车用发动机混合涡轮增压系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增压系统是车用发动机中实现节能和环保目的的重要部件。针对车用发动机与涡轮增压器存在的稳态工况和瞬态工况匹配问题,涌现出越来越多的增压技术,包括旁通放气、涡轮流通面积调节、相继增压和混合涡轮增压等。混合涡轮增压技术是近年来备受发达国家青睐的一种能较好解决传统增压方案固有缺陷的新型技术,其原理是在涡轮增压器转轴上集成一个既能电动又能发电的高速电机,具有重要的研究价值。
     按照轻型车用增压柴油发动机的匹配要求,对增压发动机废气能量的定性分析可以得到增压系统废气能量分析模型。在废气能量分析模型基础上提出了混合涡轮增压系统控制模型。在这种控制模型中电机通过制动发电或电动驱动来及时调节增压系统的废气能量,从而改善增压发动机的特性。确定控制模型后就需要对混合增压系统的总体布置方案进行探讨,为建模分析与设计打下基础。
     模拟计算是发动机设计的有效工具,因此需要建立涡轮增压发动机数值模型。根据发动机边界条件和各个部件的热力学模型建立了废气旁通增压发动机计算模型,并通过试验检验数值模型的有效性。
     通过修改普通增压柴油机模型中的增压系统部分可以得到混合涡轮增压柴油机计算模型,并用于发动机稳态工况的仿真分析。利用模型计算得到了混合涡轮增压系统的能量调整策略,并对增压系统参数优化和排气提前角调整进行了研究。混合涡轮增压系统能量流的分析对合理分配增压系统能量份额和改善增压系统的性能具有重要意义。采用GRNN神经网络映射表明这种方法适合稳态工况下混合增压系统的映射预测控制。
     瞬态工况是增压发动机的一个重要研究领域,因此本文通过建立混合涡轮增压系统的瞬态模型仿真分析了增压系统关键参数调整对瞬态工况的影响,并采用模糊PID控制技术对混合涡轮增压系统模型进行控制效果仿真。仿真结果证实了本文进行的参数调整以及模糊PID控制都有利于混合增压系统瞬态特性的改善。
     在仿真计算确定主要结构参数后就可以对混合涡轮增压系统的零部件结构进行设计。把系统分为转子、轴承、密封、冷却水腔以及电机等几个部分,对各个部分分别进行详细设计,并最终设计出虚拟样机。对具体结构参数已经确定的混合涡轮增压系统,可以利用有限元分析方法对转子的临界转速振动情况进行计算。振动计算结果可以检验结构设计的合理性,并为试验台试验和装配发动机提供有用的数据。
     为了了解样机的性能,采用气动试验台作为试验装置对新研制的混合涡轮增压系统进行了各项试验,包括轴系振动试验、等压气机流量试验、机械效率试验、加速试验、热负荷试验以及烟度排放特性试验。试验初步证实了新设计的增压系统是可行的,为以后的工程推广提供了实践基础。
Turbocharging system is a necessary accessory of vehicle engine for energy-saving and environmental protection.To solve the matching problem of steady and transient operating conditions between the turbochargers and the engines, many turbocharging technologies are emerging. These techniques include waste-gated turbocharging, variable geometry turbocharging, sequential turbocharging and hybrid turbocharging, etc. In recent years, hybrid turbocharging is a favored new technology in several developed countries, which can effectively solve the inherent shortcomings of traditional turbocharging. The hybrid turbocharging system consists of a turbocharger with a high speed electronic motor integrated into the turbocharger shaft, and an energy storage device. The project of hybrid turbocharging system has very important technical and economic research value.
     According to matching requirements of light vehicle diesel engine, the analysis model of exhaust gas energy is obtained through qualitative analysis of exhaust gas energy in turbocharged diesel engine. The control model of hybrid turbocharging system in steady engine condition is achieved on the basis of the analysis model. In this control model high speed motor can adjust the exhaust gas energy to improve the performance of engine by motor driving or braking. Then the overall layout of the system is examined, which can lay the foundation for simulation and design.
     Simulation is an effective means of engine design, therefore the numerical model of turbocharged engine is necessary to establish. The model of wastegated turbocharged diesel engine is set up by the boundary conditions and the thermodynamic models of various engine components, then experiments validate the rationality of numerical model.
     The numerical model of hybrid turbocharged diesel engine is obtained by modifying the turbocharging system of wastegated turbocharged diesel engine. Then the numerical model is used to simulate the steady condition of engine. The adjusting strategy for exhaust gas energy of hybrid turbocharged diesel engine can be obtained through simulation. The further research is carried out on parameter optimization of the turbocharging system and adjustment of the advanced exhaust angle. Analysis of energy flow is of great significance to properly distribute the energy share and improve the performance of the turbocharging system. Mapping with the GRNN neural network manifests that this method is appropriate to mapping control of hybrid turbocharging system in the steady condition of engine.
     Transient condition is an important area of research on turbocharged engine, so this dissertation establishes the transient model of hybrid turbocharging system, and analyzes the transient performance for hybrid turbocharging system about various parameters by simulation, then simulates the transient performance with fuzzy PID control. The simulation results confirm that the measures about the adjustment of parameters and fuzzy PID control can improve the transient characteristics of hybrid turbocharging system.
     The next research process is to design the component structure of hybrid turbocharging system when the main structural parameters have been determined by simulation. The system design is divided into the part of rotor, bearings, seals, cooling jacket and electrical motor, etc., and ultimately a virtual prototype has been designed. The calculation of the rotor vibration in critical speed can be performed by finite element analysis when the detailed parameters of the structure are determined. The calculation results of critical vibration can confirm that the structural design is reasonable, and will provide useful data for later test and engine matching.
     In order to obtain the performance of prototype, the newly developed hybrid turbocharging system is experimented in a pneumatic test bed. These experiments include the shaft vibration test, the compressor equal flow rate test, mechanical efficiency test, acceleration test, thermal load test and smoke emission test. Preliminary experiments confirm that the new design of the hybrid turbocharging system is feasible, and the experiments provide a practical basis for the future promotion of the project.
引文
[1]陈家瑞.汽车构造(上)[M].北京:人民交通出版社,2006:2-3.
    [2]中国汽车工程学会.车辆工程学科发展报告:2007-2008[M].北京:中国科学技术出版社,2008:37,116.
    [3]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002:317~319.
    [4]周龙保,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,1999:362.
    [5]陆家祥.柴油机涡轮增压技术[M].北京:机械工业出版社,1999:3-10.
    [6]晓青.增压技术是现代车用发动机的必然选择[J].商用汽车,2003(12):68~69.
    [7]吴殿杰.国内外汽车涡轮增压器生产现状及发展趋势[J].汽车研究与发展,1997(2):7-12.
    [8]杨奠境,宋蛰存.涡轮增压系统的现状和电控趋势[J].林业机械与木工设备,2003,32(1):7-10.
    [9]张俊红,李志刚,王铁宁.车用涡轮增压技术的发展回顾、现状及展望[J].小型内燃机与摩托车,2007,36(1):66~69.
    [10]张晋东,李洪武.车用柴油机涡轮增压技术的新发展[J].车用发动机,2002(1):1-4.
    [11]杨树森.新型废气涡轮增压器设计特点分析[J].航海技术,2004(3):61~62.
    [12]Chang Sik Lee, Nag Jung Choi. Effect of air injection on the characteristics of transient response in a turbocharged diesel engine[C]. International Journal of Thermal Sciences 41,2002:63~71.
    [13]陆彝,闻雪友.注汽涡轮增压柴油机的试验研究[J].热能动力工程,2005(1):76~79.
    [14]张雨松,尹琪,邬静川.补气改善公交柴油车急加速烟度研究[J]内燃机工程,2002(1):53~55.
    [15]陈鑫凯,赵长禄,张付军,等.旁通补燃系统改善柴油机外特性的仿真研究[J].内燃机工程,2006(6):36~38.
    [16]常思勤.汽车动力装置[M].北京:机械工业出版社,2006:66~67.
    [17]朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社,1992:433~434.
    [18]Peter Came. Holset公司关于涡轮增压技术方面可行的新设计理论[J].柴油机,1992(3).
    [19]J. L. Harp etc. Development of a Broad Range Turbocharger using Compressor-to-Turbine Bleed[C]. SAE 820327.
    [20]谭幼林.高速车用柴油机新型增压系统的研究[D].武汉:武汉汽车工业大学,2000.
    [21]杨世友,顾宏中,郭中朝.柴油机涡轮增压系统研究现状与进展[J].柴油机,2001(4):1-5.
    [22]吕伟.可调涡轮增压器(VGT)控制技术的研究[D].北京:中国农业大学,2003.
    [23]R S Wijetunge, J G Nawley, N D Vaughan. An exhaust pressure control strategy for a diesel engine[C]. UK:IMechE,2004:449-464.
    [24]郁秀峰,刘兴华,韩秀坤,等.可变几何废气涡轮增压器(VGT)的控制系统研究[J].兵工学报,1995(2):41~46.
    [25]王军秋,王延生,刘毅,等.电控可变几何涡轮增压器与J6110Z柴油机匹配性能研究[J].车用发动机,1995(3):6-10.
    [26]马朝臣,朱庆,杨长茂,等.涡轮调节方式对增压柴油机匹配性能的影响[J].内燃机学报,2000,18(2):165~167.
    [27]孙万臣,韩永强,刘忠长,等.可变喷嘴涡轮增压器对车用柴油机瞬态性能的影响[J].汽车工程,2006(2):122~124.
    [28]牛志明.可变喷嘴涡轮增压器喷嘴截面积对车用柴油机的影响[D].长春:吉林大学,2004.
    [29]赵佳佳,刘忠长,牛志明,等.可变喷嘴涡轮增压器电控系统设计[J].汽车工程,2006(2):122~124.
    [30]赵佳佳.可变喷嘴涡轮增压器电控系统开发[D].长春:吉林大学,2004.
    [31]陆家祥,王仁人.双舌形挡板变截面涡轮(VGT)的研究[J].内燃机学报,1999(1):75~78.
    [32]张汝坤.可变涡轮增压技术及其试验研究[J].汽车技术,2000(2):17~19.
    [33]张汝坤.双叶片整体式轴向移动可变喷嘴增压器的研究[J].云南农业大学学报,1999(1):66~71.
    [34]龚振青,周明,李希浩,等.车用柴油机可变截面涡轮增压器控制系统研究[J].汽车工程,2000(2):279~282.
    [35]王恩华,周明,李建秋,等.基于PIC单片机的变喷嘴涡轮增压器电控系统设计[J].内燃机工程,2001(4):25~29.
    [36]杨艳晓.电子辅助涡轮增压系统研究[D].哈尔滨:东北林业大学,2004.
    [37]Wallace F. J., etc. Very High Output Diesel Engines-A Critical Comparison of Two Stage Turbocharged, Hyperbar and Differential Compound Engines[C]. SAE 770756.
    [38]Krebs R., etc.采用汽油直接喷射和两级增压的Volkswagen新型汽油机[J].国外内燃机,2007(3).
    [39]魏名山,季凯,马朝臣.车用柴油机的二级增压[J].汽车技术,2005(1):25~28.
    [40]Homas Kattwinkel, etc. Mechatronic Solution for Electronic Turbocharger[C]. SAE 2003-01-0712.
    [41]王伟才,王银燕,张鹏奇,等.带有进排气旁通的相继增压柴油机的计算分析[J].内燃机工程,2007(4):72~75.
    [42]张哲,王希波,邓康耀.相继涡轮增压系统对D6114型柴油机性能的影响[J].农业机械学报,2008(5):30~35.
    [43]张克松,王桂华,李国祥.电辅助涡轮增压技术的发展综述[J].内燃机与动力装置,2008(2):31~35.
    [44]Houshun Zhang, Milton Bailey. Electrically-Assisted Turbocharger Development for Performance and Emissions[R]. Summary of CRADA:1996-2000.
    [45]Steve Arnold,Craig Balis,Pierre Barthelet. Garrett Electric Boosting Systems (EBS) Program Final Report[R]. Honeywell Turbo Technologies,2005,6.
    [46]S.M. Shahed. Honeywell/Garrett Engine Boosting Systems[R]. Honeywell Turbo Technologies,2006,9.
    [47]Dennis Thoren.先进涡轮增压对乘用车及重型车柴油机发展的影响[R].Honeywell Turbo Technologies,2006,7.
    [48]Hopmann U, Algrain M C.柴油机电涡轮复合技术[J].国外内燃机,2007(1):46~50.
    [49]Marcelo Algrain. Controlling an electric turbo compound system for exhaust gas energy recovery in a diesel engine [A]. In:2005 IEEE International Conference on Electro Information Technology [C]. Lincoln, USA,2005,1627004.
    [50]T. Katrasnik, S. Rodman, F. Trenc, A. Hribernik, V. Medica. Improvement of the Dynamic Characteristic of an Automotive Engine by a Turbocharger Assisted by an Electric Motor[J]. Transactions of the ASME-Journal of Engineering for Gas Turbines and Power,2003,125:590~595.
    [51]Tomaz Katrasnik, Vladimir Medica, Ferdinand Trenc. Analysis of the dynamic response improvement of turbocharged diesel engine driven alternating current generating set[J]. Energy Concersion & Management,2005,46:2838~2855.
    [52]Tomaz Katrasnik, Ferdinand Trenc, Vladimir Medica, Stojan Markic. An Analysis of Turbocharged Diesel Engine Dynamic Response Improvement by Electric Assisting Systems [J]. Journal of Engineering for Gas Turbines and Power,2005,12(46):918 ~926.
    [53]Y Yamashita, S Ibaraki and H Ogita. Development of electrically assisted turbocharger for diesel engine [A].8th international conference on turbochargers and turbocharging [C]. UK:IMechE,2006:147~155.
    [54]Noguchi, Takata, Yamashita, Komatsu, Ibaraki.220,000-r/min,2-kW Permanent Magnet Motor Drive for Turbocharger [J]. Electrical Engineering in Japan,2007,11 (61):31~40.
    [55]F. Millo, etc. The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines[R].2005 Deer Conference, Chicago, USA.
    [56]Owen Ryder, Herbert Sutter, Laurentius Jaeger. The Design And Testing Of An Electrically Assisted Turbocharger For Heavy Duty Diesel Engines[A].8th International Conference on Turbochargers and Turbocharging, London, UK.2006:157~166.
    [57]J.R. Bumby, E. Spooner and M. Jagiela. Equivalent circuit analysis of solid-rotor induction machines with reference to turbocharger accelerator applications [C]. IEE Proc.-Electr. Power Appl,2006,1(153):31~39.
    [58]F. Millo, etc. The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines[J]. SAE:2006-01-0437.
    [59]Anthony Greszler. Improving the Fuel Economy of Heavy-Duty Fleets Ⅱ:Diesel Turbo-compound Technology [R].2008 CleanTECH, San Diego, USA.
    [60]Carl T. Vuk. Electric Turbo Compounding-A Technology Who's Time Has Come [R]. 2006 CleanTECH, San Diego, USA.
    [61]Ilya Kolmanovsky, Anna G. Stefanopoulou. Evaluation of Turbocharger Power Assist System Using Optimal Control Techniques[C]. SAE 2000:2000-01-0519.
    [62]赵子亮,李骏,刘明辉,等.CA6100SH8并联混合动力客车工作模式与功率分配研究[J].汽车工程,2007,29(8):664~668.
    [63]Szumanowski A. Fundamentals of Hybrid Vehicle Drives[M]. Warsaw, Poland, Warsaw-Radom Press,2000:1-24.
    [64]钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987:1-20.
    [65]张俊红,王铁宁.EAT技术发展前瞻[J].小型内燃机与摩托车,2007,36(4):93~96.
    [66]Panting J., Pullen K.R., Martinez-Botas R.F. Turbocharger motor-generator for improvement of transient performance in an internal combustion engine [A]. Proceedings of the Institution of Mechanical Engineers, Part D (Journal of Automobile Engineering) [C]. UK,2001:369~383.
    [67]林杰伦.内燃机工作过程数值计算[M].西安:西安交通大学出版社,1986:4-6.
    [68]宋守信.内燃机增压技术[M].上海:同济大学出版社,1993:104-107.
    [69]张文平,张志华,马强.大气环境下柴油机尾排气管口边界条件及声辐射[J].内燃机学报,1995,13(2):197~202.
    [70]朱访君,吴坚.内燃机工作过程数值计算及其优化[M].北京:国防工业出版社,1997:88~89.
    [71]刘永长.内燃机热力过程模拟[M].北京:机械工业出版社,2001:23-30,203~210.
    [72]严家脲.工程热力学[M].北京:高等教育出版社,2006:19~20.
    [73]Hu, X.. An Advanced Turbocharger Model for the Internal Combustion Engine[D]. USA: Purdue University,2000.
    [74]童毅.并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学,2004.
    [75]赵付舟,常思勤.混合增压柴油机废气能量调整策略的仿真及分析[J].内燃机学报,2008,26(2):173~178.
    [76]沈权.内燃机增压技术[M].上海:中国铁道出版社,1990:129~130.
    [77]赵付舟,常思勤.混合增压柴油机增压系统参数模拟计算研究[J].南京理工大学学报,2009(10):560~564.
    [78]周泉.交流发电机和起动机的轻量化与节油[J].汽车电器,2003(1):59~61.
    [79]刘炽棠.内燃机原理[M].上海:上海交通大学出版社,1996:19-20.
    [80]曾小华,王庆年,李骏,等.混合动力汽车多途径节能定量研究[J].汽车工程,2007,29(9):739~744.
    [81]FY 2006 Progress Report for Advanced Combustion Engine Technologies [R]. Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies, 2006(12):16.
    [82]易纲.液驱混合动力车辆控制系统研究[D].南京:南京理工大学,2007.
    [83]徐天蜀,章皖秋,岳彩荣,等.基于径向基网络模型的森林生物量估测[J].西北林学院学报,2008,23(3):72~76.
    [84]李国勇.智能控制与MATLAB在电控发动机中的应用[M].北京:电子工业出版社,2007:165~166.
    [85]王忠恕,吴楠,许允,等.增压直喷柴油机瞬态工况燃烧参数的变化规律[J].内燃机学报,2007,25(5):385~389.
    [86]蒋德明,陈长佑,杨嘉林,等.高等车用内燃机原理[M].西安:西安交通大学出版社,2006:224~225.
    [87]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005:313~315.
    [88]潘立登.过程控制[M].北京:机械工业出版社,2009:119~121.
    [89]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005:256~258.
    [90]窦振中.模糊逻辑控制技术及应用[M].北京:北京航空航天大学出版社,1995:156~157.
    [91]王沫然.Simulink 4建模及动态仿真[M].北京:电子工业出版社,2002:114~128.
    [92]钟日铭.中文版Pro/ENGINEER Wildfire 2.0工业产品设计[M].北京:兵器工业出版社,2005:382.
    [93]顾家柳,丁奎元,刘启训,等.转子动力学[M].北京:国防工业出版社,1985:96~97.
    [94]吴宗泽.机械设计师手册[M].北京:机械工业出版社,2002:1583~1584.
    [95]南江.TH5650立式加工中心电主轴的热分析[D].昆明:西南林学院,2006.
    [96]索左曼罗夫斯基.混合电动车辆基础[M].北京:北京理工大学出版社,2001:120~121.
    [97]王凤翔.高速电机的设计特点及相关技术研究[J].沈阳工业大学学报,2006,28(3):258~264.
    [98]黄允凯,余莉,胡虔生.高速永磁电动机设计的关键问题[J].微电机,2006,39(8):6-9.
    [99]J. R. Bumby, E.S.Spooner etc. Electrical machines for use in electrically assisted turbochargers[A]. Second International Conference on Power Electronics, Machines and Drives, PEMD 2004[C]. UK, IEE Conf Publ:344~349.
    [100]Mehrdad Ehsani.现代电动汽车、混合动力电动汽车和燃料电池车-基本原理、理论和设计[M].北京:机械工业出版社,2008:137~138.
    [101]黄若,葛新滨,马朝臣.车用球轴承涡轮增压器临界转速分析[J].车用发动机,2007,12(6):76~79.
    [102]Al Zahawi B A T, James B P, Starr F. High speed turboalternator for domestic combined heat and power unit[C]. EMD97:IEEE,1997.
    [103]袁玉和.车辆用涡轮增压器[M].北京:国防工业出版社,1990:186~197.
    [104]无锡动力机厂.涡轮增压器[M].北京:机械工业出版社,1974:76~79.
    [105]张俊跃.拓宽高压比压气机流量范围研究[D].北京:北京理工大学,2004:35-36.
    [106]李勤.现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998:90~91.
    [107]程至远,解建光.内燃机排放与净化[M].北京:北京理工大学出版社,2000:5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700