并联有源电力滤波器工程应用关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以谐波抑制、无功补偿为主要功能的有源电力滤波器的基本理论已经成熟,但是市场尚无成熟的谐波有源抑制产品,同时电网谐波问题日益突出,因此需要对有源电力滤波器进行产业化应用研究。并联有源电力滤波器以其安装、维护方便,成为商用化产品的主流。所以本文针对并联有源电力滤波器,展开产业化应用研究。
     本文研究工作首先由如下工程问题引出:并联有源电力滤波器在补偿办公楼电气负载产生的谐波电流时,会出现谐波放大现象。办公楼电气负载主要是计算机、开关电源、不间断电源、电压型变频器等,这些都是电压型谐波源。本文以电容滤波型整流电路(电压型谐波源)的分析作为切入点,基于“分段线性化”方法,对并联有源电力滤波器补偿电容滤波型整流负载进行了稳态分析,得到系统的电流和电压波形,进而获得其频谱特性。通过本文所述稳态分析方法,可以从理论上理解并联有源电力滤波器补偿电容滤波型整流负载的工作过程,对有源电力滤波器的应用研究具有重要的理论和实际意义。
     本文在分析办公楼负载电气特性的基础上,建立了有源电力滤波器补偿容性负载的简化模型,依据该模型分析了负载中容性元件的电容值与谐波电流放大之间的关系;为了克服谐波放大现象,本文首先通过负载电流采样环节后加装滤波器的方式,将电流谐振频率分量从采样值中滤除,虽然达到了抑制谐波放大的目的,但是由于延时的引入,使得补偿后网侧电流畸变率(THD)急剧升高;然后根据这一思路,采用基于快速傅立叶变换(FFT)的有选择谐波补偿方法将电流谐振频率分量从负载电流采样值中滤除,使得系统在谐振频率处变为开环控制,使系统稳定。经过对办公楼负载的实际并网谐波补偿实验证明基于FFT的有选择谐波补偿方法对于抑制谐波放大是有效的。本创新点的研究工作对于实际工程应用具有参考价值。
     为了满足大容量的谐波抑制要求,本文提出了模块化有源电力滤波器并联补偿方案,该方案的特点是模块化结构及N+1冗余并联控制策略、主从总线结构及主机产生、负载电流检测方案以及并联均流策略。主机产生及负载电流检测是这一并联方案的突出特点,体现了本文的创新性工作。本文还对多模块并联系统进行了建模和稳定性研究;依据模块化并联补偿方案,在省科技计划重点项目的支持下,对有源电力滤波器进行产业化研究,从项目方案、设计、器件选型、样机调试、满功率运行及性能检测、楼宇负载与工业负载的实际并网实验,直至工业样机定型,对有源电力滤波器的产业化应用研究起了较大的推进作用,支撑项目目前已经有定型的工业化产品推出。
     全文围绕上述三个方面展开,章节分排如下:(1)第一章从实际应用角度,总结阐述了有源电力滤波技术在谐波检测、电流跟踪控制、拓扑结构三个方面的研究进展;(2)第二章对并联有源电力滤波器补偿电容滤波型整流负载进行了稳态分析;(3)第三章分析了有源电力滤波器补偿容性负载时出现的谐波放大现象,并利用FFT方法使得系统在谐振频率处变为开环控制,达到抑制谐波放大的目的;(4)第四章、第五章提出有源电力滤波器模块化并联方案,并详细说明了模块化并联系统的设计和实验;(5)第六章对全文进行了总结,并对今后的研究工作进行了展望。
The Active Power Filter (APF) with the goal of harmonic inhibition and reactive power compensation is already basically mature. At the same time, the problem of power harmonic becomes more and more severe. Therefore, it is urgent to carry out industrialized and applied research about APF. Shunt APF becomes mainstream due to its convenience in installation and maintenance. So, the industrialization of shunt APF is studied in this dissertation.
     The research developed by this dissertation is induced by the engineering problem that harmonic amplification occurs when a conventional shunt APF compensates harmonic current generated by electric apparatus in office building. The electric loads in office building are mainly made up of personal computers, UPSs, switching mode power supplies and ac drives which are all voltage-type harmonic sources. The dissertation starts with the analysis of voltage-source rectifier. It is analyzed the steady state currents, voltages and their spectrums of uncontrolled single-phase voltage-source rectifier compensated by shunt APF based on piecewise linearization method. The method of steady-state analysis illuminated by this dissertation is helpful to understand theoretically the working mechanism of APF compensating voltage-source rectifier and has important significance in the applied research of APF.
     A simplified model of APF compensating capacitive load is modeled on the base of analyzing the characteristics of electric loads inside office building. By this simplified model, it is analyzed in this dissertation that the relationship between the value of capacitor in office load and the harmonic amplification. The harmonic amplification can be overcome by a filter added to the load current sampling to get rid of the component on resonance frequency. Although the harmonic amplification is suppressed, the THD of power grid current increases rapidly as a result of delay time introduced. According to this way, the selective harmonic compensation based on fast fourier transformation (FFT) is adopted to eliminate the resonant component from the sampled load current. So, the system will work under open-loop control upon resonance frequency and keeps resilient. The selective harmonic compensation based on FFT is proved effective to suppress the harmonic amplification by field operation of shunt APF compensating harmonic current generated by electric load in office building. This part work developed by the dissertation has reference value for field operation of shunt APF.
     In order to meet the harmonic compensation in high power level application, this dissertation presents the multi-modular APF system for shunt compensation whose characteristics are presented as follows: modular structure and N+1 redundancy, master-slave bus architecture and master module generation, load current detection and parallel sharing scheme. Master module generation and load current detection scheme are the prominent characteristics and illuminate the innovational work developed by this dissertation. Besides, model and stability of multi-modular APF system have also been studied. According to multi-modular parallel compensation strategy, industrialization of APF has been fulfilled under the support of Zhejiang province science & technology program key project which includes general plan design, parameter determination, prototype commissioning, full power operation, performance test, field compensation of harmonic current generated by building electronic equipments or industrial electric loads, industrial prototype standardization and so on. This part of work fulfilled by the dissertation promotes the industrialized application of shunt APF greatly and some standardized industrial APF products have been hatched by the project.
     The contents include three aspects mentioned above and the chapters are arranged as follows: (1) In chapter one, the research progress is summarized in harmonic detection, current tracking control and topology from view of practical application. (2) In chapter two, it is analyzed the steady state currents and voltages of uncontrolled single-phase voltage-source rectifier compensated by shunt APF. (3) In chapter three, the harmonic amplification when a conventional shunt APF compensates harmonic current generated by electric apparatus in office building is analyzed. The selective harmonic compensation based on FFT method is adopted to suppress the harmonic amplification by making the system under open-loop control in resonance frequency. (4) In chapter four and chapter five, the parallel compensation strategy of multi-modular APF system is illuminated. The design procedure and experiment results are also presented. (5) In chapter six, the thesis is summarized and the prospect of future work is illuminated.
引文
[1]肖湘宁,《电能质量分析与控制》,北京:中国电力出版社,2004年2月,pp.1-23.
    [2]王跃,杨君,王兆安,“电气化铁路用混合电力滤波器的研究,”中国电机工程学报,vol.23,pp.23-27,2003年.
    [3]解绍锋,李群湛,赵丽平,“电气化铁道牵引负载谐波分布特征与概率模型研究,”中国电机工程学报,vol.25,pp.79-83,2005年.
    [4]L.Gyugyi and E.C.Strycula,"Active ac power filters," in IEEE/IAS Annual Meeting:IEEE,1976,pp.529-529.
    [5]王兆安,杨君,刘进军,《谐波抑制和无功功率补偿》,第二版,北京:机械工业出版社,2006年,pp.245-311.
    [6]姜齐荣,赵东元,陈建业,《有源电力滤波器——结构原理控制》,第一版,北京:科学出版社,2005年,pp.81-83.
    [7]刘凤君,《市电电能质量补偿技术》,北京:科学出版社,2005年,pp.1-30.
    [8]罗安,《电网谐波治理和无功补偿技术及装备》,北京:中国电力出版社,2006年4月,pp.1-16.
    [9]A.Harirak and S.Sangwongwanich,"A novel source-current detection type active filter equivalent to load-current detection type," in Industry Applications Conference,2005.Fourtieth IAS Annual Meeting.vol.2:IEEE,2005,pp.1205-1212.
    [10]S.-I.Hamasaki,M.Cao,and A.Kawamura,"Experimental Verification of Disturbance-Observer-Based Active Filter for Resonance Suppression," IEEE Transactions on Industrial Electronics,vol.50,pp.1140-1147,2003.
    [11]G.Wang and G.Zhang,"Direct AC Main Current Control of Shunt Active Power Filters-Feasibility and Performance," in Power Electronics Specialists Conference,2006.PESC'06.37th IEEE:IEEE,2006,pp.1-6.
    [12]H.Akagi,"Control Strategy and Site Selection of a Shunt Active Filter for Damping of Harmonic ropagation in Power Distribution Systems," IEEE Transactions on Power Delivery,vol.12,pp.354-363,1997.
    [13]H.Akagi,H.Fujita,and K.Wada,"A Shunt Active Filter Based on Voltage Detection for Harmonic Termination of a Radial Power Distribution Line,"IEEE Transactions on Industry Applications,vol.35,pp.638-645,1999.
    [14]P.Jintakosonwit,H.Fujita,and H.Akagi,"Control and Performance of a Fully-Digital-Controlled Shunt Active Filter for Installation on a Power Distribution System," IEEE Transactions on Power Electronics,vol.17,pp.132-140,2002.
    [15]K.Wada,H.Fujita,and H.Akagi,"Considerations of a Shunt Active Filter Based on Voltage Detection for Installation on a Long Distribution Feeder,"IEEE Transactions on Industry Applications,vol.38,pp.1123-1130,2002.
    [16]S.Bhattacharya,P.-T.Cheng,and D.M.Divan,"Hybrid Solutions for Improving Passive Filter Performance in High Power Applications," IEEE Transactions on Industry Applications,vol.33,pp.732-747,1997.
    [17]Y.Sato,T.Kawase,M.Akiyama,and T.Kataoka,"A Control Strategy for General-Purpose Active Filters Based on Voltage Detection," IEEE Transactions on Industry Applications,vol.36,pp.1405-1412,2000.
    [18]W.Longhui,Z.Fang,Z.Pengbo,L.Hui,and W.Zhaoan,"Stability Analysis and Controller Design of Hybrid Compensation System with Parallel Active Power Filter and Parallel Capacitors," in Power Electronics Specialists Conference,2007.PESC 2007:IEEE,2007,pp.1105-1111
    [19]S.Fukuda and T.Endoh,"Control Method for a Combined Active Filter System Employing a Current Source Converter and a High Pass Filter," IEEE Transactions on Industry Applications,vol.31,pp.590-597,1995.
    [20]J.A.Lambert,E.A.A.Coelho,J.B.Vieira,Jr.,L.C.de Freitas,and V.J.Farias,"A control strategy for imposition of sinusoidal input current in a parallel active power filter," in Industrial Electronics,1997.ISIE '97.vol.2:IEEE,1997,pp.417-421.
    [21]杨万开,肖湘宁,杨以涵,杨丽明,“基于瞬时无功功率理论高次谐波及基波无功电流的精确检测,”电工电能新技术,pp.61-64,1998年.
    [22]马大铭,朱东起,高景德,“三相电压不对称时谐波和无功电流的准确检测,”清华大学学报(自然科学版),vol.37,pp.7-10,1997年.
    [23]杨君,王兆安,邱关源,“不对称三相电路谐波及基波负序电流实时检测方法研究,”西安交通大学学报,vol.30,pp.94-100,1996年.
    [24]孙驰,魏光辉,毕增军,“基于同步坐标变换的三相不对称系统的无功与谐波电流的检测,”中国电机工程学报,vol.23,pp.43-48,2003年.
    [25]杨君,王兆安,“三相电路谐波电流两种检测方法的对比研究,”电工技术学报,pp.43-48,1995年.
    [26]叶忠明,董伯藩,钱照明,“谐波电流的提取方法比较,”电力系统自动化,vol.21,pp.21-24,1997年.
    [27]丁洪发,段献忠,何仰赞,“同步检测法的改进及其在三相不对称无功补偿中的应用,”中国电机工程学报,vol.20,pp.17-52,2000年.
    [28]郝瑞祥,程志光,游小杰,“一种新型有源滤波器谐波提取方法和控制策略,”电力系统自动化,vol.28,pp.56-60,2004年.
    [29]陈仲,《并联有源电力滤波器实用关键技术的研究》:浙江大学博士学位论文,杭州,浙江大学,2005年,pp.35-43.
    [30]M.K.Mishra,A.Ghosh,A.Joshi,and H.M.Suryawanshi,"A Novel Method of Load Compensation Under Unbalanced and Distorted Voltages," IEEE Transactions on Power Delivery,vol.22,pp.288-295,2007.
    [31]K.Borisov and H.Ginn,"A novel reference signal generator for active power filters based on Recursive DFT," in Applied Power Electronics Conference and Exposition,2008.APEC 2008.Twenty-Third Annual IEEE:IEEE,2008,pp.1920-1925.
    [32]B.Singh and V.Verma,"Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition," IEEE Transactions on Power Delivery,vol.23,pp.792-799,2008.
    [33]M.El-Habrouk and M.K.Darwish,"Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs," Electric Power Applications,IEE Proceedings,vol.148,pp.1591-1597,2001.
    [34]A.J.V.Miller and M.B.Dewe,"The Application of Multi-rate Digital Signal Processing Techniques to the Measurement of Power System Harmonic Levels," IEEE Transactions on Power Delivery,vol.8,pp.531-539,1993.
    [35]C.S.,M.Y.N.,and C.P.P.Mok,"A Digital Measurement Scheme for Time-Varying Transient Harmonics," IEEE Transactions on Power Delivery,vol.10,pp.588-594,1995.
    [36]C.V.Nunez-Noriega and G.G.Karady,"Five Step-Low Frequency Switching Active Power Filter for Network Harmonic Compensation in Substations,"IEEE Transactions on Power Delivery,vol.14,pp.1298-1303.1999.
    [37]S.Sujitjorn,K.-L.Arecrak,and T.Kulworawanichpong,"The DQ Axis With Fourier(DQF) Method for Harmonic Identification," IEEE Transactions on Power Delivery,vol.22,pp.737-739.2007.
    [38]G.W.Chang,C.-Y.Chen,and M.-C.Wu,"Measuring harmonics by an improved FFT-based algorithm with considering frequency variations," in Circuits and Systems,2006.ISCAS 2006:IEEE,2006,pp.1203-1206.
    [39]M.El-Habrouk and M.K.Darwish,"Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs," Electric Power Applications,IEE Proceedings,vol.148,pp.21-27,2001.
    [40]S.Mariethoz and A.C.Ruler,"Open Loop and Closed Loop Spectral Frequency Active Filtering," IEEE Transactions on Power Electronics.vol.17,pp.564-573,2002.
    [41]张超,杨耕,杜继宏,“有源电力滤波器任意次谐波电流检测的新算法,”电机与控制学报,vol.6,p.252-255,2002年.
    [42]杨柳,刘会金,陈允平,“三相四线制系统任意次谐波电流的检测新方法,”中国电机工程学报,vol.25,pp.41-44,2005年.
    [43]孙才华,宗伟,何磊,杜宁,李海燕,“一种任意整数次谐波电压实时检测方法,”中国电机工程学报,vol.25,pp.70-73,2005年.
    [44]P.-T.Cheng,S.Bhattacharya,and D.M.Divan,"Control of Square-Wave Inverters in High-Power Hybrid Active Filter Systems," IEEE Transactions on Industry Applications,vol.34,pp.458-472,1998.
    [45]P.-T.Cheng,S.Bhattacharya,and D.Divan,"Experimental Verification of Dominant Harmonic Active Filter for High-Power Applications," IEEE Transactions on Industry Applications,vol.36,pp.567-577,2000.
    [46]P.Mattavelli,"A Closed-Loop Selective Harmonic Compensation for Active Filters," IEEE Transactions on Industry Applications,vol.37,pp.81-89,2001.
    [47]J.Allmeling,"A Control Structure for Fast Harmonics Compensation in Active Filters," IEEE Transactions on Power Electronics,vol.19,pp.508-514,2004.
    [48]D.Basic,V.S.Ramsden,and P.K.Muttik,"Hybrid filter control system with adaptive filters for selective elimination of harmonics and interharmonics,"Electric Power Applications,IEE Proceedings,vol.147,pp.295-303 2000.
    [49]G.Casaravilla,A.Salvia,C.Briozzo,and E.Watanabe,"Control strategies of selective harmonic current shunt active filter," Generation,Transmission and Distribution,IEE Proceedings,vol.149,pp.689-694,2002.
    [50]D.Basic,V.S.Ramsden,and P.K.Muttik,"Harmonic Filtering of High-Power 12-Pulse Rectifier Loads With a Selective Hybrid Filter System,"IEEE Transactions on Industrial Electronics,vol.48,pp.1118-1127,2001.
    [51]M.J.Newman,D.N.Zmood,and D.G.Holmes,"Stationary Frame Harmonic Reference Generation for Active Filter Systems," IEEE Transactions on Industry Applications,vol.38,pp.1591-1599,2002.
    [52]R.I.Bojoi,G.Griva,V.Bostan,M.Guerriero,F.Farina,and F.Profumo,"Current Control Strategy for Power Conditioners Using Sinusoidal Signal Integrators in Synchronous Reference Frame," IEEE TRANSACTIONS ON POWER ELECTRONICS,vol.20,pp.1402-1412,2005.
    [53]M.Liserre,R.Teodorescu,and F.Blaabjerg,"Multiple Harmonics Control for Three-Phase Grid Converter Systems With the Use of PI-RES Current Controller in a Rotating Frame," IEEE Transactions on Power Electronics,vol.21,pp.836-841,2006.
    [54]H.-L.Jou,"Performance comparison of the three-phase active-power-filter algorithms," Generation,Transmission and Distribution,IEE Proceedings,vol.142,pp.646-652,1995.
    [55]钟金亮,《有源电力滤波器的变结构控制策略研究》:浙江大学博士学位论文,杭州,浙江大学,1998年,pp.14-14.
    [56]K.Chatterjee,B.G.Fernandes,and G.K.Dubey,"An Instantaneous Reactive Volt-Ampere Compensator and Harmonic Suppressor System," IEEE Transactions on Power Electronics,vol.14,p.381-392,1999.
    [57]S.-J.Huang and J.-C.Wu,"A Control Algorithm for Three-Phase Three-Wired Active Power Filters Under Nonideal Mains Voltages," IEEE Transactions on Power Electronics,vol.14,p.753-760,1999.
    [58]S.Buso,L.Malesani,and P.Mattavelli,"Comparison of Current Control Techniques for Active Filter Applications," IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,vol.45,pp.722-729,1998.
    [59]T.E.Nunez-Zuniga and J.A.Pomilio,"Shunt Active Power Filter Synthesizing Resistive Loads," IEEE Transactions on Power Electronics,vol.17,pp.273-278,2002.
    [60]S.K.Jain,P.Agarwal,and H.O.Gupta,"A Control Algorithm for Compensation of Customer-Generated Harmonics and Reactive Power," IEEE Transactions on Power Delivery,vol.19,pp.357-366,2004.
    [61]H.Li,F.Zhuo,Z.Wang,W.Lei,and L.Wu,"A Novel Time-Domain Current-Detection Algorithm for Shunt Active Power Filters," IEEE Transactions on Power Systems,vol.20,pp.644-651,2005.
    [62]Y.Chang,L.Jinjun,W.Xiaoyu,and W.Zhaoan,"A Novel Control of Parallel Active Power Filter for Fast-Changing Dynamic Load," in Applied Power Electronics Conference,APEC 2007-Twenty Second Annual IEEE:IEEE,2007,pp.682-685
    [63]王广柱,“有源电力滤波器谐波及无功电流检测的不必要性(一),”电工技术学报,vol.22,pp.137-141,2007年.
    [64]王广柱,“有源电力滤波器谐波及无功电流检测的不必要性(二)——仿真及实验,”电工技术学报,vol.22,pp.132-135,2007.
    [65]Y.Chang,L.Jinjun,W.Xiaoyu,L.Jing,Y.Chao,and W.Zhaoan,"An advanced DC voltage based control for series active power filter," in Applied Power Electronics Conference and Exposition,2008.APEC 2008.Twenty-Third Annual IEEE:IEEE,2008,pp.1169-1172
    [66]张东,周雒维,杜雄,“基于功率平衡的单相串联型有源电力滤波器,”重庆大学学报(自然科学版),vol.28,pp.32-35,2005年.
    [67]王广柱,“并联型有源电力滤波器电流控制的等效原理,”中国电机工程学报,vol.26,pp.40-45,2006年.
    [68]戴朝波,林海雪,雷林绪,“两种谐波电流检测方法的比较研究,”中国电机工程学报,vol.22,pp.80-84,2002年.
    [69]陈秋明,“一种在线检测基波无功电流和谐波电流的简便方法,”中国电机工程学报,vol.26,pp.71-74,2006年.
    [70]王丽,刘会金,“基于对称分量法的三相电路谐波和无功电流检测新方法,”电气应用,vol.24,pp.139-141,2005年.
    [71]M.P.Kazmierkowski and L.Malesani,"Current Control Techniques for Three-Phase Voltage-Source PWM Converters:A Survey," IEEE Transactions on Industrial Electronics,vol.45,pp.691-703,1998.
    [72]J.Holtz,"Pulsewidth Modulation-A Survey," IEEE Transactions on Industrial Electronics,vol.39,pp.410-420,1992.
    [73]Y.Sato,T.Ishizuka,K.Nezu,and T.Kataoka,"A New Control Strategy for Voltage-Type PWM Rectifiers to Realize Zero Steady-State Control Error in Input Current," IEEE Transactions on Industry Applications,vol.34,pp.480-486,1998.
    [74]S.Fukuda and T.Yoda,"A Novel Current-Tracking Method for Active Filters Based on a Sinusoidai Internal Model," IEEE Transactions on Industry Applications,vol.37,pp.888-895,2001.
    [75]X.Yuan,W.Merk,and J.Allmeling,"Stationary-Frame Generalized Integrators for Current Control of Active Power Filters With Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions," IEEE Transactions on Industry Applications,vol.38,pp.523-532,2002.
    [76]D.N.Zmood and D.G.Holmes,"Stationary Frame Current Regulation of PWM Inverters With Zero Steady-State Error," IEEE Transactions on Power Electronics,vol.18,pp.814-822,2003.
    [77]S.Fukuda and R.Imamura,"Application of a Sinusoidal Internal Model to Current Control of Three-Phase Utility-Interface Converters," IEEE Transactions on Industrial Electronics,vol.52,pp.420-426,2005.
    [78]I.Etxeberria-Otadui,A.L.d.Heredia,H.Gaztanaga,S.Bacha,and M.R.Reyero,"A Single Synchronous Frame Hybrid(SSFH) Multifrequency Controller for Power Active Filters," IEEE Transactions on Industrial Electronics,vol.53,pp.1640-1648,2006.
    [79]马永健,徐政,沈沉,“有源电力滤波器闭环控制算法研究,”电工技术学报,vol.21,pp.73-78,2006年2月.
    [80]黄沁,李耀华,“一种新颖的含有谐振控制器的CVCF逆变器多环反馈控制方法,”电工电能新技术,vol.24,pp.37-40,2005年4月.
    [81]石游,杨洪耕,“一种带谐波补偿功能的DVR,”电力自动化设备,vol.26,pp.88-91,2006年5月.
    [82]杨洪耕,石游,“基于谐振控制器带谐波补偿功能的DVR,”电力系统及其自动化学报,vol.18,pp.31-36,2006年10月.
    [83]赵清林,郭小强,邬伟扬,“单相逆变器并网控制技术研究,”中国电机工程学报,vol.27,pp.60-64,2007年6月.
    [84]周林,蒋建文,周雒维,叶一麟,“基于单周控制的三相四线制有源电力滤波器,”中国电机工程学报,vol.23,pp.85-88,2003年3月.
    [85]杜雄,周雒维,谢品芳,周林,“一种改进的单周控制直流侧有源电力滤波器及其稳态和动态研究,”中国电机工程学报,vol.23,pp.12-17,2003年7月.
    [86]王永,沈颂华,吕宏丽,“基于单周控制开关变换器的研究,”电力电子技术,vol.39,pp.38-40,2005年8月.
    [87]T.Jin and K.M.Smedley,"Operation of One-Cycle Controlled Three-Phase Active Power Filter With Unbalanced Source and Load," IEEE Transactions on Power Electronics,vol.21,pp.1403-1412,2006.
    [88]C.Qiao,T.Jin,and K.M.Smedley,"One-Cycle Control of Three-Phase Active Power Filter With Vector Operation," IEEE Transactions on Industrial Electronics,vol.51,pp.455-463,2004.
    [89]C.-C.Fang,"Sampled-Data Modeling and Analysis of One-Cycle Control and Charge Control," IEEE Transactions on Power Electronics,vol.16,pp.345-350,2001.
    [90]钱挺,吕征宇,胡进,“新型单周控制有源滤波器的直流分量抑制策略,”浙江大学学报(工学版),vol.37,pp.231-234,2003年3月.
    [91]周林,沈小莉,周雒维,周小军,“单周控制技术在有源电力滤波器中的应用,”电力电子技术,vol.38,pp.11-13,2004年8月.
    [92]周雒维,龚伟,苏向丰,“一种改进的单周控制的开关功率放大器,”电工技术学报,vol.19,pp.106-110,2004年5月.
    [93]武志贤,蔡丽娟,王素飞,“电力电子变换器的单周控制方法的探讨,”电气传动,vol.35,pp.22-24,2005年.
    [94]钟洪浩,《新型混合有源电力滤波器研究》:浙江大学博士学位论文,杭州,浙江大学,2005年,pp.1-19.
    [95]吴卫民,《新型谐波抑制及相关技术的研究》:浙江大学博士学位论文,杭州,浙江大学,2005年,pp.1-16.
    [96]F.Z.Peng,"Application issues of active power filters," Industry Applications Magazine,IEEE,vol.4,pp.21-30,1998 1998.
    [97]邱关源,《现代电路理论》,北京:高等教育出版社,2001年,pp.132-146.
    [98]夏承铨,《电路分析》,武汉:武汉理工大学出版社,2006年,pp.462-493.
    [99]G.Task Force;Chang,"Characteristics and modeling of harmonic sources-power electronic devices," Power Delivery,IEEE Transactions on,vol.16,pp.791-800 2001.
    [100]W.Xu,J.E.Drakos,Y.Mansour,and A.Chang,"A three-phase converter model for harmonic analysis of HVDC systems," IEEE Transactions on Power Delivery,vol.9,pp.1724-1731 1994.
    [101]J.Liu,Y.He,H.Li,F.Zhuo,and Z.Wang,"Quantitative analysis of shunt active filter compensation characteristics under different rectifier load situations," in Industrial Electronics,ISIE 2002.vol,4,2002,pp.1241-1246.
    [102]M.Fauri,"Harmonic modelling of non-linear load by means of crossed frequency admittance matrix," IEEE Transactions on Power Systems,vol.12,pp.1632-1638 1997
    [103]陈敏,《非线性负载条件下的逆变器特性研究》:浙江大学博士学位论文.杭州,浙江大学,2006年,pp.69-90.
    [104]宋树祥,周冬梅,《高频电子线路》,北京:北京大学出版社,2007年,pp.273-286.
    [105]蔡宣三,《动态电路分析》,北京:清华大学出版社,1985年,pp.243-269.
    [106]都长清,焦宝聪,焦炳照,《常微分方程》,北京:首都师范大学出版社,1993年4月,pp.176-193.
    [107]H.Akagi,H.Fujita,and K.Wada,"A shunt active filter based on voltage detection for harmonic termination of a radial power distribution line," IEEE Transactions on Industry Applications,vol.35,pp.638-645,1999.
    [108]Y.Xu,X.Xiao,H.Liu,and H.Wang,"Parallel operation of hybrid active power filter with passive power filter or capacitors," in Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian,China:IEEE/PES,2005,pp.1-6
    [109]E.-S.E.M.Mi and S.MMA.,"A novel current regulated PWM technique for multi-converter active power line conditioner," in Power Engineering Society Winter Meeting New York:IEEE,2002,pp.1360-1365.
    [110]C.J.C,SJ,"Design and implementation of the parallelable active power filter," in Power Electronics Specialists Conference Charleston,USA:IEEE,1999,pp.406-411.
    [111]F.L.M.LA and D.JW,"A simple and low-cost control strategy for active power filters connected in cascade," IEEE Transactions on Industrial Electronics,vol.44,pp.621-629,1997.
    [112]A.W.C.SJ,"Parallel operation of three-phase four-wire active power filters without control interconnection," in Power Electronics Specialists Conference Cairns,Australia:IEEE,2002,pp.1202-1207.
    [113]胡寿松,《自动控制原理》,北京:国防工业出版社,1984年,pp.134-135.
    [114]F.Le Magoarou and F.Monteil,"Influence of the load on the design process of an active power filter," in Industrial Electronics,Control and Instrumentation,1994.IECON '94.,20th International Conference.vol.1,1994,pp.416-421.
    [115]方红兴,《基于DSP控制的并联有源电力滤波器的研究》:浙江大学硕士学位论文,杭州,浙江大学,2001年,pp.1-20.
    [116]王磊,《有源电力滤波器(APF)的(DSP)控制策略研究》:浙江大学硕士学 位论文,杭州,浙江大学,2002年,pp.1-8.
    [117]徐迎春,《并联有源电力滤波器(APF)基于空间矢量的滞环控制》:浙江大学硕士学位论文,杭州,浙江大学,2004年,pp.1-7.
    [118]王华凤,《有源电力滤波模块组合系统的研究》:浙江大学硕士学位论文,杭州,浙江大学,2006年,pp.1-12.
    [119]张皓,续明进,杨梅,《高压大功率交流变频调速技术》,北京:机械出版社,2006年,pp.308-312.
    [120]U.尼古莱,T.雷曼,J.裴措尔,J.路兹,《功率模块应用手册》,香港:赛米控国际公司,2003年,pp.171-184.
    [121]张建军,“低感母线在变频器中的使用原理以及叠层母线的电气设计,”煤矿机电,pp.26-29,2001年第1期.
    [122]邓汉馨,郑家龙,《模拟集成电子技术教程》,北京:高等教育出版社,1994年,pp.113-125.
    [123]G.J.P.Dewez C.,Rambault L.,"Analysis and control of resonances in electrical networks associated with an active power filter," in Industrial Electronics.IEEE Stockholm(Sweden):IEEE,2005,pp.989-993.
    [124]史伟伟,蒋全,胡敏强,“串联型电力有源滤波器中低通滤波器的设计及参数优化,”中国电机工程学报,vol.21,pp.74-78,2001年.
    [125]武健,何娜,徐殿国,“三相并联有源滤波器输出滤波器设计方法研究,”电力电子技术,vol.38,pp.16-19,2004.
    [126]陈允平,丁凯,丁建军,“并联型有源电力滤波器与电网连接低通滤波器的设计,”电力系统自动化,vol.29,pp.65-68,2005.
    [127]唐欣,罗安,涂春鸣,“有源滤波器中输出滤波器的参数设计及优化,”电力电子技术,vol.39,pp.91-94,2005.
    [128]Y.M.Fukuda S.,"Design and characteristics of active power filter using current source converter," in Industry Applications Society Annual Meeting Seattle(U.S.A.):IEEE,1990,pp.965-970.
    [129]W.le Roux and J.D.van Wyk,"The effect of signal measurement and processing delay on the compensation of harmonics by PWM converters,"IEEE Transactions on Industrial Electronics,vol.47,pp.297-304,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700