椭圆型分布参数最优控制问题的数值算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布参数最优控制问题是用偏微分方程,或偏微分积分方程,或偏微分方程与常微分方程的耦合方程来描述的无限维控制系统。该类问题已广泛应用于航天技术、土木工程、生态系统、社会系统等工程技术领域。分布参数最优控制问题的数值算法研究是该领域的重要分支之一。目前,其数值算法主要是有限差分算法、多重网格方法、有限元算法和混合有限元方法等。本文主要研究椭圆型分布参数最优控制问题的混合有限元方法、边界元方法、有限元-边界元耦合方法以及多目标问题的最优均衡解方法。给出这些算法的理论证明、算法步骤和误差分析,并分别用算例验证这些算法。这些算法要么是目前算法中没有的,要么改进了目前已有的算法。本文主要成果如下:
     1.混合有限元算法
     给出双调和状态方程控制的边界最优控制问题的梯度型-混合有限元迭代算法。引入具有固支边界条件的共态方程,建立由状态函数和共态函数构成的最优性方程组。通过最优性系统发现,在最优性条件下边界上对应于共态方程的涡流函数恰好等于边界控制函数的某一倍数,这样自动产生了合适的梯度。基于此梯度建立梯度型混合有限元近似算法。该算法中共态方程涡流函数在边界上的迹映射至关重要。此外,给出了算法的局部误差估计,并用算例验证了算法。
     2.边界元算法
     在一定凸性条件下,建立了Helmholtz型状态方程控制的最优控制问题的最优性方程组。利用一阶必要性条件给出连续情形下的共轭梯度算法(CGM)。引进二维Helmholtz方程的高阶基本解序列,得到基于多重替换方法(MRM)的离散型共轭梯度-边界元迭代算法(CGM+MRBEM)。该方法优于现有的方法,因为充分利用了边界元方法的主要优势(实现降维)。此外,给出了CGM+MRBEM算法的局部误差估计,并以算例验证了算法的有效性。
     引进二维四阶Winkle地基上板弯曲问题的高阶基本解序列,给出四阶状态方程控制的分布型最优控制问题的共轭梯度-多重替换边界元算法(CGM+MRBEM)。基于算法的稳定性,得到其局部H~2模误差估计、L~2模误差估计以及L~∞模误差估计,并用算例验证之。
     3.有限元-边界元耦合算法
     提出求解二维稳态固体燃烧问题的分布型最优控制的有限元-边界元耦合算法,其状态方程为具有非线性指数项的边值问题。得到最优控制问题的一阶必要性条件。引进二维Laplace方程的基本解,导出最优性系统的边界积分方程。将非线性指数项作为一个整体构造区域函数的有限元近似构造一个格式简单规范的非线性方程组。由于区域积分核中不包含导数项,因此,如果能选择适当的有限元近似,区域积分中不会出现奇异积分,这给耦合方法带来极大的方便。最后,讨论耦合方法的误差估计,并给出算例。
     建立结构声学耦合系统的二次最优控制数学模型,其状态方程为满足相容边界条件和平衡边界条件的二维四阶Winkle地基上的板弯曲问题和三维Helmholtz方程的耦合问题。最优性方程组是耦合型的,其耦合不仅是三维Helmholtz方程对应的共态方程的Neumann边界条件的耦合,而且是弹性板方程对应的共态方程的荷载项之间的耦合。
     4.求解多目标问题Pareto最优解的最优均衡解方法
     引进求解多目标问题Pareto最优解的最优均衡值(或向量)和最优均衡解等概念,在某种凸性条件下,证明了最优均衡解集合是某些Pareto最优解的连通凸集。最优均衡解同时满足个体合理性和群体合理性。从整体而言,可得到一类优于Nash仲裁解的最优均衡解。证明了求解最优均衡解等价于求解一个单目标问题。最优均衡解方法是求解多目标问题Pareto最优解的新的、简单方法。最后,给出算例验证最优均衡解的有效性。
The distributed optimal control problems are the infinite-dimensional control systems governed by partial differential equations or partial differential-integral equations or coupling of partial differential equations and ordinary differential equations. These problems have been widely applied in many engineering technology such as space-flight technology, civil engineering, ecosystem and community system. The research of numerical algorithms for distributed optimal control problems is an important branch in the optimal control problems. At present, the numerical algorithms for distributed optimal control problems involve principally the finite difference technique, multi-grid method, finite element approximation and mixed finite element method. In this thesis, the numerical algorithms for distributed elliptic optimal control problems are mainly studied, which involve mixed finite element method, boundary element method, coupled method of finite element and boundary element and optimal equilibrium solution for solving the multi-objective control problems. The theoretic proof, algorithm organization and error analysis of these numerical algorithms are obtained and several test examples are presented to illustrate the results, respectively, in which we present some new algorithms or improve the best algorithms presently known. Main contributions are as following.
     1. Mixed finite element method
     A numerical iterative method based on mixed finite element method for optimal boundary control problem governed by bi-harmonic equation is presented. We introduce the costate equation with clamped boundary conditions, and develop the system of optimality equations consisting of state and costate function. Prom the optimality system we discover that the vortex function relative to the costate equation is just equal to some multiple of the control function on the boundary in the optimal sense, which automatically generate a suitable gradient. Based on the suitable gradient, a gradient-type optimization method using a mixed finite approximation is developed. In our algorithm, the trace of vortex function of costate equation on boundary plays a key role. Furthermore a local error analysis at every iterative for this method is given. We apply this algorithm to the solution of a test problem.
     2. Boundary element method
     An optimality system of equations for the optimal control problem governed by Helmholz-type equations is derived under some convexity conditions. By the associated first-order necessary optimality condition, we obtain the conjugate gradient method (CGM) in the continuous case. Introducing the sequence of higher-order fundamental solutions of Helmholtz equation in two dimensions, we propose an iterative algorithm based on the conjugate gradient-boundary element method using the multiple reciprocity method (CGM+MRBEM) for solving the discrete control input. This algorithm has an advantage over that of the existing literatures because the main attribute (the reduced dimensionality) of the boundary element method is fully utilized. Furthermore the local error estimates for this scheme are obtained, and a test problem is given to illustrate the efficiency of the proposed method.
     Introducing the sequence of higher-order fundamental solutions of fourth-order plate equations on Winkle foundation in two dimensions, an iterative algorithm based on the conjugate gradient method (CGM) in combination with the multiple reciprocity-boundary element method (MRBEM) is developed for the optimal control problem associated with the state equation governed by fourth-order elliptic boundary value problem. The local error estimates based on the stability of this scheme in the H~2 norm, L~2 norm and L~∞norm are obtained and a numerical example is given.
     3. Coupled method of finite element and boundary element
     The coupling of finite element and boundary element solution for the optimal control of the stationary solid fuel ignition model associated with the state equation governed the boundary value problem with the exponential nonlinearity term is investigated. The associated first-order necessary optimality condition is derived. Introducing the fundamental solution of Laplace equation, we develop the boundary integral equations for the optimality system. We look upon the exponential nonlinearity term as a unitary functions to constitute the finite element approximations for the domain functions, which can derive the system of nonlinear equations with the simple and regular format. Due to without the derived functions in domain integral kernels, there have not to appear any singular domain integral kernels if the finite element approximations in domain are suitably selected, which is to yield some of convenience to ours coupling method. Furthermore the error estimates and a numerical result are given.
     We are concerned with the mathematical model of quadratic optimal control of some structural-acoustic coupling problems. The state equation is a coupling problem of Helmholtz equation in three dimensions and fourth-order plate equations on Winkle foundation in two dimensions. The boundary conditions satisfy the equilibrium condition and the compatibility condition. It is shown that the optimality system of equations are not only coupled via the Neumann boundary condition of the costate equation concerning the Helmholtz equation but also coupled via the loading of the costate equation concerning the plate equation.
     4. Optimal equilibrium solution for solving the Pareto optimal solution of the multi-objective control problems
     Several new conceptions called optimal equilibrium value (or vector) and optimal equilibrium solution are introduced for solving the Pareto optimal solution of the multi-objective control problems. We proved that the set of all the optimal equilibrium solutions is a connected convex set consisting of some Pareto optimal solution under satisfying some convexity conditions. The optimal equilibrium solutions satisfy individual rationality and group rationality. One can obtain a kind of the optimal equilibrium solution, as a whole, superior to the conventional Nash' arbitration solution. We also prove that the optimal equilibrium solutions are equivalent to the solutions of a single objective control problem. By this result, a new and simple method is proposed for solving the Pareto optimal solution of the multi-objective control problems. Finally, Finally, a test problem is given to illustrate the efficiency of the optimal equilibrium solution.
引文
[1]钱学森、宋健,工程控制论(修订版),科学出版社,北京,1980.
    [2]J.L.Louns,Optimal control of systems governed by partial differential equations,Springer Verlag,Berlin,1971.
    [3]谷超豪,李大潜,沈玮熙.应用偏微分方程,北京,高等教育出版社,1993.
    [4]吴沧浦.最优控制的理论与方法,北京,国防工业出版社,2000.
    [5]张学铭,李训经,陈祖浩.最优控制系统的微分方程理论.北京:高等教育出版社,1989.
    [6]王康宁,最优控制的数学理论,北京,国防工业出版社,1995.
    [7]N.Hinze,A variational discretization concept in control constrained optimization:the linear-quadratic case,Comput.Optim.Appl,2005,30:45-61.
    [8]A.Borzi,K.Kunisch,A multigrid scheme for elliptic constrained optimal control problems,Comput.Optim.Appl,2005,31:309-333.
    [9]A.Borzi,K.Kunisch,The Numerical solution of the steady state solid fuel ignition model and its optimal control,SIAM J.Sci.Comp,2000,22:263-284.
    [10]K.Ito,K.Kunisch,Optimal control of the solid fuel ignition model with H~1-cost,SIAM J.Control Optim.2002,40:1455-1472.
    [11]E.Casas,M.Mateos,F.Troltzsch,error estimates for the numerical approxmation of boundary semilinear elliptic control problems,Comput.Optim.Appl,2005,31:193-219.
    [12]G.Avalos,I.Lasiecka,R.Rebarber,Boundary controllability of a coupled wave/Kirchoff system,Systems Control Lett.2003,50:331-341.
    [13]W.B.Liu,J.E.Rubio,Local convergences and optimal shape design,SIAM J.Control Optim.1992,30:49-62.
    [14] J.Sprekels, D.Tiba, A duality approach in the optimization of beams and plates, SIAM J.Control Optim. 1998, 37: 486-501.
    [15] W. B.Liu, P.Neittaanmaki, D.Tiba, Existence for shape optimization problems in arbitrary dimension, SIAM J.Control Optim. 2003, 41: 1440-1454.
    [16] A.Borzi, K.Kunisch, D.Y.Kwak, Accuracy and convergence properties of the finite difference multi-grid solution of an optimal control optimality system, SIAM J. Control Optim. 2003, 41 : 1477-1497.
    [17] M. Gunzburger , C. Trenchea , Analysis and discretization of an optimal control problem for the time-periodic MHD equations , J.Math. Anal. Appl. 2005, 308: 440-466.
    [18] A.French, J.T.King, Approximation of an elliptic control problem by the finite element method, Numer.Funct. Anal, 1991,12:299-314.
    [19] W. B.Liu, N.N.Yan, A posteriori error estimates for convex boundary control problems, SIAM.J.Numer.Anal, 2001, 39: 73-99.
    [20] W. B.Liu, N.N.Yan, Quasi-norm local error estimates for p-Laplacian, SIAM.J.Numer.Anal, 2001, 39:100-127.
    [21] W. B.Liu, N.N.Yan, A posteriori error estimates for distributed convex optimal control problems, Adv.Comput.Math, 2001, 15: 285-309.
    [22] W. B.Liu, N.N.Yan, A posteriori error estimates for a model boundary optimal control problems, J. Comput. Appl. Math, 2000, 120: 159-173.
    [23] R.Li, W. B.Liu, H. P.Ma, T.Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 2003, 41: 1321-1349.
    [24] R.Becker, H.Kapp, R.Rannacher, Adaptive finite element method for optimal control of partial differential equation: basic concept, SIAM J . Control Optim. 2000, 39: 113-132.
    [25] A.Schleupen, K.Maute, E.Ramm, Adaptive FE-procedures in shape optimization, Structural and Multidisciplinary Optimization, 2000, 19: 282-302.
    [26] M.D.Gunzburger, L.S.Hou, Finite-demensional approximation of a class of constraint nonlinear control problems, SIAM J . Control Optim. 1996, 34: 1001-1043.
    [27] W.B.Liu, D.Tiba, Error estimates in the approximation of optimization problems governed by nonlinear operators, Numer. Funct.Anal.Optim, 2001, 22: 953-972.
    [28] X. J. Chen, First order conditions for discretized nonsmooth constrained optimal control problems, SIAM J. Control Optim, 2004, 42: 2004-2015.
    [29] X. J. Chen, Finite difference smoothing solutions of nonsmooth constrained optimal control problems, Numer. Funct. Anal, and Optimiz, 2005, 26: 49-68.
    [30] E.Casas, M.Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, SIAM J. Control Optim, 2002, 40: 1431-1454.
    [31] Y.P. Chen and W.B.Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Inter. J.Numer. Anal. Model, 2006,3: 311-321.
    [32] A.M.Ramos, R.Glowinski, J.Periaux, Nash equilibria for the multiobjective control of linear partial differential equations, J.Optim.Theory Appl. 2002, 112: 457-498.
    [33] A.M.Ramos, R.Glowinski, J.Periaux, Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach, J.Optim.Theory Appl. 2002, 112: 499-516.
    [34] P.G.Ciarlet, P.A. Raviart, A mixed finite method for the bi-harmonic equation, in mathematical aspects of finite elements in partial differential equations, C.de Boor Ed., Academic Press, 1974, 125-145.
    [35] Y.D.Yang, J.B.Gao, Remarks on the Ciarlet-Raviart mixed finite element, Electron. Trans. Numer. Anal.,1996, 4:158-164.
    [36] K. Kulshreshtha, N. Nataraj , and M. Jung, A parallel mixed finite element implementation of fourth-order plate bending problems in distributed memory environments, Appl. Math. Comput,2005, 163(1):253-274.
    [37] D.J.Silvester, M.D.Mihajlovic, A black-box multigrid preconditioner for the biharmonic equation, Numer.Math, 2004,44: 151-163.
    [38] A.B.Andreev, R.D.Lazarov, M.R.Rachrva, Postprocessing and higher order convergence of the mixed finite element approximations of bi-harmonic eigenvalue problems, J.Comput. Appl. Math ,2005, 182 : 333-349.
    [39] M.R.Hanisch, Two-level additive Schwarz preconditioners for fourth-order mixed methods, Electron. Trans. Numer. Anal,2006 22: 1-16.
    [40] S. M. Mefire, Mixed finite element and boundary element approximation in 3D magnetostatics for computation of the magnetic induction, Appl. Math. Comput,2002, 125(2-3): 399-421.
    [41] Y. Kim , H. Huh, New rectangular mixed finite element method for second-order elliptic problems, Appl. Math. Comput,2002 ,127(2-3): 375-385.
    [42] H.M. Gu , X.N Wu, Alternating-direction iterative technique for mixed finite element methods for Stokes equations, Appl. Math. Comput, 2005 162(3):1035-1047.
    [43] D.Yang, Iterative schemes for mixed finite element methods with applications to elasticity and compressible flow problems, Numer. Math, 2002,83:177-200.
    [44] D.Boffi, C.Lovadina, Analysis of new augmented Lagrangian formulations for mixed finite element schemes, Numer. Math,1997, 75: 405-419.
    [45] Li Bingjie, Liu Sanyang. On gradient-type optimization method utilizing mixed finite element approximation for optimal boundary control problem governed by bi-harmonic equation.Applied Mathematics and Computation,2007,186:1429-1440.
    [46]C.A.Brebbia,The boundary element method for engineers,London,Penteeh Press,1978.
    [47]J.L.Zhu,The boundary integral equation method for solving the Dirichlet problem of a biharmonic equation,Mathematica Numerica Sinica,1984,6:278-288.
    [48]祝家麟.椭圆边值问题的边界元分析.北京:科学出版社,1991.
    [49]杨德全,赵忠生.边界元理论及应用,北京,北京理工大学出版社,2002.
    [50]余德浩,汤华中.微分方程数值解法.北京:科学出版社,2003.
    [51]余德浩.自然边界元方法的数学理论.北京:科学出版社,1993.
    [52]李荣华,冯果枕.微分方程数值解法.北京:高等教育出版社,1987.
    [53]李炳杰.具两组高阶基本解系列的MRM边界积分方程,应用数学学报,2000,23(4):534-542.
    [54]李炳杰.偏微分方程Δ~2u-sΔu+k~2u=0边值问题的MRM边界变分方程,应用数学学报,2002,25(4):660-665.
    [55]李炳杰,王希营,张欣.等值面边值问题的边界元解法,兰州大学学报,1998,34(4):13-19.
    [56]李炳杰,一类反应扩散方程的边界元分析.兰州大学学报,2000,36(4):16-19.
    [57]Ding Fang Yun,Ding Rui,Li Bing Jie,Multiple reciprocity method with two series of sequences of high-order fundamental solution for plate bending,Applied mathematics and mechanics,2003,24(12):1431-1440.
    [58]李炳杰.一类反应扩散方程的边界积分方程,空军工程大学学报,2000,1(3):90-92.
    [59]丁方允,丁睿,李炳杰,板弯曲问题的具有两组高阶基本解序列的MEM方法,应用数学与力学,2003,24(12):1431-1440.
    [60]李炳杰.一类非线性抛物型方程的边界积分公式,空军工程大学学报,2001,2(1):92-94.
    [61]李炳杰.方程Δu+k~2u=0的Dirichlet问题的多重替换MRM边界变分方程,空军工程大学学报,2003,4(5):92-95.
    [62]李炳杰.一类周期性热传导方程的边界元数值解法,陕西理工学院学报,2006,22(1):72-75.
    [63]李炳杰.一类四阶椭圆型微分方程边值问题的边界变分方程,延安大学学报,2001,20(1):21-24.
    [64]Li Bingjie,Liu Sanyang.Conjugate gradient-boundary element solution for distributed elliptic optimal control problems,Journal of Mathematical Analysis and Applications,2007,335(2),1219-1237.
    [65]Li Bingjie,Liu Sanyang.Conjugate gradient-boundary element solution using multiple reciprocity method for distributed elliptic optimal control problems,Submitted Computational Optimization and Applications.
    [66]李炳杰,刘三阳.基于边界元的分布参数最优控制共轭梯度算法,兰州大学学报,2006,42:140-146.
    [67]李炳杰,刘三阳.分布参数最优控制的边界元共轭梯度算法,系统科学与数学,2007,已录用。
    [68]李炳杰,刘三阳.固态燃料点火边界控制的有限元共轭梯度算法,应用数学学报(已录用).
    [69]李炳杰,刘三阳.时间最优控制的非线性规划,西安电子科技大学学报,2006,33(2):299-303.
    [70]L.Marin,L.Elliott,P.J.Heggs,D.B.Ingham,D.Lesnic,X.Wen,Conjugate gradient boundary element solution to the Cauchy problem for Helmholtztype equations,Comput.Mech,2003,31:367-377.
    [71]李正良,邓安福,双参数地基上板弯曲问题的边界积分方程,应用数学与力学,1992,13:633-643.
    [72]A.J.Nowak,C.A.Brebbia,Solving Helmholtz equation by boundary elements using multiple reciprocity method,In:G.M.Calomagno and C.A.Brebbia Eds,Computers and Experiments in Fluid Flow.CMP Southampton,(1989)265-270.
    [73]V.Sladek,J.Sladek,M.Tanaka,Multiple reciprocity method for harmonic vibration of thin elastic plates.Apple.Meth.Model.1993,17:486-476.
    [74]V.Sladek,J.Sladek,M.Tanaka,Boundary element solution of some structureacoustic coupling problems using the Multiple Reciprocity Method,Comm.Numer.Method.Eng.1994,10:237-248.
    [75]N.Kamiya and E.Andoh,Eigenvalue analysis by boundary element method:new developments,Eng.Anal.Bound.Elem,1993,16:203-207.
    [76]N.Kamiya and E.Andoh,Eigenvalue analysis by boundary element method,J.Sound vibration,1993,160:179-287.
    [77]N.Kamiya,E.Andoh,A note on multiple reciprocity method integral formulation for the Helmholtz equation,Comm.Numer.Method.Eng.1993,19:9-13.
    [78]Jia Zupeng,Wu Jiming,Yu Dehao.The Coupling Natural Boundary-Finite Element Method for Solving 3-D Exterior Helmholtz Problem,Mathematica Numerica Sinica,2001,23(3):257-268.
    [79]Yu Dehao,Jia Zupeng.Natural Integral Operator on Elliptic Boundary and The Coupling Method for an Anisotropic Problem,Mathematica Numerica Sinica,2002,24(3):375-384.
    [80]Du Qikui,Yu Dehao.Discretization of The Coupling of Finite Element and Boundary Integral and Its Error Analysis for Parabolic Initial Boundary Value Problem,Mathematica Numerica Sinica,1999,21(2):200-208.
    [81]J.Ortega and E.Zuazua.Generic simplicity of the spectrum and stabilization for a plate equation,SIAM J.Control Optim,2001,39(5):1585-1614.
    [82]R.W.Guy,M.C.Bhattacharya,The transmission of sound though a cavitybacked finite plate,J.Sound Vib.1973,27:207-223.
    [83]A.Sestieri,D.D.Vescovo,P.Lucibello,Structural-acoustic coupling in complex shaped cavities,J.Sound Vib.1984,96:219-233.
    [84]Li Bingjie,Liu Sanyang.The constrained quadratic optimal control of structural acoustic coupling problem and its optimality system,Submitted Systems Control Letters.
    [85]V.Pareto,cours d' Economie Politique,Rouge,Lausanne,Switzerland,1986.
    [86]J.L.Lions,Controle de Pareto de Systemes Distribues,Le Cas d' Evolution,Comptes Rendus de l' Academie des Sciences,Serie 1,1986,302:413-417.
    [87]J.F.Nash,Noncooperatives Games,Annals of Mathematics,1951,54:286-295.
    [88]Liu Y,Simaan M A,Non-inferior Nash strategies for multi-team systems.Journal of Optimization Theory and Applications,2004,120:29-51.
    [89]宫锡芳,最优控制问题的计算方法,北京,科学出版社,1979.
    [90]Giancarlo Bigi.On sufficient second order optimality conditions in multiobjective optimization,Mathematical Methods of Operations Research,2006,63(1):77-85.
    [91]E.Ahmed,M.F.Elettreby.On combinatorial optimization motivated by biology.Applied mathematics and computation,2006,172(1):40-48.
    [92]孟志青,胡奇英,胡毓达.群体决策问题的一种最优均衡解.系统科学与数学,2004,24(1):28-33.
    [93]Polgreen P M,Nash's arbitration scheme applied to a labor dispute,J.UMAP,1992,13:25-35.
    [94]J.L.Lions,Some Remarks on Stackeberg's Optimization,Mathematical Models and Methods in Applied Sciences,1994,4:477-487.
    [95]O.E.Emam.A fuzzy approach for bi-level integer non-linear programming problem,Applied mathematics and computation,2006,172(1):62-71.
    [96]张恭庆,林源渠.泛函分析讲义,北京,北京大学出版社,1987.
    [97]陈文源.非线性泛函分析,甘肃,甘肃人民出版社,1982.
    [98]应隆安.有限元方法讲义,北京,北京大学出版社,1988.
    [99]李开泰,黄艾香,黄庆怀.有限元方法及应用,西安,西安交通大学出版社,1984.
    [100]R.A.Adams,索伯列夫空间,叶其孝等译,北京,人民教育出版社,1981.
    [101]钱伟长.变分法及有限元,北京,科学出版社,1980.
    [102]吴迪光.变分法,北京,高等教育出版社,1980.
    [103]G.H.Golub,Matrix computations,Second Edition,The Johns Hopkins University Press,Baltimore,London,1989.
    [104]冯有前,王国正,李炳杰等.数值分析[M],北京,清华大学出版社,2004.
    [105]H.Schulz,O.Steinbach,A new a posteriori error estimator in adaptive direct boundary element methods.The Dirichlet problem.Calcolo,2000,37:79-96.
    [106]O.Steinbach,Adaptive boundary element methods based on computational schemes for Sobolev norms.SIAM J.Sci.Comput.2000,22:604-616.
    [107]B,Gao,N.Heuer,The Optimal Rate of Convergence of The p-Version of The Boundary Element Method in Two Dimensions,Numer.Math.2004,89:443-468.
    [108]T.Tran,E.P.Stephan,Additive Schwarz Algorithms For The p Version of The Galerkin Boundary Element Method,Numer.Math.,2000,85:443-468.
    [109]E.P.Stephan,The h-p boundary element method for solving 2- and 3-dimensional problems,Computer methods in applied mechanics and engineering,1996,133(2):183-208.
    [110]E.P.Stephan,Multilevel methods for the h-,p- and hp-versions of the boundary element method.J.Comput.Appl.Math,2000,125(4):503-519.
    [111]M.Ganesh,O.Steinbach,The numerical solution of a nonlinear hypersingular boundary integral equation.J.Comput.Appl.Math.2001,131:267-280.
    [112]M.Kuhn,O.Steinbach,Symmetric coupling of finite and boundary elements for exterior magnetic field problems.Math.Methods Appl.Sci.2002,25:357-371.
    [113]M.Jung,O.Steinbach,A finite element-boundary element algorithm for inhomogeneous boundary value problems.Computing,2002 68:1-17.
    [114]B.Reidinger,O.Steinbach,A symmetric boundary element method for the Stokes problem in multiple connected domains.Math.Methods Appl.Sci.2003,26:77-93.
    [115]G.J.Rodin,O.Steinbach,Boundary element preconditioners for problems defined on slender domains.SIAM J.Sci.Comput.2003,24:1450-1464.
    [116]李炳杰,周宏安,迟晓妮.多目标分层规划问题的最优均衡宽容序列算法,空军工程大学学报,2005,6(1):83-87.
    [117]李炳杰.一类多阶段决策模型的稳定解及最优调节策略,空军工程大学学报,2002,3(4):88-92.
    [118]梁晓龙,李炳杰.具有下层目标的多组线性二次微分对策的非劣Nash开环策略,空军工程大学学报,2006,7(1):87-91.
    [119]寇光兴,李炳杰,赵惠文.多人微分对策Pareto最优解的最优均衡值算法,空军工程大学学报,2006,7(3):82-84.
    [120]余国林,刘三阳,李炳杰.多组对策系统非劣Nash策略的最优均衡解算法,控制理论及应用,2007,已录用.
    [121]周宏安,李炳杰.基于相对隶属度的模糊信息的多目标决策法,陕西理工学院学报,2004,20(4):77-80.
    [122]Y.Collette,P.Siarry.Multiobjective optimization,Springer,2003.
    [123]李炳杰,尹忠海.多维优化问题的一个自适应两点步长算法,西安电子科技大学学报,2002,29(6):800-803.
    [124]周宏安,刘三阳,李炳杰.基于目标规划的相对优势度的区间数互反判断矩阵排除法,数学的实践与认识,2006,36,:63-67.
    [125]Li Bingjie,Liu Sanyang.An optimal equilibrium solution approach for bilevel nonlinear programming problem using LINGO software,Submitted Optimization Methods and Software
    [126]Li Bingjie,Liu Sanyang.A New Algorithm for N-Person Cooperative Game Problems,Submitted Soochow Journal of Mathematics.
    [127]杨珏,何旭洪等Mathematics应用指南,人民邮电出版社,1999.
    [128]谢金星,薛毅,优化建模与Lindo/Lingo软件,清华大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700