热功复合驱动逆循环机理与HFC/酰胺类工质对汽液相平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热功复合驱动逆循环由于可以利用低品位热作为驱动热源获取高品位的冷,以及采用无臭氧消耗潜力和全球变暖潜力的天然工质,受到越来越多的关注。本文着眼于低温废热、太阳能等低品位热在制冷领域的应用,从能的品位出发,在理论上研究热功复合驱动逆循环的循环耦合和能量互补机理,并通过模拟结果进行了验证;同时开展了HFC/酰胺类新型工质对的探索与研究。其主要研究内容如下:
     首先,开展了热转换系统能的品位研究,基于功、热和冷的品位分析,指出逆循环系统的热转换遵从能的品位匹配原则,低品位热驱动的吸收式循环通常用于制取低品位的冷,消耗机械功的压缩式循环用于制取高品位的冷,不同品位的逆循环之间的组合可以提高系统的热力学完善度,具有节能效果。
     其次,基于对吸收式循环基本特性的分析,获得了关于极限制冷温度和行为转变现象的新认知;并以此为基础,分析了热功复合驱动制冷循环的循环耦合和能量互补过程,揭示了其中极值存在和演变的本质机理,为循环变工况特性研究和参数优化建立了基础。理论上,热功复合驱动制冷循环可视为吸收子循环与压缩子循环的耦合,两个子循环在复合驱动制冷过程中始终存在着能量互补和竞争。随着压缩机出口压力的变化,复合制冷循环的热利用率先是快速升高,达到一最大值后不断降低。也就是说,在出口压力不断变化的过程中存在一个最佳功热比,使得复合制冷循环热利用率最佳,性能最优。
     再次,以R134a-DMF热功复合驱动制冷循环的模拟分析,验证了能的品位匹配和能量互补的原理,详细阐明了热功复合驱动制冷循环存在两个子循环的梯级制冷构型的节能本质。结果表明,由于复合制冷循环存在吸收子循环的热压缩作用,将制冷温度从环境温度降到一定值,而压缩子循环通过机械功的作用进一步获得低温效果,在这过程中复合制冷循环表现出两个子循环的能量互补和梯级的制冷构型,使循环获得低品位热独立驱动的吸收制冷循环无法获得的低温制冷效果,而这常常是通过消耗更多电能的压缩制冷循环才能得到。
     此外,对于HFC+酰胺体系,筛选出了R152a+DMF和R152a+DMAC两个体系作为潜在替代工质对;采用静态法测定了在293.15K-353.15K温度范围以及0.1~2.0MPa压力范围内的汽液相平衡数据;以NRTL模型对实验数据进行关联,计算结果与实验结果构成了较好的吻合,表明两个体系的VLE数据均可以用NRTL模型进行关联。另外,从分子结构出发,用氢键理论解释了HFC制冷剂与酰胺类吸收剂亲和性存在的差异;结合制冷剂的热物性,将实验体系R152a+DMF和R152a+DMAC与常用体系的循环性能进行了比较,结果表明,R152a+DMF和R152a+DMAC均具有作为吸收式工质对的潜力。
     最后,着眼于热功复合驱动逆循环在分布式能源系统的应用,基于对写字楼和饭店类建筑夏季典型日逐时冷负荷需求分布特点和北京夏季太阳能辐射特点的分析,构建了太阳能/功复合驱动逆循环与压缩制冷循环组成的复合供冷模式对写字楼和饭店类建筑夏季进行供冷。通过计算,对复合供冷模式与常规的压缩制冷循环供冷模式的能耗进行了比较,证实了太阳能/功复合驱动逆循环在实际应用的节能效果,具有一定的应用潜力。
The hybrid reverse cycle can obtain high-grade cold using low-grade heat as driving heat source and can use environment friendly working pairs with non-ozone-depleting potential and low-global warming potential. These virtues make it attracting more and more attention recent years. The paper focuses on the applications of low-temperature waste heat, such as solar energy and other low-grade heat, in the field of refrigeration. Base on the energy level, the cycle coupling and energy complementary mechanism of the hybrid reverse cycle was analyzed and verified by simulation. Furthermore, the HFC/amides new working pairs for absorption cycle were also studied. The main contents can be seen as follows:
     First, on the analysis of the energy level of work, heat and cold in the heat conversion system, and proposed that heat conversion in the reverse cycle system comply with energy matching principle. Usually, the absorption cycle powered by the low-grade heat is used to producing low-grade cold, and the compression cycle with mechanical work consumption is used for the production of high-grade cold. However, the hybrid reverse cycle combined with different energy level cycle can improve thermodynamic perfectibility of the cycle and exhibit energy-saving effect.
     Second, on the characteristic analysis of absorption cycle, the new cognitive of two fundamental concepts, the ultimate refrigerating temperature and behavior turning phenomenon, were obtained. On the basis of that, cycle coupling and energy complementary was analyzed and mechanism of the extreme value existence and evolution was revealed for the hybrid reverse cycle. This will be the foundation for variable condition characteristics and parameters optimization of the cycle. Theoretically, the hybrid refrigeration cycle can be considered as a coupling configuration of a vapor compression sub-system and an absorption sub-system. The two sub-systems compete in their contribution to the whole refrigeration system. With the change of compressor outlet pressure (pout), the coefficient of performance (ω) of hybrid cycle increases speedily to a maximum value at first, and then decreases. It means that during the change of pout, an optimum value (popt) of the pout exists and cycle performance and thermal efficiency is optimal.
     Third, through simulating and analyzing the R134a-DMF hybrid refrigeration cycle, the principle of energy matching and energy complementary had been validated, and the energy-saving essence for the cascade refrigerating configuration between the internal sub-cycles was explained clearly. It can be inferred that the solution sub-cycle is responsible for making the refrigeration temperature from ambient temperature down to some value with the thermal compression, while the compression sub-cycle is responsible for making the refrigeration temperature down to lower temperature. In the process, the hybrid cycle exhibit energy complement and cascade refrigerating configuration between the internal sub-cycles, and than make the cycle obtain lower temperature refrigeration effect, where it cannot be achieved in the independent absorption refrigeration cycle, and it is usually obtain by compression cycle with more mechanical work consumed.
     Furthermore, for HFC+amides systems, R152a+DMF and R152a+DMAC were selected as potential working pairs. The VLE data of R152a+DMF and R152a+DMAC were measured by the static analytical method at temperatures from20℃to80℃and pressure from0.1to2.0MPa. All experimental data were correlated by the NRTL activity coefficient model. The calculated results are in essential agreement with the experimental data. It indicates that the NRTL model can be used to express the VLE behaviors for binary systems R152a+DMF and R152a+DMAC. In addition, the difference of the affinity of the HFC refrigerant and amides absorbent was explained through the hydrogen theory. With combination of the thermal properties, comparing the cycle performance of the experimental system R152a+DMF and R152a+DMAC and commonly used system, and the results show that R152a+DMF and R152a+DMAC have the potential as absorption cycle working pairs.
     Finally, based on the analysis of the hourly cooling loads on typical day for office and hotel building and hourly solar radiation intensity on typical day for Beijing in summer, a new cooling mode which combine with hybrid reverse cycle and compression cycle was established and use to cooling office and hotel building. With the calculation, energy consumption between the new cooling mode and the conventional compression cycle cooling mode was compared and the results show that the hybrid reverse cycle exhibit energy-saving effect in the practical application. It means that hybrid reverse cycle has the application potential in distributed energy systems.
引文
[1]尹应德,朱冬生,汪南,等.集中空调冷水机组配置及水系统能耗分析[J].暖通空调,2009,39(12):94-97
    [2]周志军.利用吸收式热泵回收工业废热的探讨[J].机械研究与应用,2005,18(6):22-24
    [3]Badarinarayana K, Srinivasa M. Thermodynamic analysis of R21-DMF vapour absorption refrigeration systems for solar energy applications [J]. International Journal of Refrigeration, 1982,5(2):115-119
    [4]Ibrahim D, Mustafa E, Engin T. Investigation of thermal performance of a solar powered absorption refrigeration system [J]. Energy Conversion and Management,1996,37(1):51-58
    [5]Choudhury B, Chatterjee P, Sarkar J. Review paper on solar-powered air-conditioning through adsorption route [J]. Renewable and Sustainable Energy Reviews,2010,14:2189-2195
    [6]马爱华,王林.一种新型太阳能制冷系统[J].河南科技大学学报(自然科学版),2009,30(4):66-71
    [7]Ziegler F. State of the art in sorption heat pumping and cooling technologies [J]. International Journal of Refrigeration,2002,25:450-459
    [8]Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies [J]. Renewable and Sustainable Energy Reviews,2001,5:343-372
    [9]Marquesa R P, Hacon D, Tessarollo A, Parise J A R. Thermodynamic analysis of tri-generation systems taking into account refrigeration, heating and electricity load demands [J]. Energy and Buildings,2010,42:2323-2330
    [10]Groll E A. Current status of absorption/compression cycle technology[J].ASHRAE Transactions,1997,103(1):564-578
    [11]Alefeld G, Radermacher R. Heat conversion systems [M]. Boca Raton:CRC press,1994
    [12]王建召.吸收式循环构型及含咪唑类离子液体工质对的研究[M].北京:北京化工大学,2009
    [13]Mittelbach W, Jakob U. Development and investigation of a compact silica gel/water adsorption chiller integrated in solar cooling systems, in:VII Minsk International Seminar "Heat Pipes, Heat Pumps, Refrigerators, Power Sources", Minsk, Belarus,2008
    [14]兰荣亮.动力与热复合驱动逆循环的研究[D].北京:北京化工大学,2011
    [15]Altenkirch E. Compression refrigeration machine with solution cycle [J]. Refrigeration technology,1950,2(10):251-259
    [16]Altenkirch E. The influence of finite temperature differences and operating costs of compression refrigeration cycle with and without solution [J]. Refrigeration technology,1951, 3(8):201-205
    [17]Boer D, Valles M, Coronas A. Performance of double effect absorption compression cycles for air-conditioning using methanol-TEGDME and TFE-TEGDME systems as working pairs [J]. International Journal of refrigeration,1998,21(7):542-555
    [18]Kang Y T, Hong H, Park K S. Performance analysis of advanced hybrid GAX cycles:HGAX [J]. International Journal of refrigeration,2004,27:442-448
    [19]Rameshkumar A, Udayakumar M. Simulation studies on GAX absorption compression cooler [J]. Energy Conversion and Management,2007; 48(9):2604-2610
    [20]Rameshkumar A, Udayakumar M. Studies of compressor pressure ratio effect on GAXAC (generator-absorber-exchange absorption compression) cooler [J]. Applied Energy 2008, 85(12):1163-1172
    [21]Rameshkumar A, Udayakumar M. Comparison of the performance of NH3-H2O, NH3-LiNO3 and NH3-NaSCN GAX and GAX absorption -compression (gaxac) cooler [C]. International Sorption Heat Pump Conference,2008,23-36
    [22]Rameshkumar A, Udayakumar M, Saravanan R. Energy analysis of a 1-ton generator-absorber-exchange absorption-compression (GAXAC) cooler [J]. ASHRAE Transactions,2009,115: 405-414
    [23]Rameshkumar A, Udayakumar M, Saravanan R. Heat transfer studies on a GAXAC (generator-absorber-exchange absorption compression) cooler [J]. Applied Energy,2009,86:2056-2064.
    [24]Wang J Z, Zheng D X. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr system [J]. Energy Conversion and Management,2009,50(12):3087-3095
    [25]Misra R D, Sahoo P K, Gupta A. Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system [J]. International Journal of Refrigeration,2005,28:331-343
    [26]Kaita Y. Simulation results of triple-effect absorption cycles [J]. International Journal of Refrigeration,2002,25:999-1007
    [27]Kim J S, Ziegler F, Lee H. Simulation of the compressor-assisted triple-effect H2O/LiBr absorption cooling cycles [J]. Applied Thermal Engineering,2002,22:295-308
    [28]Ventas R, Lecuona A, Zacarias A, et al. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures [J]. Applied Thermal Engineering,2010,30(11-12):1351-1359
    [29]Ayala R, Heard C L, Holland F A. Ammonia/lithium nitrate absorption/compression refrigeration cycle. Part I. Simulation [J]. Applied Thermal Engineering,1997,17(3):223-233
    [30]陈光明,冯仰浦,王剑锋.一个用太阳能驱动的新型吸收制冷循环[J].低温工程,1999,1:50-54
    [31]Chen G M, Hihara E. A new absorption refrigeration cycle using solar energy [J]. Solar Energy, 1999,66(6):479-482
    [32]Hong D L, Tang L M, He Y J, et al. A novel absorption refrigeration cycle [J]. Applied Thermal Engineering,2010,30(14-15):2045-2050
    [33]曹毅然,张小松,鲍鹤灵.太阳能驱动的压缩吸收式复合制冷循环分析[J].流体机械,2002,10:51-53
    [34]Lu Z. Development of absorption technologies with lithium bromide in China [C]-Proceedings of the International Sorption Heat Pump Conference, Munich Germany,1999,13-23
    [35]袁从杰,陆震,曹卫华,等.带蒸汽压缩的并联型二效溴化锂吸收式制冷循环的分析[J]. FLUID MACHINERY,2002,30(2):49-51
    [36]李小平,陆震,谢江南,等.两种串联型三效溴化锂吸收式制冷循环的比较分析[J].流体机械,2001,29(3):50-52
    [37]袁从杰,陆震,曹卫华,等.一种新型的串联型三效溴化锂吸收式制冷循环的分析[J].制冷学报,2002,2:46-49
    [38]Satapathy P, Ramgopal M, Arora R. Studies on a compression-absorption heat pump for simultaneous cooling and heating [J]. International Journal Energy Research,2004,28(7): 567-580
    [39]Satapathy P. Exergy analysis of a compression-absorption system for heating and cooling applications [J]. International Journal Energy Research,2008,32(13):1266-1278
    [40]Satapathy P, Ramgopal M, Arora R. A comparative study of R22-E181 and R134a-E181 working pairs for a compression-absorption system for simultaneous heating and cooling applications [J]. Journal of food engineering,2007,80:939-946
    [41]Swinney J, Jones W, Wilson J. A novel hybrid absorption-compression refrigeration cycle [J]. International Journal of refrigeration,2001,24:208-219
    [42]Ziegler F, Spindler U. An ammonia refrigerator with an absorption circuit as economizer [J]. International journal of refrigeration.1993,16(4):230-239
    [43]Jelinek M, Levy A, Borde I. Performance of a triple-pressure level absorption/compression cycle [J]. Applied Thermal Engineering,2012,42:2-5
    [44]Herold K., Howe L, Radermacher R. Analysis of a hybrid compression-absorption cycle using lithium bromide and water as the working fluid [J]. International Journal of Refrigeration, 1991,14:264-272
    [45]周燕,谢军龙,沈国民.太阳能吸收一蒸汽压缩式空调系统的优化分析[J].建筑热能通风空调,2002,4:1-3
    [46]吴嘉峰,陈亚平,施明恒.太阳能溴化锂吸收式制冷循环的改进[J].工程热物理学报,2007,28(1):21-23
    [47]陈光明,李斌,唐黎明,何一坚,何丽娟.低品位能驱动与机械功驱动复合制冷系统低压模块[P].中国发明专利,CN101055134A,2007
    [48]陈光明,李斌,唐黎明,等.低品位能驱动与机械功驱动复合制冷系统高压模块[P].中国发明专利,CN101055135A,2007
    [49]陈光明,唐黎明,何一坚,等.低品位能驱动与机械功驱动复合热泵、制冷系统[P].中国发明专利,CN101055136A,2007
    [50]陈光明,李斌,刘利华,等.低品位能驱动与机械功驱动复合热泵或制冷系统[P].中国发明专利,CN101556095A,2009
    [51]杨晓宇.压缩—吸收式制冷系统[P].中国发明专利,CN 86106784,1986
    [52]梁明初.压缩-吸收复合循环制冷系统[P].中国发明专利,CN93106255.1,1993
    [53]梁雪任.压缩-吸收混合制冷机[P].中国发明专利,CN200710133859.X,2007
    [54]肖波.压缩式、吸收式联合制冷装置[P].中国发明专利,CN200620116003.2,2006
    [55]Chinnappa J, Crees M, Murthy S, et al. Solar-assisted vapor compression/absorption cascaded air-conditioning systems [J]. Solar Energy,1993; 50:453-458
    [56]Kairouani L, Nehdi E. Cooling performance and energy saving of a compression-absorption refrigeration system assisted by geothermal energy [J]. Applied Thermal Engineering,2006, 26:288-294
    [57]Fernandez-Sear J, Sieres J, Vazquez M. Compression-absorption cascade refrigeration system [J]. Applied Thermal Engineering 2006,26:502-512
    [58]Seyfouri Z, Ameri M. Analysis of integrated compression-absorption refrigeration systems powered by a microturbine [J]. International Journal of Refrigeration,2012,35:1639-1649
    [59]何丽娟.冷变换器原理及其在低品位热驱动制冷系统中的应用研究[D].杭州:浙江大学,2009
    [60]唐鹏武.过冷蒸发型吸收--压缩复合制冷循环的理论与实验研究[D].杭州:浙江大学,2012
    [61]唐鹏武,陈光明,唐黎明,等.一种新型吸收-压缩复合制冷循环模拟[J].低温工程,2011,4:21-26
    [62]Ayala R, Heard C L, Holland F A. Ammonia/lithium nitrate absorption/compression refrigeration cycle. Part Ⅱ. Experimental [J]. Applied Thermal Engineering,1998,18(8): 661-670
    [63]Fukuta M, Yanagisawa T, Iwata H, Tada K. Performance of compression/absorption hybrid refrigeration cycle with propane/mineral oil combination [J]. International Journal of Refrigeration,2002,25:907-915
    [64]Satapathy P, Ramgopal M. Experimental studies on a compression-absorption system for heating and cooling applications [J]. International Journal Energy Research,2008,32:595-611
    [65]晏双华.离子液体型新工质-[EMIM][DEP]+水/醇的研究[D].大连:大连理工大学,2009
    [66]Nowaczyk U, Steimle F. Thermophysical properties of new working fluid systems for absorption processes [J]. International Journal of Refrigeration,1992,15(1):10-15
    [67]Narodoslawsky M, Otter G, Moser F. Thermodynamic criteria for optimal absorption heat pump media [J]. Heat Recovery Systems and CHP,1988,8(3):221-233
    [68]Zheng D X, Ji P J, Qi J. Maximum excess Gibbs function of working pairs and absorption cycle performance [J]. International Journal of Refrigeration,2001,24:834-840
    [69]郑丹星,纪培军,齐建平.以工质对的Gibbs超额函数评价吸收式热泵特性[J].高校化学工程学报,2000,14(5):409-414
    [70]武向红.气体吸收剂的热力学评选方法及其用于CO2体系和乙烯体系的验证[D].北京:北京化工大学,2010
    [71]Calm J. The next generation of refrigerants-Historical review, considerations, and outlook [J]. International Journal of Refrigeration,2008,31:1123-1133
    [72]陈曙辉,陈光明,郑飞.吸收式制冷工质的发展[J].制冷学报,1998,(2):45-52
    [73]Jian S, Lin F, Shigang Z. A review of working fluids of absorption cycles [J]. Renewable and Sustainable Energy Reviews,2012,16(4):1899-1906
    [74]Sun D. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems [J]. Energy Conversion and Management,1998,39(5-6): 357-368
    [75]Simona S, Daniel S, Joan C, et al. A basis for the development of new ammonia-water-sodium hydroxide absorption chillers [J]. International Journal of Refrigeration,2009,32(4):577-587
    [76]Ramesh K, Udayakumar M. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN GAX and GAX absorption -compression (GAXAC) cooler [C]. International Sorption Heat Pump Conference, Seoul,2008
    [77]孙光明,郑丹星,黄维佳,等.氨在[Dmim]DMP离子液体中溶解度的测定[J].北京化工大学学报(自然科学版),2012,39(4):17-27
    [78]Lucas D, Donate M, Rodriguez J. Vapor pressures, densities, and viscosities of the (water+ lithium bromide+ sodium formate) system and (water+ lithium bromide+ potassium formate) system [J]. Journal of Chemical engineering Data,2003,48:18-22
    [79]Park Y, Kim J, Lee H. Physical properties of the lithium bromide+1,3-propanediol+ water system [J]. International Journal of Refrigeration,1997,20(5):319-325
    [80]Kim J, Park Y, Lee H. Performance evaluation of absorption chiller using LiBr+ H2N(CH2)2OH+H2O, LiBr+ HO(CH2)2OH+ H2O, and LiBr+(HOCH2CH2)2NH+H2O as working fluids [J]. Applied Thermal Engineering,1999,19:217-25
    [81]Pourreza D, Radermacher R. Calculation of the performance of vapour compression heat pumps with solution circuits using the mixture R-22-DEGDME [J]. International Journal of Refrigeration,1986,9:245-250
    [82]George J, Marx W, Srinivasa S. Thermodynamic analysis of R22-DMF compression-absorption heat pump [J]. Heat recovery systems and CHP,1989,9(5):433-446
    [83]George J M, Marx W, Srinivasa S. A comparative thermodynamic study of R22-DMETEG and R22-DMF compression-absorption heat pumps [J]. Heat Recovery Systems and CHP,1990, 10(1):31-36
    [84]Fatouh M, Murthy S. Comparison of R22-absorbent pairs for vapour absorption heat transformers based on P-T-X-H data [J]. Heat Recovery Systems and CHP,1993,13(1):33-48
    [85]Karthikeyan G, Mani A, Murthy S. Performance of different working fluids in transfer-tank operated vapour absorption refrigeration systems [J]. Renewable Energy,1995,6(7):835-842
    [86]Agarwal R, Agarwal A, Bin-Gadhi S. Performance analysis of R22-DMF turbo absorption refrigeration system [J]. Energy Conversion and Management,1987,27(2):211-217
    [87]Ileri A. Yearly simulation of a solar-aided R22-DEGDME absorption heat pump system [J]. Solar Energy,1995,55(4):255-265
    [88]Kumar S, Prevost M, Bugarel R. Comparison of various working pairs for absorption refrigeration systems:application of R21 and R22 as refrigerants [J]. International Journal of Refrigeration,1991,14(5):304-310
    [89]郭开华,蒙宗信,舒碧芬R22-DMA吸收压缩式热泵实验与分析[J].工程热物理学报,1995,16(2):141-144
    [90]舒碧芬,郭开华R22-DMA热力学性质及吸收压缩式热泵系统优化[J].工程热物理学报,1997,18(1):9-12
    [91]Borde I, Jelinek M, Daitrophe N. Working fluids for an absorption system based on R124 (2-chloro-1,1,1,2,-tetrafluoroethane) and organic absorbents [J]. International Journal of Refrigeration,1997,20:256-266
    [92]Ben N, Garma R, Bellagi A. A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling [J]. Energy,2010,35:1874-1883
    [93]Borde I, Jelinek M, Daitrophe N C. Absorption system based on the refrigerant R134a [J]. International Journal of Refrigeration,1995,18:387-394
    [94]Arivazhagan S, Murugesan,S. Saravanan R, et al. Simulation studies on R134a-DMAC based half effect absorption cold storage systems [J]. Energy Conversion and Management,2005,46: 1703-1713
    [95]Arivazhagan S, Saravanan R, Renganarayanan S. Experimental studies on HFC based two-stage half effect vapour absorption cooling system [J]. Applied Thermal Engineering, 2006,26:1455-1462
    [96]Arivazhagan S, Saravanan R, Renganarayanan S. Comparison of exergetic performance of HFC based single and half effect absorption cooling systems [J]. International Journal of Exergy,2006,3(4):402-418
    [97]Muthu V, Saravanan R, Renganarayanan S. Experimental studies on R134a-DMAC hot water based vapour absorption refrigeration systems [J]. International Journal of Thermal Sciences, 2008,47:175-181
    [98]Songara A, Fatouhs M. Srinivasa S. Comparative performance of HFC 134a- and HCFC22-Based vapour absorption refrigeration systems [J]. International Journal of Energy Research, 1998,22:363-372
    [99]Songara A, Fatouhs M. Srinivasa S. Thermodynamic studies on HFC134a-DMA Double effect and cascaded Absorption refrigeration systems [J]. International Journal of Energy Research,1998,22:603-614
    [100]Jelinek M, Levy A, Borde I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a [J]. Applied Thermal Engineering,2008,28:1551-1555
    [101]Crepinsek Z, Goricanec D, Krope J. Comparison of the performances of absorption refrigeration cycles [J]. Wseas Transactions on Heat and Mass Transfer,2009,4(3):65-76
    [102]Zohar A, Jelinek M, Levy A. et al. Performance of diffusion absorption refrigeration cycle with organic working fluids [J]. International journal of refrigeration,2009,32:1241-1246
    [103]He L J, Tang L M, Chen G M. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures [J]. Solar Energy,2009,83:2029-2038
    [104]Jelinek M, Levy A, Borde I. Performance of a triple-pressure-level absorption cycle with R125-N,N'-dimethylethylurea [J]. Applied Energy,2002,71:171-189
    [105]Levy, A, Jelinek, M, Borde, I, et al. Performance of an advanced absorption cycle with R125 and different absorbents [J]. Energy,2004,29:2501-2515
    [106]Jelinek M, Borde I. Single and double-stage absorption cycles based on Fluorocarbon refrigerants and organic absorbents [J]. Applied Thermal Engineering,1998,18:765-771
    [107]Yokozeki A. Theoretical performances of various refrigerant-absorbent pairs in a vapor-absorption refrigeration cycle by the use of equations of state [J]. Applied Energy,2005, 80:383-399
    [108]Suresh M, Mani A. Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory [J]. International Journal of Heat and Mass Transfer,2010,53:2813-2825
    [109]Harikrishnan L, Shaligram T, Maiya M. Numerical study of heat and mass transfer characteristics on a falling film horizontal tubular absorber for R-134a-DMAC [J]. International Journal of Thermal Sciences,2011,50:49-159
    [110]He Y J, Chen G M. Experimental study on an absorption refrigeration system at low temperatures [J]. International Journal of Thermal Sciences,2007,46:294-299
    [111]王勤,郝楠,孙腾飞.混合工质扩散吸收制冷系统的实验研究[C].中国工程热物理年会,武汉,2011
    [112]Wang Q, Gong L, Wang J P, et al. A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications [J]. Applied Thermal Engineering,2011,31:1763-1769
    [113]陈光明,房杉,孟祥锋.以R23/R134a/DMF作为工质的自行复叠吸收制冷循环性能分析[J].制冷学报,2006,27(4):31-36
    [114]Li S M, Vaeek V. Effective Potentials for liquid simulation of th altemativere gerants HFC-32:CH2F2 and HFC-23:CHF3 [J]. Fluid Phase Equilibria,1996,118:61-76
    [115]Zehioua R, Coquele C, Meniai A H, et al. Isothermal Vapor-Liquid Equilibrium Data of 1,1,1,2-Tetrafluoroethane (R134a)+ Dimethylformamide (DMF) Working Fluids for an Absorption Heat Transformer [J]. Journal of chemical engineering data,2010,55:985-988
    [116]Zehioua R, Coquele C, Meniai A H, et al. p-T-x Measurements for Some Working Fluids for an Absorption Heat Transformer:1,1,1,2-Tetrafluoroethane (R134a)+Dimethylether Diethylene Glycol (DMEDEG) and Dimethylether Triethylene Glycol (DMETrEG) [J]. Journal of chemical engineering data,2010,55:2769-2775
    [117]Coronas A, Mainar A M, Patil K R, et al. Solubility of 1,1,1,2-Tetrafluoroethane in Triethylene Glycol Dimethyl Ether [J]. Journal of chemical engineering data,2002,47:56-58
    [118]Lopez, E. R, Mainar, A. M, Garcia J, et al. Experimental and Predicted Solubilities of HFC 134a(1,1,1,2-Tetrafluoroethane) in Polyethers [J]. Journal of chemical engineering data, 2004,43:1523-1529
    [119]Han X H, Gao Z J, Xu Y J, et al. Solubility of Refrigerant 1,1,1,2-Tetrafluoroethane in the N,N-Dimethyl Formamide in the Temperature from (263.15 to 363.15 K) [J]. Journal of chemical engineering data,2011,56:1821-1826
    [120]Tseregounis S I, Riley M J. Solubility of HFC-134a-Refrigerant in Glycol-Type Compounds Effect of Gly col Structure [J]. AIChE Journal,1994,40:726-737
    [121]Wahlstrom A, Vamling L. Solubility of HFC32, HFC125, HFC134a, HFC143a, and HFC152a in a Pentaerythritol Tetrapentanoate Ester [J]. Journal of Chemical Engineering Data,1999,44: 823-828.
    [122]Marchi P, Scalabrin G, Ihmels E C, et al. Bubble pressure measurements for the (1,1,1,2-tetrafluoroethane+triethylene glycol dimethyl ether) system [J]. Journal of Chemical Thermodynamics,2006,38:1247-1253
    [123]Chaudhari1 S K, Salavera D, Esteve X, et al. Vapour-liquid equilibria of the system 1,1,1,2-tetrafluoroethane+ monoethylene-glycol dimethylether from 283.15 to 353.15 K:New modified UNIFAC parameters [J]. Fluid Phase Equilibria,2008,271:28-33
    [124]Lopez E R, Mainar A M, Urieta J S, et al. Solubility of HFC 134a (1,1,1,2-Tetrafluoroethane) in Two Dialkyl Carbonates [J]. Journal of Chemical Engineering Data,2009,54:2609-2615
    [125]Agarwal R S, Bapat S L. Solubility characteristics of R22-DMF refrigerant-absorption combination [J]. International Journal of Refrigeration,1985,8:70-74
    [126]He L J, Chen G M, Cui X L. Vapor-liquid equilibria for R22 +N,N-dimethylformamide system at temperatures from 283.15 to 363.15K [J]. Fluid Phase Equilibria,2008,266:84-89
    [127]Han X H, Xu Y J, Gao Z J, et al. Vapor-Liquid Equilibrium Study of an Absorption Heat Transformer Working Fluid of (HFC-32-DMF) [J]. Journal of Chemical Engineering Data, 2011,56:1268-1272
    [128]Bhaduri S C, Verma H K. P-T-X behavior of R22 with five different absorptions [J]. International Journal of Refrigeration,1986,9:362-366.
    [129]Wahlstrom A, Vamling L. The solubility of HCFC22, CFC114 and HFC 152a in n-hexadecane [J]. Journal of Chemical Engineering Data,1996,74:426-428
    [130]Wahlstrom A, Vamlinc L. The Solubility of HFC125, HFC134a, HFC143a and HFC152a in n-Eicosane, n-Hexadecane, n-Tridecane and 2,6,10,14-Tetramethylpentadecane[J]. Canadian Journal of Chemical Engineering,1997,75:544-550
    [131]Wahlstrom A, Vamling L. Solubility of HFCs in Pentaerythritol Tetraalkyl Esters [J]. Journal of Chemical Engineering Data,2000,45:97-103.
    [132]Yelisetty S S, Visco D P. Solubility of HFC32, HFC125, HFC152a, and HFC143a in Three Polyols [J]. Journal of Chemical Engineering Data,2009,54:781-785
    [133]李新如,沈彦曙,孟学林,等R152a-DMF体系汽液相平衡研究[J].工程热物理学报,2013,in press
    [134]Li X R, Zheng D X, Shen Y S, et al. Vapor-liquid Equilibria of Difluoromethane+N,N-Dimethylacetamide, Difluoromethane+ Dimethylether Diethylene Glycol and 1,1-Difluoroethane+ Dimethylether Diethylene Glycol Systems [J]. Fluid Phase Equilibria, 2013, in press
    [135]Park Y M, Kang J O, Yoo J. Vapor Pressure of the 1,1,1,2 Tetrafluoroethane (R-134a)+ Polyalkylene Glycol System [J]. Journal of Chemical Thermodynamics,2004,6(26): 1849-1861
    [136]Lee K R, Tan C S. Vapor-Liquid Equilibria for the 1,1,1,2-Tetrafluoroethane+m-Cresol and+ p-Cresol and 1,1,1,2-Tetrafluoroethane+m-Cresol+p-Cresol Systems [J]. Journal of Chemical Engineering Data,1998,43,354-357
    [137]Poot W, Loos T W. High pressure phase equilibria in the system 1,1,1,2-tetrafluoroethane+ heptylbenzene [J]. Fluid Phase Equilibria,2003,210:69-75
    [138]Poot W, Loos T W. High pressure phase behaviour of binary systems of refrigerants and phenylalkanes:the system 1,1,1,2-tetrafluoroethane+ phenyloctane [J]. Fluid Phase Equilibria, 2004,255-259
    [139]Takigawa K, Sandler S I, Yokozeki A. Solubility and viscosity of refrigerant-lubricant mixtures hydrofluorocarbon alkylbenzene systems [J]. International Journal of Refrigeration,2002,25: 1014-1024
    [140]Shiflett, M. B, Yokozeki, A. Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids [J]. AIChE Journal,2006,52:1205-1219
    [141]Ren, W, Scurto, A. M. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a) [J]. Fluid Phase Equilibria,2009,286:1-7
    [142]Dong L, Zheng D X, Sun G M, et al. Vapor_Liquid Equilibrium Measurements of Difluoromethane+[Emim]OTf, Difluoromethane+[Bmim]OTf, Difluoroethane+[Emim]OTf, and Difluoroethane+[Bmim]OTf Systems [J]. Journal of Chemical Engineering Data,2011, 56:3663-3668
    [143]崔映红,杨勇平,杨志平,等.太阳能辅助燃煤一体化热发电系统耦合机理[J].中国电机工程学报,2008,28(29):99-104
    [144]郑丹星.流体与过程热力学[M].北京:化学工业出版社,2005
    [145]何一坚.深度冷冻吸收制冷理论与实验研究[D].杭州:浙江大学,2004
    [146]何一坚,陈光明.吸收制冷循环极限制冷温度研究[J].工程热物理学报,2004,25(6):917-920
    [147]He Y J, Chen G M. Experimental study on an absorption refrigeration system at low temperatures [J]. International Journal of thermal science,2007,46(3):294-299
    [148]Zheng D X, Meng X L. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption-compression hybrid refrigeration cycle [J]. Energy Conversion and Management,2012,56:166-174
    [149]张晓辉,陈效孺.蒸汽溴化锂机组用于热电厂的效益分析[J].暖通空调,2006,36(1):47-50
    [150]催晓龙.新型吸收制冷工质相平衡理论与实验研究[D].杭州:浙江大学,2006
    [151]Sand J R, Fischer S K, Baxter V D. Energy and Global Warming Impacts of HFC Refrigerants and Emerging Technologies [M]. Report from project sponsored by DOE and AFEAS, Oak Ridge National Laboratory, Tennessee,1997
    [152]Lemmon E W, Huber M L, McLinder M O. NIST Reference Fluid Thermodynamic and Transport Properties Database-REFPROP, version 8.0; National Institute of Standards and Technology:Maryland, USA,2007
    [153]Bolaji B O. Experimental study of R152a and R32 to replace R134a in a domestic refrigerator [J]. Energy,2010,35:3793-3798
    [154]程能林.溶剂手册[M].北京:化学工业出版社,2002
    [155]Bhaduri S C, Verma H K. Heat of mixing of R22-absorbent mixture [J]. International Journal of Refrigeration,1988,11:181-185
    [156]何伟.乙烯-甲苯二元体系汽液相平衡的实验及模拟研究[D].北京:北京化工大学,2007
    [157]荆树宏.乙烯吸收体系汽液相平衡研究[D].北京:北京化工大学,2008
    [158]Guo J, Wu X H, Jing X H, et al. Vapor-Liquid Equilibrium of Ethylene+ Mesitylene System and Process Simulation for Ethylene Recovery [J]. Chinese Journal of Chemical Engineering, 2011,19(4):543-548
    [159]郭亮CO2-(C4H9)2O体系汽液相平衡及其吸收分离工艺[D].北京:北京化工大学,2009
    [160]武向红.气体吸收剂的热力学评选方法及其用于CO2体系和乙烯体系的验证[D].北京:北京化工大学,2010
    [161]Secuianu C, Feroiu V, Geana D. Phase Behavior for Carbon Dioxide+Ethanol:Expermental Measurements and Modeling with a Cubic Equation of State [J]. Journal of Supercritical Fluids.2008,47:109-116
    [162]董丽.水+离子液体、氢氟烃+离子液体工质对的超额Gibbs函数法评价与热物性研究[D].北京:北京化工大学,2012
    [163]Smith T M. Vanness H C, Abbot M M. Introduction to chemical engineering thermodynamics[M]. New York:McGraw-Hill,2002
    [164]赵荣飞,陆妙燕.氢键对物质性质的影响及应用[J].安顺学院学报,2004,9(4):84-87
    [165]Meng X L, Zheng D X, Wang J Z, et al. Energy saving mechanism analysis of the absorption-compression hybrid refrigeration cycle[J]. Renewable Energy,2013,57:43-50
    [166]金红光,郑丹星,徐建中.分布式冷热电联产系统装置及应用[M].北京:中国电力出版社,2008.1,34-36
    [167]黄纯浩.主动蓄能模式分布式供能系统集成[D].北京:中国科学院工程热物理研究所,2008
    [168]张晴原, Joe Huang中国建筑用标准气象数据库[M].北京:机械工业出版社,2004,57-58
    [169]陈正军,毛佳妮,陈焕新,等.武汉某既有高层建筑能耗审计与节能改造潜力探讨[J].暖通空调,2009,39(3):61-65
    [170]高月芬,时国华.太阳能吸收式制冷系统夏季运行方式分析[J].节能,2007,4:17-19
    [171]郑丹星,孟学林,兰荣亮.一种吸收压缩复合制冷循环系统[P].中国发明专利,ZL201010522343.6,2012
    [172]孟玲燕,徐士鸣.太阳能与常规能源复合空调/热泵系统在别墅建筑中的应用研究[J].制冷学报,2006,27(1):15-22
    [173]吴佐莲,刘小春,王萌,等.利用热泵技术回收热电厂余热的可行性与经济性分析[J].山东农业大学学报(自然科学版),2008,39(1):62-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700