10kV系统并联补偿电容器组合闸过渡过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为分析10kV系统并联补偿电容器组合装置合闸时断路器故障的原因,对合闸的过渡过程进行深入的研究讨论,并采用电磁暂态仿真软件ATP-EMTP对过渡过程中过电压与过电流进行仿真计算与验证。本论文主要开展了以下工作:
     ①求解单相RLC串联二阶电路正弦激励下的全响应,利用解析解分析二阶电路中的参数(R、L和C)、合闸初相角等对合闸过渡过程的影响。研究发现合闸初相角是过渡过程出现较大过电流和过电压的重要因素;电路中L的减小会使得过渡过程的电路电流显著增大而电容电压略有减小,会使过渡过程时间略小。并利用ATP-EMTP电磁暂态仿真软件对上述结论进行验证。
     ②分析了并联补偿电容器组合装置中串联电抗间的耦合电感对合闸过渡过程的影响,建立了一个含耦合电感的三相二阶电路模型,通过对该电路进行等效解耦分析和ATP-EMTP仿真,得出了不同耦合情形的作用相当于使得回路等效电感值产生了不同的变化,从而因电感值的变化影响回路过渡过程的过电压和过电流,而且这个效应对电流的影响较为显著。
     ③分析了三相断路器合闸的不同期对投运并联补偿组合装置的合闸过渡过程的影响。建立了分析该不同期合闸的三相电路模型,在复频域定量分析不同期合闸过程中较高过电压的诱发机制,并利用ATP-EMTP进行仿真验证,研究发现不同期使得中性点电压产生偏移振荡,并由之使得电容对地过电压增加;而且不同期时间间隔越长,中性点偏移越大。研究还发现由于合闸的不同期导致的实际合闸相角的变化使得过渡过程可能出现较大的过电流。
     ④分析了真空断路器在合闸过程等效电阻对合闸过渡过程的影响。描述了合闸时断路器电阻的产生并对该电阻等效建模。并且在ATP中设计该等效电阻的仿真模型,建立ATP电路图进行仿真分析和定量计算,研究结果表明真空断路器的压缩行程的时间越长,阻尼作用越明显。
     综合研究上述研究得出:电路中存在的耦合电感、合闸的不同期等因素都可能会使过渡过程电容对地电压有所增大,但即使是极端情况也没有超过其绝缘配合值;而对过电流而言,变化较为灵敏,各因素均会使其有显著增大,而且持续时间较长。排除器件本身的因素外,断路器故障由过电流引起的可能较大。
To find out the reasons of the explosion of breakers while putting parallel compensation capacitor into operation in 10kV power system, transition process of closing has been studied and discussed in depth in this article. ATP-EMTP is used for simulating the transition process and verifying the conclusions. The following work has been carried out.
     Reanalyzed the symmetrical three-phase circuit which be used to study the transition of breakers closing. With solving the whole solution of differential which describe second-order RLC series circuit response to sinusoidal excitation, this article studied the second-order circuit parameters (R, L and C) and the early closing phase angle how to impact the transition process. Found that the decrease of L would make the current significantly increased while the voltage is slightly reduced in the transition process, at the same time the transition time will be slightly smaller. The early closing phase angle is an important factor in causing the over-current and over-voltage. And then, ATP-EMTP is used to verify the above conclusion.
     A new circuit model containing Three-phase coupled inductors is established to analyze over-voltage and over-current in the transition of closing three-phase circuit breaker. Through decoupling and Laplace and inversely transforming the circuit, the influence of mutual inductance and different inductor polarities on the process of transition is discussed. In this paper, ATP-EMTP Power System Simulation Software is employed into calculating the over-voltage and over-current with the actual parameters, and the transition process under different situation of decoupling the circuit is contrasted.
     A new circuit model is established to analyze the over-voltage and over-current while breakers asynchronous closing. By selecting a set of practical operation 10kV system parameters and taking numerical solution to it, cause of the higher over-voltage and over-current in the transition of asynchronously closing is investigated. This paper simulated and analyzed the circuit with the ATP-EMTP simulation software and obtained a series of over-voltage and over current actual waveforms. The paper summarizes the law how breakers-closing interval and the value of capacitance and inductance impacted on the transition.
     Described the production of circuit breaker resistance, the equivalent model of resistance is established to study the role of which to the transition of closing. A new method to simulation the equivalent resistance designed in ATP-EMTP, simulated three phase circuit and got the conclusion that the longer the compression process, the more significant damping effect.
     In summary, the paper summarizes the following conclusions. Both coupled inductors and breakers asynchronous closing could increase the voltage, even in extreme cases did not exceed the insulation with the setting value. In terms of the over-current, the change is more sensitive. It appears much higher current, up to 6 times of the steady state. Therefore, Breaker failure is more likely caused by the over-current.
引文
[1] T.J.E.米勒主编,胡国根译,何仰赞校.电力系统无功功率控制[M].北京:水利电力出版社,1996.
    [2]苏文成,金子康等.无功补偿与电子技术[M].北京:机械工业出版社,1989.
    [3]张婉琳,蒋松辉.无功补偿对节能的意义[J].应用能源技术,2007 (1):39-41.
    [4]姜宁,王春宁,董其国.无功电压与优化技术问答[M].北京:中国电力出版社,2006.
    [5]钱家郦,张节容等.高压开关开合电容电流合小电感电流[M].北京:中国电力出版社,1999.
    [6]苑舜.真空断路器开断与关合不同负载时的操作过电压[M].北京,中国电力出版社,2001.
    [7]张伟强,杨小平,李建英,李盛涛.浪涌保护器的发展动向[J].电磁避雷器,2001,NO.4:29~33.
    [8]吴茂林.真空开关切除容性和感性负载过电压的研究[D].保定:华北电力大学硕士学位论文,1999.
    [9]李志兵.真空开关操作过电压的研究[D].保定:华北电力大学硕士学位论文,2001.
    [10]方瑜.配电网过电压[M].北京:水利电力出版社.1994.
    [11]陈维贤.内部过电压基础[M].北京:水利电力出版社,1981.
    [12]解广润.电力系统过电压[M].北京:水利电力出版社,1985.
    [13]吴维韩,张芳榴等.电力系统过电压计算[M].北京:科学出版社,1989.
    [14] H.W.Dommel著,李永庄,林集明等译.电力系统电磁暂态计算理论[M].北京:水利电力出版社,1991.
    [15]刘强,张元芳,张晓冬.过电压在线监测数据采集的研究[J].高压电器,2002,38(6):43-45.
    [16]杨秀,鲁铁成.配电网内部过电压在线监测装置的研制[J].广西电力技术,2001,(2):1-3.
    [17]蔡光显,王建兴.电力系统过电压在线监测装置[J].电网技术,1995,19(1):9-13.
    [18] A. J. Schultz, I. B. Johnson, N. R.Schultz. Magnification of Switching Surges [J]. IEEE Transactions on Power Apparatus and System, Vol.77, February 1959:1418-1425.
    [19] S. S. Mikhail, M. F. McGranaghan. Evaluation of Switching Concern Associated with 345kV Shunt Capacitor Applications [J]. IEEE Transations PAS, Vo 1 .106, No. A, April 1986:221-230.
    [20] E. K.Sadler, T. M. Blakeslee. Resistors For 138kV Cable Switching[J]. IEEE Transaction PAS,vol.66, 1947:39-45.
    [21] A.W.Funkhouser, R.C.Van Sickle, D.F.Shankle. Switching High-Voltage Shunt CapacitorBanks[J]. Ibid, vol. 70, pt i, 1951: 129-137
    [22] E.C.Starr, E.J.Harrington, Shunt Capacitor in Large Transmission Networks[J]. Ibid, vol.72, pt. iii,Dec. 1953:22-24
    [23] M. F. McGranaghan and R. F. Gustin, Transients witching Studies for EHV Shunt Capacitor Applications on the PJM System [A]. Pennsylvania Electric Association Conference, Lancaster, PA, September 14, 1982.
    [24] I.B. Johnson, J. Berdy, Magnification of Switching Overvoltages in Coupled oscillatory Circuits[J]. General Electric Review Schene, Dec 1950,Vol.53: 22-24.
    [25] R. C. VanSickle, J. Za borszky, Capacitor Switching phenomena[J]. IEEE Transactions PAS,Vol.70, 1951:151-158.
    [26] R. F. Gustin, M. F. McGranaghan, C. G. Toredsson, et al.Magnification of Switching Surges as a Result of Capacitor Switching on a 34.5kV Distribution System[A]. American Power Conference, Chicago, April 1984
    [27] IEEE Working Group on Power System Harmonics, Power System Harmonics:an overview[J]. IEEE Transactions on Power Apparatus and System,vol.PAS-102, No.8, Aug. 1983: 2455-2459.
    [28] J.F.Fuller, E.F.Fucks and D.J.Roesler,Influence of Harmonics on Power Distribution System Protection[J]. IEEE Trans. Power Delivery, vol.3, No.2, Apr. 1988: 549-557.
    [29] A.Greenwood, Electrical Transients in Power Systems [M]. New York: Wiley, 1985.
    [30] M.F.McGranaghan,W.EReid,S.W.Law.Overvoltage Protection of Shunt Capacitor Banks Using MOV Arresters[J]. IEEE Transactions PAS,vol.104,no.8, August, 1984:2326-2336.
    [31] R.W.Alexander, Synchronous Closing Control for Shunt Capacitors[J].IEEE Transactions PAS,vol.104, no.9, September, 1985:2619-2626.
    [32] Meng T.Lin X, Xu J Y. The effect of GIS apparatus parameter on very fast transient over-voltage[C]. IEEE International Conference on High Voltage Engineering and Application. Chongqing. 2008:292-295.
    [33] Brunke, J. H and Schockelt,G.G.,Synchronous Energization of Shunt Capacitors at 230kV,presented at the IEEE PES Winter Meeting in NewYork,Jan.29-Feb.3, 1978.
    [34] Konkel, H.E.,Legate, A.C. and Ramberg, H. C, Limiting Switching Surge Overvoltage swith Conventional Power Circuit Breakers[J]. IEEE Transactions on Power Apparatus and System,vol.PAS, Mar. /Apr. 1977, 535-541.
    [35] Dawn M.Dunsmore, Edgar R.Taylor, Bernard F.Wirtz, et a. Magnification of Transient Voltages in Multi-Voltage-Level[J]. Shunt-Capacitor-Compensated, Circuit, IEEE Transactions on Power Delivery,vol.7, no. 2, April, 1992:664-673.
    [36] H.M.Pflanz and G.N.Lester. Control of Overvoltages on Energizing Capacitor Banks[J]. IEEE Transactions. PAS, vol. 92, no. 3, May-June, 1973:907-915.
    [37] E.W.Boehne and S. S. Low, Shunt Capacitor Energization With Vacuum Interrupters-A Possible Source of Overvoltage [J]. IEEE Transactions PAS,vof .88,no.9, September, 1969:1424-1443.
    [38]王秉钧.金属氧化物避雷器[M].北京:水利电力出版社,1993.
    [39]倪学锋,盛国钊,史班.关于并联电容器过电压保护方式的分析[J].电力电容器,1997,NO.4:26-35.
    [40]谢书勇.真空断路器操作过电压的保护装置—阻容保护器[J].高压电器,1997,NO.6:15-18.
    [41]梁毓锦.金属氧化物非线性电阻在电力系统中的应用[J].北京,中国电力出版社,1997.
    [42]交流无间隙金属氧化物避雷器[S].中华人民共和国国家标准GB11032-2000,2000.
    [43]马仁明.ATP-EMTP程序的使用说明[ R ].武汉高电压研究所科学技术报告,1991.
    [44] Atpdraw Version For Windows Users' Manual, SINTEF Engergy Rerearch,2002.
    [45] ATP Rule Book, Canadian/American EMTP User Group, 1987~1992.
    [46]中华人民共和国国家标准.GB50227-95并联电容器装置设计规范[S].1995-12-25发布, 1996-07-01实施.
    [47]中国工程建设标准化协会标准.CECS32-91并联电容器用串联电抗器设计选择标准[S].1991-12-27批准.
    [48]中华人民共和国电力行业标准.DL462-92高压并联电容器用串联电抗器订货技术条件[S].1992-04-22发布,1992-11-01实施.
    [49]邱关源.电路第4版[M].北京:高等教育出版社,1999.
    [50]交流电气装置的过电压保护和绝缘配合[S].中华人民共和国电力行业标准DL/T.620-1997.
    [51]史班,周国良等.降低并联电容器极间过电压的新型保护装置[J].高电压技术,2000.NO.1:32-34
    [52]苑舜.不同载荷下真空开关操作过电压保护方式选择的分析[J].东北电力技术,1997,NO.1:1-7.
    [53]王永强.电容器组的L-R保护方法[J].供用电,2002,5:28-31.
    [54]汪金山.正弦激励下RLC串联二阶电路暂态过程的研究[J].哈尔滨理工大学学报,1999(1):93-96.
    [55]牛晓民,施围,王其平.电磁暂态计算中MOA的线性和非线性混合模型[J].西安交通大学学报,1998,NO.8:8-11.
    [56]贺建国,施围,魏旭,李长益.阳城—三堡输电工程中串联补偿电容器组技术条件的研究[J].电磁避雷器,2001,NO.2:26-31.
    [57]杨钢,张艳霞,陈超英.电力系统过电压计算及避雷器的数字仿真研究[J].高电压技术,2001,NO.3:64-66.
    [58]翁利民,张莉,龙翊,陈辉.电力滤波兼无功补偿装置的过电压保护的有效措施[J].高压电器,2000,NO.2:52-54.
    [59]孙西江.电缆为主的10KV配电网中的MOA的应用[D].北京:电力部电力科学研究院硕士学位论文,1997.
    [60]刘志远,王季梅,苑舜.真空灭弧室开断交流电流的物理过程和开断能力的数学评估[J].高压电器.1999,NO.1:7-10.
    [61]刘卫东.真空开关中小电感电弧不稳定性的实验研究[D].北京:清华大学博士学位论文,1985.
    [62]李震彪,邹积岩等.真空触头材料截流能力判据研究[J].中国电机工程学报,1995,NO.9:328-332.
    [63]刘志远,王季梅等.真空灭弧室开断交流电流的物理过程和开断能力的数学评估[J].高压电器,1999,NO.1:7-10.
    [64]李庆扬.常微分方程数值解法[M ].北京:高等教育出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700