.电波科学学报, 2005, 20(5): 666-670
    59.杨红卫,何晨,宋文涛,诸鸿文.平流层通信平台分集的经验模型.系统仿真学报, 2002, 14(4): 447-450
    60.牛志升,刘嵩,吴佑寿.基于多建筑阻挡概率的平流层多径信道模型.电子学报, 2004, 32(12): 132-135
    61. Mohammed, A., Hult, T. Evaluation of Depolarization Effects on thePerformance of High Altitude Platforms (HAPs) IEEE international conference on Vehicular Technology Conference, Singapore, 2008, 5: 2942-2946
    62. Milas, V. F., Constantinou, P. Simulations of fractional degradation in performance of terrestrial networks due to interference by high-altitude platforms. The 11 Intenational Workshop on Computer-Aided Modeling, Analysis and Design of Communication Links and Networks, 2006, 6: 78-84
    63. Vasilis F. Milas, Demosthenes Vouyioukas, Nektarios Moraitis, Philip Constantinou. Spectrum planning and performance evaluation between heterogeneous satellite networks. European Journal of Operational Research, 2008, 12, 191(3): 1132-1138
    64. Song Liu, Zhisheng Niu, Youshou Wu. A blockage based channel model for high altitude platform communications. The 57th IEEE Semiannual on Vehicular Technology Conference, 2003, 4: 1051-1055
    65. Dovis, F., Fantini, R., Mondin, M., Savi, P. Small-scale fading for high-altitude platform (HAP) propagation channels. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 641-647
    66. Jong-Min Park, Bon-Jun Ku, Yang-Su Kim, Do-Seob Ahn. Interference analysis of cellular system due to HAPS system to provide IMT-2000 service. The 5th International Symposium on Wireless Personal Multimedia Communications, 2002, 10: 1182-1186
    67. Axiotis, D. I., Theologou, M. E. 2GHz outdoor to indoor propagation at high elevation angles. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, 9: 901-905
    68. Axiotis, D. I., Theologou, M. E. Building penetration loss at 2 GHz for mobile communications at high elevation angles by HAPS. The 5th International Symposium on Wireless Personal Multimedia Communications, 2002, 10: 282-285
    69. Axiotis, D. I., Theologou, M. E., Sykas, E. D. The effect of platform instability on the system level performance of HAPS UMTS. IEEE Communications Letters, 2004,2, 8(2): 111-113
    70. Axiotis, D. I., Theologou, M. E. On the effects of platform positional instability on a UMTS system served by HAPS. The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003, 9: 2368-2372
    71. Nofal, M., Hadhood, M., Dessouky, M., Albagory, Y. A novel cellular structure for stratospheric platform mobile communications. The 19th National Radio Science Conference, 2002, 3: 354-362
    72. Bostic, J., Drcic, U., Mohorcic, M.; Kandus, G. Delivering IP with QoS/CoS over HeliNet. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, 9: 1591-1595
    73. Khamis, S., Al-Shaer, N. Quality-of-service-oriented protocol for supporting multimedia services over a stratospheric platform communication network. The 20th Nationl Radio Science Conference, 2003, 3: 1-9
    74. Song Liu, Zhisheng Niu, Youshou Wu. Impact of platform motion on soft handover in high altitude platform IMT-2000 system. The 57th IEEE Vehicular Technology Conference, 2003, 4: 1964-1968
    75. Song Liu, Zhisheng Niu, Youshou Wu. An adaptive thresholds capacity reservation scheme for high altitude platform CDMA systems. Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Vehicular Technology Conference, 2003, 4: 2062-2065
    76. Grace, D., Spillard, C., Thornton, J., Tozer, T. C. Channel assignment strategies for a high altitude platform spot-beam architecture. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, 9: 1586-1590
    77. Woo Lip Lim, Yu Chiann Foo, Tafazolli, R. Adaptive softer handover algorithm for high altitude platform station UMTS with onboard power resource sharing. The 5th International Symposium on Wireless Personal Multimedia Communications, 2002, 10: 52-56
    78. Ikegami, T., Ohta, M. Effects of overhead and adaptive data rate control in CDMA ALOHA for shadowed land mobile satellite and HAPS channels. The 5th International Symposium on Wireless Personal Multimedia Communications, 2002, 10: 464-468
    79. Ikegami, T., Mori, Y., Ohta, M. Performance of CDMA-ALOHA in shadowed mobile satellite and stratospheric platform channels. IEEE 7th International Symposium on Spread Spectrum Techniques and Applications, 2002, 1: 93-97
    80. Pearce, D. A. J., Grace, D. Optimising the downlink capacity of broadband fixed wireless access systems for packet-based communications. IEEE InternationalConference on Communications, 2003, 5: 2149-2153
    81. Z. Liu, M. Zarki. SIR-based call admission control for DS-CDMA cellular systems. IEEE Journal on Selected Areas in Communications, 1994, 12(4): 638-644.
    82. I. M. Kim, B. C. Shin, D. J. Lee. SIR-based call admissioncontrol by intercell interference prediction for DS-CDMAsystems. IEEE Communications Letters, 2000, 4(1): 29-31
    83. S. Shin, C. H. Cho, D. Sung. Interference-based channel assignment for DS-CDMA cellular systems, IEEE Transactionson on Vehicular Technology, 1999, 48(1): 233-239
    84. S. Shin, D. Sung. DS-CDMA reverse link channel assignment based on interference measurements. Electronics Letters, 1995: 31(22): 1897-1899
    85. T. Tugcu, C. Ersoy. A new call admission control schemebased on mobile position estimation in DS-CDMA systems. Wireless Networks, 2005, 11(3): 341-351
    86. W. Jeon, D. Jeong. Call admission control for CDMA mobile communications systems supporting multimedia services. IEEE Transactions on Wireless Communications, 2007, 1(4): 649-659
    87. S. Shen, C. J. Chang, C. Huang, Q. Bi. Intelligent calladmission control for wideband CDMA cellular systems. IEEE Transactions on Wireless Communications, 2004, 3(5): 1810-1821
    88. L. Ding, J. Lehnert. Erlang capacity of a voice/data cellular CDMA uplink system using prioritized admission control and adaptive power control. International Journal of Wireless Information Networks, 2008, 8(1): 1-14
    89. Y. Ma, J. Han, K. Trivedi. Call admission control for reducing dropped calls in CDMA cellular systems. Computer Communications, 2002, 25(7): 689-699
    90. S. E. Elayoubi, T. Chahed, G. He. buterne. Admission control in UMTS in the presence of shared channels. Computer Communications, 2004, 27(11): 1115-1126
    91. C. Lindemann, M. Lohmann, A. Thummler. Adaptive call sdmission control for QoS/revenue optimization in CDMA cellular networks. Wireless Networks, 2004, 10(4): 457-472
    92. Y. Foo, W. Lim, R. Tafazolli. Centralized total received power based calladmission control for high altitude platform station UMTS. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisbon, Portugal, 2002, 4: 1577-1581
    93. Y. Foo, W. Lim, R. Tafazolli. Centralized downlink call admission control for high altitudes platform station UMTS with onboard power resource sharing. The IEEE 56th Vehicular Technology Conference, Vancouver, Canada, 2002, 1: 549-553
    94. Pace, P., Natalizio, E. Dynamic fair power sharing admission control for HAP-UMTS communication system. The 16th IST Mobile and Wireless Communications Summit, 2007, 7: 1-5
    95. F. D. Priscoli, F. Sestini. Effects of imperfect power controland user mobility on a CDMA cellular network. IEEE Journal on Selected Areas in Communications, 2007, 14(9): 1809-1817
    96. M. Andersin, Z. Rosberg, J. Zander. Soft and safe admission control in cellular networks. IEEE Transactions on Networking, 1997, 5(2): 255-265
    97. D. Kim. Efficient interactive call admission control in power controlled mobile systems. IEEE Transactions on Vehicular Technology, 2000, 49(3): 1017-1028
    98. Tae Chul Hong, Bon-Jun Ku, Jong-Min Park, Do-Seob Ahn. Forward link capacity of the WCDMA system using high altitude platform stations. IEEE International Symposium on Consumer Electronics, 2004, 9: 278-282
    99. Jeng-Ji Huang, Wei-Ting Wang, Huei-Wen Ferng. Uplink capacity enhancement for an integrated HAPS-terrestrial CDMA system. IEEE Communications Letters, 2007, 11(1): 10-12
    100.Grace, D., Thornton, J., Guanhua Chen, White, G. P., Tozer, T. C. Improving the system capacity of broadband services using multiple high-altitude platforms. IEEE Transactions on Wireless Communications, 2005, 4(3): 700-709
    101.Ahmed, B. T. On high altitude platforms (HAPs) UMTS-HSDPA. The 9th European Conference on Wireless Technology, 2006, 9: 223-226
    102.Pearce, D. A. J., Grace, D. Optimising the downlink capacity of broadband fixed wireless access systems for packet-based communications, IEEE International Conference on Communications, 2003, 5: 2149-2153
    103.Konefal, T., Spillard, C., Grace, D. Site diversity for high-altitude platforms: a method for the prediction of joint site attenuation statistics. IEE Proceedings ofMicrowaves, Antennas and Propagation, 2002, 4: 124-128
    104.Peide Liu. QoS management for high altitude platforms. Workshop on Intelligent Information Technology Application, 2007, 12: 290-293
    105.Vazquez-Castro, M. A., Belay-Zelek, D., Curieses-Guerrero, A. Availability of systems based on satellites with spatial diversity and HAPS. Electronics Letters, 2002, 38(6): 286-288
    106.Iskandar Putro, Dimas Rinarso. Performance evaluation of broadband WiMAX services over high altitude platforms (HAPs) communication channel. The 4th International Conference on Wireless and Mobile Communications, 2008, 7: 55-59
    107.Yang, Z., Mohammed, A., Hult, T. Grace, D. Assessment of coexistence performance for WiMAX broadband in HAP cellular system and multiple-operator terrestrial deployments. The 4th International Symposium on Wireless Communication Systems, 2007, 10: 195-199
    108.Zhe Yang, Mohammed, A. Huh, T., Grace, D. Optimizing downlink coexistence performance of WiMAX services in HAP and terrestrial deployments in shared frequency bands. International Waveform Diversity and Design Conference, 2007, 6: 79-82
    109.Yang, Z., Mohammed, A. Evaluation of WiMAX uplink performance in high altitude platforms cellular system. The 4th International Symposium on Wireless Communication Systems, 2007, 10: 834-837
    110.Ahmed, B. T. WiMAX in high altitude platforms (HAPs) communications. The 9th European Conference on Wireless Technology, 2006, 9: 245-248
    111.Karapantazis, S., Pavlidou, F. N. Impact of imperfect power control multiuser detection on the uplink of a WCDMA high altitude platform system. IEEE Communications Letters, 2005, 9(5): 414-416
    112.Akho-Zahieh, M. M., Ugweje, O. C. Diversity Performance of a wavelet-packet-based multicarrier multicode CDMA communication system. IEEE Transactions on Vehicular Technology, 2008, 57(2): 787-797
    113.S. Karapantazis, F. N. Pavlidou. The role of high altitude platforms in beyond 3G networks. IEEE Wireless Communications, 2005, 12(6): 33-41
    114.Z. Liu, M. Zarki. SIR-based call admission control for DS-CDMA cellular systems. IEEE Journal on Selected Areas in Communications, 1994, 12(4):638-644
    115.S. Shin, C. H. Cho, D. Sung. Interference-based channel assignment for DS-CDMA cellular systems. IEEE Transactionson Vehicular Technology, 1999, 48(1): 233-239
    116.S. Shin, D. Sung. DS-CDMA reverse link channel assignment based on interference measurements. Electronics Letters, 2001, 31(22): 1897-1899
    117.Axiotis, D. I., Theologou, M. E., Sykas, E. D. The effect of platform instability on the system level performance of HAPS UMTS. IEEE Communications Letters, 2004, 8(2): 111-113
    118.N. Dimitriou, G. Sfikas, R. Tafazolli. Quality of service for multimedia CDMA. IEEE Communications Magazine, 2000, 38(7): 88-94
    119.Petraki, D. K., Anastasopoulos, M. P., Panagopoulos, A. D., Cottis, P. G. Dynamic resource calculation algorithm in MF-TDMA satellite networks. The 16th Mobile and Wireless Communications Summit, 2007, 7: 1-5
    120.Gonzalez, L., Weerackody, V. On the determination of channel estimates for dynamic bandwidth allocation in a peer-to-peer MF-TDMA network. Military Communications Conference, 2006, 10: 1-7
    121.Pan Xiaofei; Wei Li. Resource allocation in variable bandwidth MF-TDMA satellite communications. The 8th International Conference on Signal Processing, 2006, 4: 16-20
    122.Yiwei Zhang, Xiangdong Zhu. Capacity estimation for an MF-CDMA cellular model based on LEO satellite constellation. International Conference on Wireless Communications, Networking and Mobile Computing, 2006, 9: 1-4.
    123.Dongwoo Kim, Dong-Hyuk Park, Ki-Dong Lee, Ho-Jin Lee. Minimum length transmission scheduling of return channels for multicode MF-TDMA satellite interactive terminals. IEEE Transactions on Vehicular Technology, 2005, 54(5): 1854-1862
    124.JoonGyu Ryu, MinSu Shin, Hoon Jeong, YoungWan Kim, Deock-Gil Oh. Design and implementation of mobile satellite modulator based on MF-CDMA. The 60th IEEE Vehicular Technology Conference, 2004, 3: 2054-2057
    125.Sherif Rashad, Mehmed Kantardzic, Anup Kumar. User mobility oriented predictive call admission control and resource reservation for next-generation mobile networks. Journal of Parallel and Distributed Computing, 2006, 66(2):971-988
    126.Zhang Gengxin. The capacity calculation of CDMA mobile satellite communication system. Proceedings of the International Conference on Communication Technology, 1996, 9: 55-59
    127.Werner M, Battaglia L, Holzbock M. System design, capacity dimensioning and revenue estimation. International Journal of Satellite Communications and Networking, 2004, 22(4): 567-586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700