基于拉曼光谱的微流体传递过程及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新兴的微化工机械系统(MCMS)以其快速的传质传热能力、模块化的紧凑结构倍受关注,但是由宏观向微观世界过渡存在的许多问题极大地限制了微尺度传递理论的完整建立。随着特征尺度的微小化,无论是与特征尺寸成高次方比例关系的惯性力、电磁力等,还是与特征尺寸成低次方比例关系的粘性力、弹性力、表面张力、静电力等都可能导致微观传递现象的显著不同,对这类尺度效应的研究是完善微尺度传递理论的关键。高空间分辨率、高精度的微流体非接触测量技术是开展以上研究的关键。为此,本文提出了基于共焦显微拉曼光谱的微流体温度场和浓度场高精度测量方法,研究了微流体单相对流传热及微流体液液扩散;基于微流体的强化混合特点,研制了两种混沌对流机制共同作用的高效微混合器。本文主要工作及获得成果如下:
     (1)基于共焦显微拉曼光谱微流体测量的激光热效应研究
     采用共焦显微拉曼进行微流体测量时,若使用金相镜头,激光穿透芯片上表面聚焦到微通道内液体样品时发生折射、导致焦点变形,严重地降低了空间分辨率,特别是深度分辨率。实验发现,若使用硅基芯片,当变形的焦点覆盖了微通道底面时,以硅材料形成的通道底表面便大量吸收可见光波长的激光的能量,出现激光热效应,产生温升。本文首次通过实验和流体动力学数值模拟(CFD)对拉曼测量过程中的激光热效应进行系统研究。通过数值模拟,正交分析考察了11个影响因素的敏感性,发现表面功率和光照区域直径对温升影响最为显著;通过实验,发现表面功率对该效应的影响极为显著,但简单降低表面功率并不是解决激光热效应的根本方法;最后,关联主要影响因素,建立了用于计算微流体拉曼测量时激光热效应造成的最大局部温升的关联式。
     (2)基于拉曼温度测量的对流传热条件下微通道壁面轴向导热影响的研究
     建立了基于共焦显微拉曼光谱的微尺度水温测量方法,搭建了微流体单相对流传热实验系统。将实验与CFD研究相结合,深入研究了微尺度下轴向导热问题的影响。发现轴向导热的存在使得在通道入口处壁面热通量最大、液温和壁温均呈非线性发展;局部出现液温高于壁温的情况,使得热量反向由流体传递给固体,导致局部Nu数曲线出现奇点,奇点位置随着雷诺数的增大往出口处移动;入口效应与轴向导热的共同作用使得Nu数随着Re数的增大而增大。
     (3)基于拉曼浓度测量的微流体液液扩散系数测量及扩散界面控制
     通过CFD优化了微通道截面结构设计,减小了由于分辨率下降导致的微流体浓度测量误差。制作了Y型微通道,提出添加铝薄膜消除激光热效应的有效方法。建立了基于拉曼浓度测量的不同温度下液液扩散系数的测量方法。相比传统扩散系数测量方法,该方法可实现多个温度下扩散系数的连续测量,更为方便、高效、准确。
     开发了试差控制程序,基于微流体拉曼浓度测量,建立了层流流体扩散界面的控制方法,实现了物性未知的微流体扩散界面的准确控制。
     (4)由两种混沌对流机制共同作用的高效微混合器研制
     针对微化工机械系统的需求,研制了由两种混沌对流机制共同作用的不锈钢微混合器。它具有方波形结构和周期性排布的方槽。经CFD计算发现,方波形结构产生层流反复循环机制、周期方槽产生流动扭曲机制。方槽设置在紧接着方波形转角的位置能够产生相对高的混合效率,仅带来微弱的压降上升。低雷诺数下流动扭曲机制占主导地位,随着雷诺数的增大层流反复循环机制贡献逐渐加大,并与前一机制共同作用、强化混合。采用一种快速平行竞争反应定量评价其性能,发现该微混合器的最佳工作范围是雷诺数约30-220,在这范围内在保证高混合效率时、压降小能耗低。相比几个商业微混合器,该混合器易制造、可以低成本进行批量生产,且不锈钢基体能适用于许多恶劣环境,如高温、高压、强腐蚀等。
Micro-Chemo-Mechanical systems (MCMS) have attracted great attention because of their high efficiency heat and mass transfer and compactness. However, problems associated with the transition from macroscale to microscale have limited the establishment of microscale transfer theory. As the characteristic scale is miniaturized, either inertial and electromagnetic forces that are directly proportional to the high power of the size, or surface tension and viscous, elastic and electrostatic forces that are directly proportional to the low power of the size, probably lead to the significant difference of the microscale transfer phenomena. The researches on these scale effects are crucial for the improvement of the microscale transfer theory. Noninvasive measurement with high spatial resolution and high accuracy is the key to carry out those researches. In this context, a method to accurately measure the microfluid temperature and concentration fields based on confocal Raman microscope was proposed in this paper. The single-phase convective heat transfer process and the liquid diffusion were investigated. Based on the feature of the microfluid enhanced mixing, a high-efficiency micromixer employing two chaotic convective mechanisms was also developed. The main work and results of this paper are as follows:
     (1) Effect of laser induced heating on microfluid Raman measurement
     In the microfluid measurement based on confocal Raman microscope, if metallurgic objectives are adopted, the refraction will occurr when the laser penetrates the top surface of the microchip and focuses on the liquid sample in the microchannel, leading to the focus distortion. This drastically reduces the spatial resolution, especially the depth resolution. Experiments found when the distorted focus covered the channel bottom of the silicon chip, the chip absorbed a great portion of the laser energy. This was termed laser heating effect and could result in the temperature-rise. The laser heating effect in the Raman measurement was studied for the first time in this paper. Via omputational fluid dynamics (CFD) simulations, the sensitivity of 11 factors was investigated with orthogonal analysis (OA), and the surface power and illuminated area diameter were found to have the most significant influence on the temperature-rise. The siginicant influence of the surface power on the heating effect was also observed from experiements, and simply lowering the surface power was not the efficient approach to eliminate the heating effect. Finally, a correlation to evaluate the maximum local temperature-rise in the microfluid Raman measurement was proposed.
     (2) Research on microchannel wall axial heat conduction under single-phase convective heat transfer condition based on Raman temperature measurement
     The water temperature measurement in microscale based on the confocal Raman microscope was proposed, and the experimental system for microfluid single-phase convective heat transfer was established. The experiments were combined with CFD simulations to investigate the axial heat condution in microscale. It was found that the axial heat condution led to a maximum heat flux at the channel inlet, and the nonlinear development of fluid and wall temperatures. In some locations, the fluid temperature was even higher than the wall temperature, and heat would, therefore, transferred from fluid to the channel wall. In this case, a singular point emerged in the local Nusselt numer (Nu) curve, and would move toward the inlet as the Reynolds number (Re) was increased. The Nu increased with the increased Re, which was caused by both the entrance effect and axial heat conduction caused.
     (3) Microfluid liquid diffusion coefficient measurement and interface control based on Raman concentration measurement
     With the optimum microchip design obtained from CFD simulations, the microfluid concentration measurement errors caused by the decreased resolution were reduced. A method for measuring the liquid diffusion coefficient at various temperatures based on the Raman concentration measurement was established. This method reallized the continuous diffusion coefficient measurement at various temperatures, and was more convenient, efficient and accurate, compared with conventional methods for diffusion coefficient measurement. Based on the Raman concentration measurement, the laminar flow fluid interface control method was proposed, using a trial-and-error control program. The accurate diffusion interface control of the micro fluids without sample property information was reallized, using this method.
     (4) High efficiency micromixer employing two chaotic convective mechanisms
     A high efficiency stainless steel micromixer employing two chaotic advective mechanisms was developed for MCMS. The micromixer featured a square-wave structure and periodic cubic grooves. CFD results revealed that the square-wave structure induced the laminar recirculation mechanism, and the periodic cubic grooves produced the flow stretching mechanism. The configuration of grooves locating right after the turns of the square-wave structure yielded the relatively higher mixing quality and minor pressure drop increase. At low Re, the flow stretching was dominant. As Re rose, the laminar recirculation contributed increasingly more and the two mechanisms became jointly influencing on the mixing so that the mixing was remarkably enhanced. A parallel competitive reaction was utilized to evaluate the performance of the proposed micromixer. The optimum Re range for its operation was 30-220. Within this range, the high mixing quality and low energy consumption could be ensured. Compared with commercial micromixers, the present micromixer was more easily-fabricated to facilitate the large-scale production. Besides, it is competent for applications with adverse circumstances, such as high temperature and pressure, and strong corrosion.
引文
[1]Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electron device letters,1981,2(5):126-129.
    [2]Yole Developpement. MicroReactionTechnologies "Microtechnologies for chemical process intensification" [R]. Lyon:I-Micronews,2007.
    [3]Thomas R D. Microchemical Engineering in Practice [M]. Canada:John Wiley & Sons, Inc.,2009.
    [4]Guo Z Y, Li Z X. Size effect on microscale single-phase flow and heat transfer [J]. International Journal of Heat and Mass Transfer,2003,46(1):149-159.
    [5]Morini G L. Single-phase convective heat transfer in microchannels:a review of experimental results [J]. International Journal of Thermal Sciences,2004,43(7):631-651.
    [6]Shen S, Xu J L, Zhou J J, Chen Y. Flow and heat transfer in microchannels with rough wall surface [J]. Energy Conversion and Management,2006,47(11-12):1311-1325.
    [7]Harris C, Kelly K, Wang T, McCandless A, Motakef S. Fabrication, modeling, and testing of micro-cross-flow heat exchangers [J]. Journal of Microelectromechanical Systems, 2002,11(6):726-735.
    [8]John T J, Mathew B, Hegab H. Parametric study on the combined thermal and hydraulic performance of single phase micro pin-fin heat sinks part I:Square and circle geometries [J]. International Journal of Thermal Sciences,2010,49(11):2177-2190.
    [9]Krishnamurthy S, Peles Y. Flow boiling of water in a circular staggered micro-pin fin heat sink [J]. International Journal of Heat and Mass Transfer,2008,51(5-6):1349-1364.
    [10]Kaneko A, Takeuchi G, Abe Y, Suzuki Y. Condensation Behavior in a Microchannel Heat Exchanger [J]. Journal of Thermal Science and Technology,2009,4(4):469-482.
    [11]Lim Y C, Kouzani A Z, Duan W. Lab-on-a-chip:a component view [J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2010,16(12):1995-2015.
    [12]Hessel V, Lowe H, Schonfeld F. Micromixers-a review on passive and active mixing principles [J]. Chemical Engineering Science,2005,60(8-9):2479-2501.
    [13]Nguyen N T, Wu Z G. Micromixers-a review [J]. Journal of Micromechanics and Microengineering,2005,15(2):R1-R16.
    [14]Mason B P, Price K E, Steinbacher J L, Bogdan A R, McQuade D T. Greener approaches to organic synthesis using microreactor technology [J]. Chemical Reviews,2007,107(6): 2300-2318.
    [15]Frost C G, Mutton L. Heterogeneous catalytic synthesis using microreactor technology [J]. Green Chemistry,2010,12(10):1687-1703.
    [16]Peela N R, Kunzru D. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor [J]. International Journal of Hydrogen Energy,2011,36(5): 3384-3396.
    [17]Wen Z Z, Yu X H, Tu S T, Yan J Y, Dahlquist E. Intensification of biodiesel synthesis using zigzag micro-channel reactors [J]. Bioresource Technology,2009,100(12): 3054-3060.
    [18]Park C P, Kim D P. Dual-Channel Microreactor for Gas-Liquid Syntheses [J]. Journal of the American Chemical Society,2010,132(29):10102-10106.
    [19]Pjescic I, Tranter C, Hindmarsh P L, Crews N D. Glass-composite prototyping for flow PCR with in situ DNA analysis [J]. Biomedical Microdevices,2010,12(2):333-343.
    [20]Liu P, Li X, Greenspoon S A, Scherer J R, Mathies R A. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification [J]. Lab on a Chip,2011,11(6):1041-1048.
    [21]Kwon C W, Son J W, Lee J H, Kim H M, Lee H W, Kim K B. High-Performance Micro-Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates [J]. Advanced Functional Materials,2011,21(6):1154-1159.
    [22]Lopez-Montesinos P O, Yossakda N, Schmidt A, Brushett F R, Pelton W E, Kenis P J A. Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section [J]. Journal of Power Sources,2011,196(10):4638-4645.
    [23]Tu S T, Yu X, Luan W, Lowe H. Development of micro chemical, biological and thermal systems in China:A review [J]. Chemical Engineering Journal,2010,163(3):165-179.
    [24]Schubert K, Brandner J, Fichtner M, Linder G Schygulla U, Wenka A. Microstructure devices for applications in thermal and chemical process engineering [J]. Microscale Thermophysical Engineering,2001,5(1):17-39.
    [25]Rosa P, Karayiannis T G, Collins M W. Single-phase heat transfer in microchannels:The importance of scaling effects [J]. Applied Thermal Engineering,2009,29(17-18): 3447.3468.
    [26]Celata G P, Cumo M, Marconi V, McPhail S J, Zummo G. Microtube liquid single-phase heat transfer in laminar flow [J]. International Journal of Heat and Mass Transfer,2006, 49(19-20):3538-3546.
    [27]Morini G L. Scaling effects for liquid flows in microchannels [J]. Heat Transfer Engineering,2006,27(4):64-73.
    [28]Tiselj I, Hetsroni G, Mavko B, Mosyak A, Pogrebnyak E, Segal Z. Effect of axial conduction on the heat transfer in micro-channels [J]. International Journal of Heat and Mass Transfer,2004,47(12-13):2551-2565.
    [29]Maranzana G, Perry I, Maillet D. Mini- and micro-channels:influence of axial conduction in the walls [J]. International Journal of Heat and Mass Transfer,2004, 47(17-18):3993-4004.
    [30]Jeong H E, Jeong J T. Extended Graetz problem including streamwise conduction and viscous dissipation in microchannel [J]. International Journal of Heat and Mass Transfer, 2006,49(13-14):2151-2157.
    [31]Herwig H, Mahulikar S P. Variable property effects in single-phase incompressible flows through microchannels [J]. International Journal of Thermal Sciences,2006,45(10): 977-981.
    [32]Li Z G, Huai X L, Tao Y J, Chen H Z. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks [J]. Applied Thermal Engineering, 2007,27(17-18):2803-2814.
    [33]Wu H Y, Cheng P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions [J]. International Journal of Heat and Mass Transfer,2003,46(14):2547-2556.
    [34]Celata G P. Heat transfer and fluid flow in microchannels [M]. New York:Begell House Inc.,2004.
    [35]Kamholz A E, Schilling E A, Yager P. Optical measurement of transverse molecular diffusion in a microchannel [J]. Biophysical Journal,2001,80(4):1967-1972.
    [36]Salmon J B, Dubrocq C, Tabeling P, Charier S, Alcor D, Jullien L, Ferrage F. An approach to extract rate constants from reaction-Diffusion dynamics in a microchannel [J]. Analytical Chemistry,2005,77(11):3417-3424.
    [37]Kamholz A E, Weigl B H, Finlayson B A, Yager P. Quantitative analysis of molecular interaction in a microfluidic channel:The T-sensor [J]. Analytical Chemistry,1999, 71(23):5340-5347.
    [38]Ismagilov R F, Stroock A D, Kenis P J A, Whitesides G, Stone H A. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels [J]. Applied Physics Letters,2000,76(17):2376-2378.
    [39]Salmon J B, Ajdari A. Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes [J]. Journal of Applied Physics,2007,101(7):7.
    [40]Beard D A. Taylor dispersion of a solute in a microfluidic channel [J]. Journal of Applied Physics,2001,89(8):4667-4669.
    [41]Wu Z G, Nguyen N T, Huang X Y. Nonlinear diffusive mixing in microchannels:theory and experiments [J]. Journal of Micromechanics and Microengineering,2004,14(4): 604-611.
    [42]Stiles P J, Fletcher D F. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel [J]. Lab on a Chip,2004,4(2): 121-124.
    [43]Sullivan S P, Akpa B S, Matthews S M, Fisher A C, Gladden L F, Johns M L. Simulation of miscible diffusive mixing in microchannels [J]. Sensors and Actuators B-Chemical, 2007,123(2):1142-1152.
    [44]Akpa B S, Matthews S M, Sederman A J, Yunus K, Fisher A C, Johns M L, Gladden L F. Study of miscible and immiscible flows in a microchannel using magnetic resonance imaging [J]. Analytical Chemistry,2007,79(16):6128-6134.
    [45]Yoon S K, Mitchell M, Choban E R, Kenis P J A. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel [J]. Lab on a Chip,2005,5(11):1259-1263.
    [46]Yamaguchi Y, Honda T, Briones M P, Yamashita K, Miyazaki M, Nakamura H, Maeda H. Influence of gravity on two-layer laminar flow in a microchannel [J]. Chemical Engineering & Technology,2007,30(3):379-382.
    [47]Yamaguchi Y, Honda T, Briones M P, Yamashita K, Miyazaki M, Nakamura H, Maeda H. Influence of gravity on a laminar flow in a microbioanalysis system [J]. Measurement Science & Technology,2006,17(12):3162-3166.
    [48]Mengeaud V, Josserand J, Girault H H. Mixing processes in a zigzag microchannel: Finite element simulations and optical study [J]. Analytical Chemistry,2002,74(16): 4279-4286.
    [49]Hossain S, Ansari M A, Kim K Y. Evaluation of the mixing performance of three passive micromixers [J]. Chemical Engineering Journal,2009,150(2-3):492-501.
    [50]Wong S H, Bryant P, Ward M, Wharton C. Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies [J]. Sensors and Actuators B-Chemical,2003,95(1-3):414-424.
    [51]Lin Y C, Chung Y C, Wu C Y. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel [J]. Biomedical Microdevices,2007,9(2): 215-221.
    [52]Hong C C, Choi J W, Ahn C H. A novel in-plane passive microfluidic mixer with modified Tesla structures [J]. Lab on a Chip,2004,4(2):109-113.
    [53]Verma M K S, Ganneboyina S R, Vinayak R R, Ghatak A. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids [J]. Langmuir,2008,24(5): 2248-2251.
    [54]Ansari M A, Kim K Y. Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel [J]. Chemical Engineering Journal,2009,146(3):439-448.
    [55]Stroock A D, Dertinger S K W, Ajdari A, Mezic I, Stone H A, Whitesides G M. Chaotic mixer for microchannels [J]. Science,2002,295(5555):647-651.
    [56]Li C A, Chen T N. Simulation and optimization of chaotic micromixer using lattice Boltzmann method [J]. Sensors and Actuators B-Chemical,2005,106(2):871-877.
    [57]Kee S P, Gavriilidis A. Design and characterisation of the staggered herringbone mixer [J]. Chemical Engineering Journal,2008,142(1):109-121.
    [58]Cortes-Quiroz C A, Zangeneh M, Goto A. On multi-objective optimization of geometry of staggered herringbone micromixer [J]. Microfluidics and Nanofluidics,2009,7(1): 29-43.
    [59]Kim D S, Lee S W, Kwon T H, Lee S S. A barrier embedded chaotic micromixer [J]. Journal of Micromechanics and Microengineering,2004,14(6):798-805.
    [60]Chen L, Wang G, Lim C, Seong G H, Choo J, Lee E K, Kang S H, Song J M. Evaluation of passive mixing behaviors in a pillar obstruction poly(dimethylsiloxane) microfluidic mixer using fluorescence microscopy [J]. Microfluidics and Nanofluidics,2009,7(2): 267-273.
    [61]Long M, Sprague M A, Grimes A A, Rich B D, Khine M. A simple three-dimensional vortex micromixer [J]. Applied Physics Letters,2009,94(13):133501.
    [62]Kim D S, Lee S H, Kwon T H, Ahn C H. A serpentine laminating micromixer combining splitting/recombination and advection [J]. Lab on a Chip,2005,5(7):739-747.
    [63]Lee J, Kwon S. Mixing efficiency of a multilamination micromixer with consecutive recirculation zones [J]. Chemical Engineering Science,2009,64(6):1223-1231.
    [64]Tofteberg T, Skolimowski M, Andreassen E, Geschke O. A novel passive micromixer: lamination in a planar channel system [J]. Microfluidics and Nanofluidics,2010,8(2): 209-215.
    [65]deMello A J. Control and detection of chemical reactions in microfluidic systems [J]. Nature,2006,442(7101):394-402.
    [66]Iles A, Fortt R, de Mello A J. Thermal optimisation of the Reimer-Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor [J]. Lab on a Chip,2005, 5(5):540-544.
    [67]Kim J A, Lee J Y, Seong S, Cha S H, Lee S H, Kim J J, Park T H. Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip [J]. Biochemical Engineering Journal,2006,29(1-2):91-97.
    [68]Evenhuis C J, Haddad P R. Joule heating effects and the experimental determination of temperature during CE [J]. Electrophoresis,2009,30(5):897-909.
    [69]Dodge A, Turcatti G, Lawrence I, de Rooij N F, Verpoorte E. A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA [J]. Analytical Chemistry,2004,76(6):1778-1787.
    [70]Wang G D, Hao L, Cheng P. An experimental and numerical study of forced convection in a microchannel with negligible axial heat conduction [J]. International Journal of Heat and Mass Transfer,2009,52(3-4):1070-1074.
    [71]Gobie W A, Ivory C F. Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening [J]. Journal of Chromatography A,1990,516(1): 191-210.
    [72]Porras S P, Marziali E, Gas B, Kenndler E. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis [J]. Electrophoresis,2003, 24(10):1553-1564.
    [73]Knox J, McCormack K. Temperature effects in capillary electrophoresis.1:Internal capillary temperature and effect upon performance [J]. Chromatographia,1994,38(3): 207-214.
    [74]Musheev M U, Javaherian S, Okhonin V, Krylov S N. Diffusion as a tool of measuring temperature inside a capillary [J]. Analytical Chemistry,2008,80(17):6752-6757.
    [75]Berezovski M, Krylov S N. Using nonequilibrium capillary electrophoresis of equilibrium mixtures for the determination of temperature in capillary electrophoresis [J]. Analytical Chemistry,2004,76(23):7114-7117.
    [76]Swinney K, Bornhop D J. Noninvasive picoliter volume thermometry based on backscatter interferometry [J]. Electrophoresis,2001,22(10):2032-2036.
    [77]Easley C J, Legendre L A, Roper M G, Wavering T A, Ferrance J P, Landers J P. Extrinsic Fabry-Perot interferometry for noncontact temperature control of nanoliter-volume enzymatic reactions in glass microchips [J]. Analytical Chemistry,2005,77(4): 1038-1045.
    [78]Watzig H. The measurement of temperature inside capillaries for electrophoresis using thermochromic solutions [J]. Chromatographia,1992,33(9):445-448.
    [79]Chaudhari A M, Woudenberg T M, Albin M, Goodson K E. Transient liquid crystal thermometry of microfabricated PCR vessel arrays [J]. Microelectromechanical Systems, Journal of,1998,7(4):345-355.
    [80]Liu J, Enzelberger M, Quake S. A nanoliter rotary device for polymerase chain reaction [J]. Electrophoresis,2002,23(10):1531-1536.
    [81]Ross D, Gaitan M, Locascio L E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye [J]. Analytical Chemistry,2001,73(17): 4117-4123.
    [82]Seger U, Panayiotou M, Schnydrig S, Jordan M, Renaud P. Temperature measurements in microfluidic systems:Heat dissipation of negative dielectrophoresis barriers [J]. Electrophoresis,2005,26(11):2239-2246.
    [83]Samy R, Glawdel T, Ren C L. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B [J]. Analytical Chemistry,2008,80(2):369-375.
    [84]Sakakibara J, Adrian R J. Whole field measurement of temperature in water using two-color laser induced fluorescence [J]. Experiments in Fluids,1999,26(1-2):7-15.
    [85]Natrajan V K., Christensen K T. Two-color laser-induced fluorescent thermometry for microfluidic systems [J]. Measurement Science & Technology,2009,20(1).
    [86]Mendels D A, Graham E M, Magennis S W, Jones A C, Mendels F. Quantitative comparison of thermal and solutal transport in a T-mixer by FLIM and CFD [J]. Microfluidics and Nanofluidics,2008,5(5):603-617.
    [87]Graham E M, Iwai K, Uchiyama S, de Silva A P, Magennis S W, Jones A C. Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy [J]. Lab on a Chip,2010,10(10):1267-1273.
    [88]Thomsen S L, Maynes D. Spatially resolved temperature measurements in a liquid using laser induced phosphorescence [J]. Journal of Fluids Engineering-Transactions of the Asme,2001,123(2):293-302.
    [89]Omrane A, Santesson S, Alden M, Nilsson S. Laser techniques in acoustically levitated micro droplets [J]. Lab on a Chip,2004,4(4):287-291.
    [90]Hu H, Jin Z Y, Nocera D, Lum C, Koochesfahani M. Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques [J]. Measurement Science & Technology,2010,21(8).
    [91]Lacey M E, Webb A G, Sweedler J V. Monitoring temperature changes in capillary electrophoresis with nanoliter-volume NMR thermometry [J]. Analytical Chemistry, 2000,72(20):4991-4998.
    [92]Lacey M E, Webb A G, Sweedler J V. On-line temperature-monitoring in a capillary electrochromatograph frit using microcoil NMR [J]. Analytical Chemistry,2002,74(17): 4583-4587.
    [93]Benninger R K P, Koc Y, Hofmann O, Requejo-Isidro J, Neil M A A, French P M W, deMello A J. Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging [J]. Analytical Chemistry,2006,78(7): 2272-2278.
    [94]Davis K L, Liu K L K, Lanan M, Morris M D. Spatially resolved temperature measurements in electrophoresis capillaries by Raman thermometry [J]. Analytical Chemistry,1993,65(3):293-298.
    [95]Liu K L K, Davis K L, Morris M D. Raman Spectroscopic Measurement of Spatial and Temporal Temperature Gradients in Operating Electrophoresis Capillaries [J]. Analytical Chemistry,1994,66(21):3744-3750.
    [96]Kim S H, Noh J, Jeon M K, Kim K W, Lee L P, Woo S I. Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip [J]. Journal of Micromechanics and Microengineering,2006,16(3): 526-530.
    [97]Auroux P A, Iossifidis D, Reyes D R, Manz A. Micro total analysis systems.2. Analytical standard operations and applications [J]. Analytical Chemistry,2002,74(12):2637-2652.
    [98]Kuswandi B, Nuriman, Huskens J, Verboom W. Optical sensing systems for microfluidic devices:A review [J]. Analytica Chimica Acta,2007,601(2):141-155.
    [99]Som-Aum W, Li H, Liu J J, Lin J M. Determination of arsenate by sorption pre-concentration on polystyrene beads packed in a microfluidic device with chemiluminescence detection [J]. Analyst,2008,133(9):1169-1175.
    [100]Viskari P J, Landers J P. Unconventional detection methods for microfluidic devices [J]. Electrophoresis,2006,27(9):1797-1810.
    [101]Kee J S, Poenar D P, Neuzil P, Yobas L. Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements [J]. Sensors and Actuators B-Chemical,2008,134(2):532-538.
    [102]Malcik N, Ferrance J P, Landers J P, Caglar P. The performance of a microchip-based fiber optic detection technique for the determination of Ca2+ ions in urine [J]. Sensors and Actuators B-Chemical,2005,107(1):24-31.
    [103]Zhu L, Lee C S, DeVoe D L. Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA [J]. Lab on a Chip,2006,6(1):115-120.
    [104]Utz M, Landers J. Magnetic Resonance and Microfluidics [J]. Science,2010,330(6007): 1056-1058.
    [105]Massin C, Vincent F, Homsy A, Ehrmann K, Boero G, Besse P A, Daridon A, Verpoorte E, de Rooij N F, Popovic R S. Planar microcoil-based microfluidic NMR probes [J]. Journal of Magnetic Resonance,2003,164(2):242-255.
    [106]Bart J, Janssen J W G, van Bentum P J M, Kentgens A P M, Gardeniers J G E. Optimization of stripline-based microfluidic chips for high-resolution NMR [J]. Journal of Magnetic Resonance,2009,201(2):175-185.
    [107]Pan T, Kelly R T, Asplund M C, Woolley A T. Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection [J]. Journal of Chromatography A,2004,1027(1-2):231-235.
    [108]Greener J, Abbasi B, Kumacheva E. Attenuated total reflection Fourier transform infrared spectroscopy for on-chip monitoring of solute concentrations [J]. Lab on a Chip,2010,10(12):1561-1566.
    [109]Park T, Lee M, Choo J, Kim Y S, Lee E K, Kim D J, Lee S H. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy [J]. Applied Spectroscopy,2004,58(10): 1172-1179.
    [110]Fletcher P D I, Haswell S J, Zhang X L. Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer [J]. Electrophoresis, 2003,24(18):3239-3245.
    [111]Sarrazin F, Salmon J B, Talaga D, Servant L. Chemical reaction imaging within microfluidic devices using confocal Raman spectroscopy:The case of water and deuterium oxide as a model system [J]. Analytical Chemistry,2008,80(5):1689-1695.
    [112]Strehle K R, Cialla D, Rosch P, Henkel T, Kohler M, Popp J. A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system [J]. Analytical Chemistry,2007,79(4):1542-1547.
    [113]Wilson R, Bowden S A, Parnell J, Cooper J M. Signal Enhancement of Surface Enhanced Raman Scattering and Surface Enhanced Resonance Raman Scattering Using in Situ Colloidal Synthesis in Microfluidics [J]. Analytical Chemistry,2010,82(5): 2119-2123.
    [114]Mogensen K B, Klank H, Kutter J P. Recent developments in detection for microfluidic systems [J]. Electrophoresis,2004,25(21-22):3498-3512.
    [115]Baker C A, Duong C T, Grimley A, Roper M G. Recent advances in microfluidic detection systems [J]. Bioanalysis,2009,1(5):967-975.
    [116]肖新民.拉曼光谱仪的两种共焦显微术的对比[J].现代科学仪器,2005,(3):17-20.
    [117]Wikimedia Foundation. Raman spectroscopy [OL]. (2010-12-21) [2010-12-22]. http://en.wikipedia.org/wiki/Raman_Spectroscopy.
    [118]Everall N J. Confocal Raman Microscopy:Performance, Pitfalls, and Best Practice [J]. Applied Spectroscopy,2009,63(9):245A-262A.
    [119]Everall N. Depth profining with confocal Raman microscopy, part Ⅰ [J]. Spectroscopy, 2004,19(10):22-+.
    [120]Everall N J. Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy [J]. Applied Spectroscopy,2000,54(6):773-782.
    [121]Bruneel J L, Lassegues J C, Sourisseau C. In-depth analyses by confocal Raman microspectrometry:experimental features and modeling of the refraction effects [J]. Journal of Raman Spectroscopy,2002,33(10):815-828.
    [122]Kouteva-Arguirova S, Arguirov T, Wolfframm D, Reif J. Influence of local heating on micro-Raman spectroscopy of silicon [J]. Journal of Applied Physics,2003,94(8): 4946-4949.
    [123]Georgi C, Hecker M, Zschech E. Effects of laser-induced heating on Raman stress measurements of silicon and silicon-germanium structures [J]. Journal of Applied Physics,2007,101(12):6.
    [124]The Engineering ToolBox. Material Properties [OL]. [2011-2-24]. http://www.engineeringtoolbox.com/material-properties-t_24.html.
    [125]Walrafen G E, Hokmabadi M S, Yang W H. Raman isosbestic points from liquid water [J]. Journal of Chemical Physics,1986,85(12):6964.
    [126]Walrafen G E, Fisher M R, Hokmabadi M S, Yang W H. Temperature dependence of the low- and high-frequency Raman scattering from liquid water [J]. Journal of Chemical Physics,1986,85(12):6970.
    [127]王国栋.微通道内稳定流动沸腾的特性及沸腾不稳定性研究[D].上海:上海交通大学,2008.
    [128]Incropera F P, DeWitt D P, Bergman T L, Lavine A S. Fundamentals of heat and mass transfer [M].6th ed. New York:John Wiley,2006.
    [129]Brody J P, Yager P. Diffusion-based extraction in a micro fabricated device [J]. Sensors and Actuators A:Physical,1997,58(1):13-18.
    [130]Gargiuli J, Shapiro E, Gulhane H, Nair G, Drikakis D, Vadgama P. Microfluidic systems for in situ formation of nylon 6,6 membranes [J]. Journal of Membrane Science,2006, 282(1-2):257-265.
    [131]Mansfield C D, Man A, Low-Ying S, Shaw R A. Laminar fluid diffusion interface preconditioning of serum and urine for reagent-free infrared clinical analysis and diagnostics [J]. Applied Spectroscopy,2005,59(1):10-15.
    [132]Salmon J B, Ajdari A, Tabeling P, Servant L, Talaga D, Joanicot M. In situ Raman imaging of interdiffusion in a microchannel [J]. Applied Physics Letters,2005,86(9):3.
    [133]van Leeuwen M, Li X N, Krommenhoek E E, Gardeniers H, Ottens M, van der Wielen L A M, Heijnen J J, van Gulik W M. Quantitative Determination of Glucose Transfer Between Cocurrent Laminar Water Streams in a H-Shaped Microchannel [J]. Biotechnology Progress,2009,25(6):1826-1832.
    [134]Weigl B H, Yager P. Microfluidics-Microfluidic diffusion-based separation and detection [J]. Science,1999,283(5400):346-347.
    [135]Znidarsic-Plazl P, Plazl I. Steroid extraction in a microchannel system-mathematical modelling and experiments [J]. Lab on a Chip,2007,7(7):883-889.
    [136]Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes:The Art of Scientific Computing [M].2nd ed. Cambridge:Cambridge University Press,1992.
    [137]Culbertson C T, Jacobson S C, Ramsey J M. Diffusion coefficient measurements in microfluidic devices [J]. Talanta,2002,56(2):365-373.
    [138]Pappaert K, Biesemans J, Clicq D, Vankrunkelsven S, Desmet G Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows [J]. Lab on a Chip,2005,5(10):1104-1110.
    [139]Sanni S A, Fell C J D, Hutchison H P. Diffusion coefficients and densities for binary organic liquid mixtures [J]. Journal of Chemical and Engineering Data,1971,16(4): 424-427.
    [140]Kuczenski B, LeDuc P R, Messner W C. Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network [J]. Lab on a Chip,2007,7(5): 647-649.
    [141]Wang C, Gao Y D, Nguyen N T, Wong T N, Yang C, Ooi K T. Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis [J]. Journal of Micromechanics and Microengineering,2005,15(12):2289-2297.
    [142]Dambrine J, Geraud B, Salmon J B. Interdiffusion of liquids of different viscosities in a microchannel [J]. New Journal of Physics,2009,11:22.
    [143]Einstein A. Investigations on the Theory of Brownian Movement [M]. New York:Dover, 1956.
    [144]Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency--Determination of micromixing time by a simple mixing model [J]. Chemical Engineering Science,1996,51(23):5187-5192.
    [145]Palmer D A, Ramette R W, Mesmer R E. Triiodide ion formation equilibrium and activity coefficients in aqueous solution [J]. Journal of Solution Chemistry,1984,13(9): 673-683.
    [146]Falk L, Commenge J M. Performance comparison of micromixers [J]. Chemical Engineering Science,2010,65(1):405-411.
    [147]Panic S, Loebbecke S, Tuercke T, Antes J, Boskovic D. Experimental approaches to a better understanding of mixing performance of microfluidic devices [J]. Chemical Engineering Journal,2004,101(1-3):409-419.
    [148]Kashid M, Renken A, Kiwi-Minsker L. Mixing efficiency and energy consumption for five generic microchannel designs [J]. Chemical Engineering Journal,2011,167: 436-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700