乳酸杆菌在宫颈癌发病中作用及其增强树突状细胞疫苗抗肿瘤机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宫颈癌是目前常见的妇科恶性肿瘤之一,其发病率逐年升高,并且逐渐年轻化。宫颈癌是人乳头瘤状病毒(Human papilloma virus HPV)长期持续感染的结果,可能与阴道以乳酸杆菌减少为主的菌群失调有密切关系。目前国外研究多数认为乳酸杆菌有很好的抗宫颈癌及宫颈上皮内瘤变作用,国内报道很少。本研究第一部分首先对宫颈癌患者阴道乳酸杆菌及其它常见病原体滴虫、霉菌、细菌性阴道病、支原体、衣原体、淋菌、HPV进行检测与分析,进一步了解乳酸杆菌在宫颈癌发病中的作用。树突状细胞(Dendritic Cell DC)功能的缺陷是导致宫颈癌的主要原因,以DC疫苗为主进行宫颈癌肿瘤免疫治疗是目前宫颈癌研究的重点,本文第二部分内容探讨了乳酸杆菌在DC疫苗抗宫颈癌中的作用以及作用机制。第三部分利用动物实验进一步研究乳酸杆菌在DC疫苗治疗宫颈癌中的效果,探讨其临床应用前景。
     第一部分宫颈癌患者阴道微生物分布特点与分析
     目的:探讨乳酸杆菌与常见阴道病原体在阴道黏膜上的分布特点以及与宫颈癌的关系。
     方法:检测正常宫颈妇女65例、慢性宫颈炎70例、宫颈上皮内瘤变(cervical intraepithelial neoplasia CIN)110例、宫颈癌患者142例阴道黏膜分泌物中乳酸杆菌的定植密度(乳酸杆菌数目/高倍镜)、霉菌、细菌性阴道病(Bacterial vaginosis BV)、支原体、衣原体、滴虫、淋菌、人乳头瘤状病毒(Human papilloma virus HPV16/18)的感染情况,了解宫颈癌患者阴道黏膜乳酸杆菌与常见病原体的分布特点、以及在宫颈癌发病中作用。
     结果:1、正常宫颈组(294个/HP)、慢性宫颈炎(282个/HP)、CIN(221个/HP)、宫颈癌组(125个/HP)阴道黏膜乳酸杆菌的定植密度逐渐减少(X2=47.07 P<0.01);霉菌、滴虫、支原体、衣原体、BV、HPV的检出率逐渐增加(P<0.01)。在正常宫颈组、慢性宫颈炎、CIN组内乳酸杆菌阴性患者阴道霉菌、滴虫、支原体、衣原体、BV、HPV的检出率明显高于乳酸杆菌阳性组(P<0.01),但在宫颈癌组内比较无差异(P>0.05)。淋菌在各组中发病率低,各组之间统计比较无差异(P>0.05)。2、在CIN组、宫颈癌组中随着乳酸杆菌数量减少,阴道病原体总感染率、混合感染率以及多种混合感染率也明显增加(P<0.01);在正常宫颈组、慢性宫颈炎、CIN组内乳酸杆菌阴性组病原体总感染、混合感染、多种混合感染率均明显高于乳酸杆菌阳性组(P<0.01),但在宫颈癌组内比较无差异(P>0.05)。3、在正常宫颈组、慢性宫颈炎、CIN组内感染组乳酸杆菌定植密度明显少于非感染组(P<0.01);但在宫颈癌组内比较无差异(P>0.05)。与正常宫颈组、慢性宫颈炎组比较,宫颈上皮内瘤变组、宫颈癌组感染者乳酸杆菌的定植密度逐渐减少(P<0.01)。4、宫颈癌组(66.9%)、CIN组(60.9%)中HPV感染患者阴道乳酸杆菌缺失率高于慢性宫颈炎(35.7%)、正常宫颈组(37.5%)。宫颈癌与CIN组;慢性宫颈炎与正常宫颈组比较无差异(P>0.05)。宫颈癌组(114个/HP)、CIN组(129个/HP)中HPV感染患者阴道乳酸杆菌阳性组乳酸杆菌定植密度明显少于慢性宫颈炎(251个/HP)、正常宫颈组(249个/HP)(P<0.01)。宫颈癌与CIN组;慢性宫颈炎与正常宫颈组比较均无差异(P>0.05)。5、在CIN组、宫颈癌组中HPV16/18、BV的感染率增加最明显,其次是衣原体、支原体、霉菌、滴虫;淋菌的检出率在各组中均很低。
     结论:乳酸杆菌抑制阴道常见病原体的繁殖与感染,保护宫颈上皮细胞、抑制其异常增生与癌变。宫颈癌发生与阴道黏膜乳酸杆菌减少、阴道菌群失调相关。
     第二部分乳酸杆菌增强树突状细胞疫苗诱导抗宫颈癌细胞毒性反应的体外研究
     目的:探讨乳酸杆菌在增强树突状细胞(DC)疫苗抗宫颈癌肿瘤免疫杀伤中的作用与意义。
     方法:1、反复冻融宫颈癌Hela细胞形成致敏抗原,并致敏树突状细胞:A乳酸杆菌作用后宫颈癌细胞冻融抗原致敏树突状细胞组;B单纯Hela细胞冻融抗原致敏树突状细胞组;C单纯乳酸杆菌致敏树突状细胞组;D未致敏树突状细胞组。2、采用流式细胞技术(Flow Cytometry FCM)测定各组树突状细胞成熟以及树突状细胞特征性抗原CD1a、CD83、CD80、CD86、HLA-DR表达。3、采用混合淋巴细胞反应(mixed lymphocytereaction MLR)、ELISA法分别测定经乳酸杆菌作用后的冻融宫颈癌抗原负载树突状细胞(DC)体外刺激T细胞增殖的能力以及上清液中IL-12与IFN-γ的含量。4、MTT法测定乳酸杆菌冻融抗原致敏树突状细胞(DC)激活的CTL细胞对宫颈癌HeLa细胞的杀伤作用。
     结果:1、乳酸杆菌明显促进树突状细胞(DC)的发育成熟、提高树突状细胞特征性抗原CD1a、CD83、CD80、CD86、HLA-DR表达(P<0.01)。2、与单纯冻融抗原、单纯乳酸杆菌致敏DC比较,经乳酸杆菌作用后的冻融宫颈癌细胞抗原负载树突状细胞(DC)体外明显增强T细胞增殖的能力(P<0.01);增加T细胞培养上清液中IL-12与IFN-γ的含量(P<0.01);增强冻融抗原致敏DC激活的CTL细胞对宫颈癌HeLa细胞的杀伤力(P<0.01)。3、各致敏组的树突状细胞(DC)体外刺激T细胞增殖的能力、培养上清液中IL-12与IFN-γ的含量、激活的CTL细胞对宫颈癌HeLa细胞的杀伤力均明显高于未致敏组(P<0.01)。
     结论:乳酸杆菌增强树突状细胞抗原提呈能力,增强树突状细胞疫苗对宫颈癌肿瘤细胞的免疫杀伤作用。
     第三部分乳酸杆菌增强树突状细胞疫苗抗宫颈癌的的体内研究
     目的:探讨乳酸杆菌在树突状细胞(DC)疫苗抑制宫颈癌移植瘤中的作用。
     方法:1、乳酸杆菌在DC疫苗治疗宫颈癌移植瘤中作用:(1)宫颈癌Hela细胞建立30只雌性裸鼠移植瘤动物模型,在移植瘤大小为4cm3左右时随机化分为三组实验:第1组,接种乳酸杆菌作用后宫颈癌Hela细胞冻融抗原致敏的DC疫苗;第2组,接种单纯宫颈癌Hela细胞冻融抗原致敏的DC疫苗;第3组,注射PBS缓冲液作为对照组。(2)4天测量一次瘤体大小,绘制移植瘤生长曲线。(3)制备肿瘤单细胞悬液,采用FCM检测各实验组肿瘤细胞凋亡率。(4)制备肿瘤单细胞悬液,采用FCM检测各实验组肿瘤细胞Fas蛋白的含量。(5)采用免疫组化技术(SP法)观察各组移植瘤Survivin蛋白的表达。2、乳酸杆菌在DC疫苗预防宫颈癌移植瘤中作用:(1)选取18只雌性裸鼠:A组:接种乳酸杆菌辅佐冻融抗原致敏DC活化的疫苗;B组:接种冻融抗原致敏DC活化疫苗;C组:注射PBS缓冲液作为对照组。(2)3天后将对数生长期的宫颈癌Hela细胞系接种于裸鼠。4天观察一次裸鼠移植瘤的生长情况,绘制移植瘤生长曲线。
     结果:1、乳酸杆菌增强DC疫苗对宫颈癌移植瘤的抑制作用:乳酸杆菌DC疫苗组移植瘤在治疗后10天体积大小为2.10±0.60cm3,明显小于治疗前4.05±0.53cm3(P<0.01);单纯DC疫苗治疗组可明显抑制瘤体的生长,治疗前4.15±0.84cm3,治疗后6.19±1.36cm3(P<0.01);而对照组移植瘤呈快速生长状态,治疗前3.92±0.78cm3,治疗后14.56±1.67cm3(P<0.01)。2、乳酸杆菌DC疫苗组明显增强肿瘤细胞的凋亡,凋亡率为38.26±3.45%,高于单纯DC疫苗组21.68±3.26%与对照组3.77±0.99%)(P<0.01)。3、乳酸杆菌DC疫苗治疗组肿瘤细胞Fas蛋白的含量为570.42土66.72,高于单纯DC疫苗治疗组400.50土86.05与对照组247.32土54.06。4、与Fas蛋白表达相反,survivin蛋白在乳酸杆菌辅助DC疫苗治疗组肿瘤细胞中表达大部分为阴性;单纯DC疫苗治疗组肿瘤细胞大部分表达为弱阳性;而对照组大部分肿瘤细胞survivin蛋白表达为强阳性。5、乳酸杆菌DC疫苗预防组宫颈癌Hela移植瘤的成瘤率为16%,而且瘤体小0.52cm3;单纯DC疫苗预防组成瘤率为50%,瘤体较大2.34±0.38cm3;而对照组成瘤率为100%,瘤体最大4.89±1.48cm3(P<0.05)。
     结论:乳酸杆菌辅佐DC疫苗可以很好预防并明显抑制裸鼠宫颈癌Hela移植瘤的生长,增强DC疫苗促进肿瘤细胞凋亡。其凋亡的机制一方面上调Fas膜蛋白,另一方面下调抑制凋亡Survivin蛋白。乳酸杆菌可作为DC疫苗很好的免疫增强剂,为宫颈癌DC疫苗的进一步开发与临床应用提供一条新的思路。
Cervix cancer is one of frequent femme malignant tumor,Incidence rate of cervix cancer steps up year by year, And age of onset is gradually younger. Cervix cancer is a persistent infection result of Human papilloma virus( HPV). It possibly has a intimate relation to vagina dysbacteria with Lactobacillus decreasing. Present abroad study consider that Lactobacillus has a fine role in resisting cervix cancer and cervical intraepithelial neoplasia (CIN). There is less domestic research about it . In the first study , we detect and analyze vagina lactobacillus and the other common pathogen (infusorian, mycetes, bacterial vaginosis, mycoplasma, chlamydia, gonococcus, HPV),And preferably understand Lactobacillus′role in cervix cancer.Functional defect of dendritic cell(DC) is primary cause resulting in cervix cancer. Dendritic cell(DC)vaccine tumor immunity treatment about cervix cancer is an Important and hot spot at present.In the second study,We approached lactobacillus′role and mechanism in cervix cancer invasion. We study lactobacillus′effect in assisting DC vaccine treatment to cervix cancer,And approach lactobacillus′clinical application prospect of DC vaccine treatment about cervix cancer at the third study.
     PartⅠDistribution feature and analysis of Vagina microorganism in cervix cancer patients
     objective: Approach distribution feature of Vagina lactobacillus and common pathogen, Study their relation to cervix cancer
     method: Detected vagina mucosa lactobacillus planting density and common pathogen (mycetes, bacterial vaginosis, mycoplasma, Chlamydia, infusorian, gonococcus, HPV) of 387 women(Normal cervix 65, Chronic cervicitis 70,cervical intraepithelial neoplasia 110,cervix cancer 142),Observe their distribution feature and roles in cervix cancer invasion.
     Results:1 Vagina mucosa lactobacillus planting densitys of Normal cervix(294/HP), Chronic cervicitis (282/HP),CIN(221/HP)and cervix cancer(125/HP)are gradually decreaseing (X2=47.07 P<0.01),But detection rates of mycetes, infusorian, mycoplasma, Chlamydia, bacterial vaginosis, HPV are gradually increasing(P<0.01). Detection rates of mycetes, infusorian, mycoplasma, Chlamydia, bacterial vaginosis, HPV in Un-Lactobacillus group are higher than those in Lactobacillus group about Normal cervix, Chronic cervicitis and cervical intraepithelial neoplasia (CIN ) gruops (P<0.01).But in cervix cancer,there is no statistics difference (P>0.05). Detection rates of gonococcus is very low in every group, there is no statistics difference among four groups(P>0.05).2 With Lactobacillus decreaseing in CIN and cervix cancer groups, Infection rate,mixed infection rate,poly-mixed infection rate of vagina pathogen were gradually increasing (P<0.01);Infection rate,mixed infection rate,poly-mixed infection rate of vagina pathogen in Un-Lactobacillus group are higher than those in Lactobacillus group about Normal cervix, Chronic cervicitis and cervical intraepithelial neoplasia (CIN ) gruops (P<0.01), But ,there is no statistics difference in cervix cancer (P>0.05).3 Vagina mucosa lactobacillus planting densitys in infection are less than those in no-infection about Normal cervix, Chronic cervicitis and cervical intraepithelial neoplasia (CIN ) gruops (P<0.01), But ,there is no statistics difference in cervix cancer (P>0.05).Compared with Normal cervix and Chronic cervicitis, Vagina mucosa lactobacillus planting densitys of infection are gradually decreaseing in CIN and cervix cancer groups(P<0.01).4 Lactobacillus depletion rates of HPV infections in cervix cancer(66.9%)and CIN(60.9%)groups are higher than those in Normal cervix (37.5%)and Chronic cervicitis(35.7%)groups(P<0.01). There is no statistics difference about Lactobacillus depletion rates of HPV infections between CIN and cervix cancer groups, between normal cervix and Chronic cervicitis groups(P>0.05).Vagina mucosa lactobacillus planting densitys of lactobacillus group with HPV infections in cervix cancer(114/HP)and CIN (129/HP)groups are obviously less than those in Normal cervix (249/HP)and Chronic cervicitis(251/HP)groups(P<0.01), but there is no statistics difference about lactobacillus planting densitys between CIN and cervix cancer groups, between normal cervix and Chronic cervicitis groups(P>0.05). 5 Infection rate of HPV16/18、BV are obviously increased in CIN and cervix cancer groups first, Second Infection rate of mycoplasma, Chlamydia, mycetes, infusorian are also increased . Detection rates of gonococcus is very low in every group.
     Conclusion: Lactobacillus can restrain multiply and infection of Vagina common pathogen, It can protect cervix cellula epithelialis, Restrain its paraplasm and cancerization. Vagina normal flora Disproportion and lactobacillus decreaseing are relation to cervix cancer
     PartⅡEx vivo study of anti-cervix cancer cytotoxic T cell effect by Dendritic cell vaccine enhanced with lactobacillus
     Objective:Approach effect and significance of lactobacillus in anti- cervix cancer tumor immunity killing by dendritic cell vaccine.
     Methods:1 Freeze thaw uterine cervix cancer antigen repeatedly and form sensitized antigen, Then load dendritic cell: A Dendritic cell (DC): loaded by antigen lysate with lactobacillus stimulating, B Dendritic cell (DC): loaded by pure antigen lysate; C Dendritic cell (DC): loaded by lactobacillus;DNo-loaded DC. 2 Determine lactobacillus′influence to CD1a,C D83,CD80,CD86,HLA-DR and mature condition of dendritic cell through flow cytometry(FCM) in four groups. 3 Function of DC loaded by freeze-thawing cervix cancer antigen stimulated with lactobacillus was evaluated by their ability to induce proliferation of allogeneic T cells by mixed lymphocyte reaction (MLR),IL-12 and IFN-γproduction in cell supernatant was assayed by using ELISA method. 4 The cytotoxicity to uterine cervix cancer HeLa cells of CTL activated by dendritic cells loaded with antigen and Lactobacillus was detected by MTT method.
     Results: 1 Lactobacillus can obviously promote mature of DC cells and express of cell phenotypic molecule CD1a、CD83、CD80、CD86、HLA-DR of DC cells(P<0.01).2 Compared with DC cells allergized by pure freeze thawing cervix cancer antigen or pure lactobacillus, DC cells loaded by freeze thawing uterine cervix cancer antigen stimulated with lactobacillus can obviously reinforce cell proliferation of T lympholeukocyte(P<0.01)and IL-12,IFN-γproduction in cell supernatant of T cell culture(P<0.01). It'kill power to cervix cancer Hela cell is higher than those of the other groups (P<0.01). 3 Proliferation of T lympholeukocyte(P<0.01); IL-12,IFN-γproduction in cell supernatant of T cell culture and immune kill power to cervix cancer Hela cell in loaded DC group is obviously higher than that of un-loaded DC group(P<0.01)
     Conclusion: Lactobacillus can reinforce angtigen presentation ability of dendritic cell and immunity lethal effect of DC vaccine to uterine cervix cancer.
     PartⅢIn Vivo study about anti-cervix cancer effect of dendritic cell vaccine enhanced by lactobacillus
     Objective:Approach Lactobacillus′role and mechanism in anti-cervix cancer transplantation tumor inducted by dendritic cell (DC) vaccine
     Methods:1 Lactobacillus′role in anti-cervix cancer transplantation tumor of DC vaccine : (1) Establish 30 cervix cancer Hela cell transplantation tumors with femina athymic mouse; They were randomly divided into three group when tumor volume is about 4cm3:In the first group, vaccinate DC vaccine loaded by freeze thawing cervix cancer antigen after Lactobacillus stimulating; In the second group, vaccinate DC vaccine loaded by freeze thawing cervix cancer antigen; In the third group, inject PBS buffer as control group. (2) Measure tumor bulk every 4 days and draw growth curve of transplantation tumor.(3)Make tumor unicell suspension,Detect tumour cell apoptosis with flow cytometry(FCM).(4)Make tumor unicell suspension,Detect Fas protein with flow cytometry(FCM X-mode).(5)the express of Survivin protein were observed by immunohistochemistry echnique(SP). 2 Lactobacillus′role in preventing cervix cancer transplantation tumor about DC vaccine (1)Choose 18 female athymic mice which were randomly divided into three group: A group:vaccinate DC vaccine loaded by freeze thawing cervix cancer antigen after Lactobacillus stimulating; B group: vaccinate DC vaccine loaded by freeze thawing cervix cancer antigen; C group: inject PBS buffer as control group. (2) In the third day after vaccination,Inject cervix cancer Hela cell, Establish transplantation tumors; Measure tumor bulk every 4 days and draw growth curve of transplantation tumor.
     Results:1 Lactobacillus can enhance DC vaccine′inhibitory role to cervix cancer transplantation tumor: In DC vaccine group assisted by Lactobacillus, 10 days after treatment, tumor(2.10±0.60cm3)was obviously smaller than that of before treatment(4.05±0.53cm3)(P<0.01); In DC vaccine group, tumor grow after treatment (6.19±1.36 cm3)was obviously restrained compared to that in control group (before treatment 4.15±0.84cm3)(P<0.01);But in control group, Tumor′growth is faster compared to treatment group (before treatment 3.92±0.78cm3; after treatment 14.56±1.67cm3 )(P<0.01).2 In DC vaccine group assisted by Lactobacillus, DC vaccine can obviously reinforce Apoptosis of tumor cell(Apoptosis rate 38.26±3.45%) compared to DC vaccine group(21.68±3.26%) and control group(3.77±0.99%). 3 The expression of Fas protein in DC vaccine group(570.42土66.72)are higher Than those of DC vaccine group(400.50土86.05) and control group(247.32土54.06). 4 Opposite to Fas protein, In DC vaccine group assisted by Lactobacillus ,survivin protein expression is Negative in most tumor cell. But in control group, the expression of survivin protein in most tumor cell was positive , there was weak survivin protein expression in DC vaccine group. 5 DC vaccine assisted by Lactobacillus can obviously prevent cervix cancer transplantation tumor with tumor form rate(16%) and small node (0.52cm3); But in DC vaccin with 50% and big tumor (2.34±0.38cm3);And in control group, tumor rate is 100% , node is the biggest(4.89±1.48cm3)(P<0.01).
     Conclusion: 1 The DC vaccine assisted by Lactobacillus can prevent growth of cervix cancer Hela cell transplantation tumor very well. Lactobacillus enhance Apoptosis role of cervix cancer tumour cell treated by DC vaccine. There are two Apoptosis mechanism: (1) Up-regulate Fas protein expression(considered Apoptosis protein), (2) Down-regulate the expression of Survivin protein((considered refraining Apoptosis protein). 2 As a good immunopotentiating agent to DC vaccine, Lactobacillus can provide a new think or method for exploitation and clinical application of cervix cancer treatment by DC vaccine.
引文
1 Korshunov VM, Kafarskaia LI, Bagirova MSh,et al. The effect of Sol-coTrichovac on the vaginal microflora of patients with a papillo- mavirus IFNection associatedwith a cervical intraepithelial neoplasm. ZhMikrobi-ol Epidemiol Immunobiol, 1994,5:13-17
    2 Kim D, Hoory T, Wu TC,et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life and intracellular targeting strategies with a strategy to boost CD4+ T cell. [J] Hum Gene Ther. 2007 Nov;18(11):1129-39
    3 Alison M, Rosa MD, Dearbhaile OD, et al. Autologous versus allogeneic peptide-pulsed dendritic cells for anti-tumourvaccination: expression of allogeneic MHC sup-ports activation of antigen specific T cells,but impairs early native cytotoxic priming and anti-tumour therapy[J].Cancer Immunol Immunother,2008,57(6):897.
    4 Bercovici N,Haicheur N,Massicard S,et al.Analysis and characterization of antitumor T-cell response after admin-istration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients[J].J Immunoth-er,2008,31(1):101
    5曹大勇,杨静悦,窦科峰.白细胞介素-2基因修饰树突状细胞体外增强其诱导的抗肝癌免疫反应[J].中华实验外科杂志,2007,24(3):285
    6 Kyte JA,Mu L,Aamdal S,et al.PhaseⅠ/Ⅱtrial of mel anoma therapy with dendritic cells transfected with autol ogous tumor-mRNA [J]. Cancer Gene Ther, 2006, 13(10):905
    7 Naka T,Iwahashi M,Nakamura M,et al.Tumor vaccine therapy against recrudescent tumor using dendritic cells simultaneously transfected with tumor RNA and granulo-cyte macrophage colony-stimulating factor RNA [ J].Cancer Sci,2008,99(2):407
    8 Lee JJ,Park MS,Park JS,et al.Induction of leukemiccell specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens [J].J Clin Apher,2006,21(3):188
    9郑晶晶,宋静慧.阴道乳酸菌的微生态学研究进展.内蒙古医学院学报[J] 2009,31(4)431-435
    10 Pollman B.Transporters and their roles in LAB cell physi-ology[J]. Antonie van Leeuw enhoek,2002;82(8): 147-164
    11刘畅,郭晓奎.乳酸菌基因组学研究进展[J].中国微生态学杂志,2006;18(4): 328-330
    12 Witkin SS,LinharesLM,Giraldo P.Bacteria flora of the fe-male genital tract: function and immune regulation[J].Best Practice& Research ClinicalObstertrics and Gynaecology,2006;21(3): 347-354
    13李小颖,赵东玲.胃肠道微生态及微生态制剂在治疗胃肠道疾病中的应用西北药学杂志[J], 2009,24(2) 157-159
    14 Gill SR,Pop M,Deboy RT,et al.Metagenomic analysis of the human distal gut microbiome.Science 2006;312:1355-1359
    15 Blum S,Schiffrin EJ.Intestinal microflora and homeostasis of themucosal immune response:implications for probiotic bacteria[J].Curr Issues Intest Microbiol,2003,4(2):53-60
    16 Rowland I. Probiotics and colorectal cancer risk[J]. Br J Nutr, 2004, 91(6): 805-807
    17 de Moreno de LeBlanc A, Matar C, LeBlanc N,et al. Effects ofmilk fermented by Lactobacillus helveticus R389 on amurine breast cancermodel[ J]. Breast CancerRes,2005, 7(4):R477-486
    18 Sethi S,DasA, SharmaM. Inhibition of Gardnerella vaginali by lactobacilli[ J].Int J Gynaecol Obstet,2006;93(2): 158-159
    19张彦,宋磊.乳酸杆菌与细菌性阴道病关系的研究进展[J].中国妇产科临床杂志,2007;8(2): 150-152
    20王红艳,贾继辉,邢咏梅,等.乳酸杆菌与阴道微生态关系的研究进展[J].潍坊医学院学报,2004;26(2):145-147
    21 Mc Farland LV.Normal flora: diversity and functions[J]. Microbial EcolHealthDis,2000;12(4): 193-207
    22林巧.乳酸菌抗癌作用研究进展[J].西昌学院学报,2005;19(4): 51-54
    23王文琴,蒋培余,顾福萍,等.阴道乳酸杆菌生物拮抗作用的研究进展[J].中国微生态学杂志,2007;19
    24 Femia AP et al.Antitumorigenic activity of the prebiotic inulin enriched with oligo fructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats.Carcinogenesis,2002,(23)11:1953-1960
    25 Seow SW, Rahmat JN, Mohamed AA, et al. Lactobacillus species ismore cytotoxic to human bladder cancer cells than Mycobacterium Bovis(bacillus Calmette-Guerin).J Urol, 2002,168(5):2236-2239
    26 McNicol P, Paraskevas M, Guijon F。Variability of polymerase chain reaction-based detection of human papillomavirus DNA is associated with the composition of vaginal microbial flora.J Med Virol. 1994 Jun;43(2):194-200
    27 Discacciati MG, Simoes JA, Lopes ES,et . Is bacterial vaginosis associated with squamous intraepithelial lesion of the uterine cervix? [J] Diagn Cytopathol. 2006 May;34(5):323-5
    28卢芳国胡建中伍参荣等。阴道乳酸杆菌生物拮抗作用的调查研究。实用预防医学2001年2月第8卷第1期19-20
    29 Aires KA, Cianciarullo AM, Carneiro SM, et .Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactoba- cillus casei cells. Appl Environ Microbiol. 2006 Jan;72(1):745-52
    1 Thery C,Amigorena S. The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol,2001,13(1):45-51
    2 Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity Cell,2001,106(3):259-262
    3 Miller G, Pillarisetty V G, Shah AB, et al. Endogenous GM-CSF overexpression in vivo results in the long term recruitment of a distinct dendritic cell population with enhanced immuno-stimulatoryfunction [J].JImmunol,2002,169(6): 2875-2885
    4 Fay,JosephW.MD.Hematopoieticgrowthfactors,dendriticcelbiology,andvaccinetherapyofcancer.CurrOpinHematol,2002,9(3):202-206
    5 HsuDH,PazP,Villalforqetal.Exosomesasatumorvaccine:enhancingpotencythroughdirectloadingofantigenicpeptides.JImmunother.2003,26(5):440^50
    6 Moll H.Antigen delivery by dendritic cells[J].Int J Med Mi-crobiol, 2004,294(5):337-344
    7 Tejada Simon MV, Pestka JJ. ProIFNlammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot, 1999,62(12)1435-1444
    8李秀真,朱万浮,曹卉等。乳酸杆菌诱导小鼠宫颈癌U14细胞凋亡的动物实验[J]。中华微生物和免疫学杂志,2004,24(4):268-271
    9 Lammers KM,et al.Immunomodulatory effects of probiotic bacteria DNA:IL-1and IL-10 response in human peripheral blood mononuclear cells.FEMS Immunol Med Microbiol,2003,(38)2:165-172
    10 Lammers KM, Briqidi P, Vitali B et al.Immunomodulatory effects of probiotic bacteria DNA:IL-1 and IL-10 response in human peripheral blood mononuclear cells [J].Immunol Med Microbiol,2003,(38)2:165-172
    11 Kitazawa H,et al.Immunostimulatory oligonucleotide,CpG-like motif exists inLactobacillus delbrueckii ssp.bulgaricus NIAI B6.Int J Food Microbiol,2003,(85)122:11-21
    12 Takahashi T,et al.Antitumor effects of the in-travesical instillation of heatkilled cell of the Lactobacillus casei strain Shirota on the murine orthotopic bladder tumor MBT22.J Urol,2001,(166)6:2506-2511
    13 Decker WK, Xing D, Li S, et al. Th-1 polarization is regulated by dendr- itic cell comparison of MHC class I and class II antigens. [J] Blood. 2009 Jan 26.
    14 Faure F, Mantegazza A, Sadaka C,et al. Long-lasting cross-presentation of tumor antigen in human DC. [J] Eur J Immunol. 2009 Feb;39(2):380-90
    15 Wang Q, Sun B, Wang D,et al. Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. [J] Scand J Immunol. 2008 Dec;68(6):607-15. Epub 2008 Oct 27
    16 Do TH, Johnsen HE, Kjaersgaard E, et al. Impaired circulating myeloid DCs from myeloma patients. [J] Cytotherapy. 2004;6(3):196-203.
    17贾英,孔繁兵等,负载宫颈癌肿瘤裂解物的树突状细胞诱导的CTL杀伤效应。实用妇产科杂志2005,21(7):416-418
    18 Li YL, Wu YG, Wang YQ,et al. Bone marrow-derived dendritic cells pulsed with tumor lysates induce anti-tumor immunity against gastric cancer ex vivo. [J]World J Gastroenterol. 2008 Dec 14;14(46):7127-32
    19 Kim D, Hoory T, Wu TC,et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life and intracellular targeting strategies with a strategy to boost CD4+ T cell. [J] Hum Gene Ther. 2007 Nov;18(11):1129-39
    20 Dell K, Klein C, Gissmann L. Comparison of DNA- and mRNA- transf- ected mouse dendritic cells as potential vaccines against the human papillomavirus type 16 associated oncoprotein E7. [J] Antivir Ther. 2008;13(4):495-509
    21 Akiyama Y Tanosaki R InoueN,etal.Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendriticcells.J Transl Med, 2005,3:4
    22 Nagayama H,Sato K,Morishita M,etal.Results Of a phase clinical study using autologous tumor lysate-pulsed monocyte-derived mature dendriticcell vaccinations for stageⅣmalignant patients combined with low dose interleukin-2.Melanoma Res,2003,13(5):521-530
    23 Kikuchi T,Akasaki Y Irie M,etal.Rusults of a phase I clinical trial ofvaccination of glioma patients with fusions of dendritic and gliomacells.Cancer Immunol Immunother,2001,50:337-344
    24 AkiyamaY ,Maruyama K,Watanabe M,et al.Retroviral-mediated IL-12 gene transduction intohumanCD34+ cell-derived dendritic cells.Int J Oncol,2002,21(3):509-514
    25 Morse M,Garst J,Osada T,etal.Aphase I study of dexosome immun- otherapy in patients with advanced non-small cell lung cancer.J Transl Med,2005,3(1):9
    26 Petty RE,Hunt DW.Neonatal dendritic cells.Vaccine, 1998,16:1378-1382.
    27 Maureen Drakes, Thomas Blanchard, and Steven Czinn. Bacterial Probiotic Modulation of Dendritic Cells. Infection and Immunity, June 2004, p. 3299-3309, Vol. 72, No. 6
    28 Eastcott JW,Hdmberg CJ,Dewhirst PE,et al.Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid.[J]Vaccine 2001,19(13-14):1636-1642
    29 Louise H jerrild Z euthen, Hanne R et.al.Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Factor Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria Clinical and Vaccine Immunology, March 2006, p. 365-375, Vol. 13, No. 3
    30孙建芝、贾继辉、曲伟邵等.≤多种乳酸杆菌粘附活性的研究≥医学检验与临床.2006.17(5) 38-40
    31 Singh-Jasuja H,Scherer NU,Hilf N,et al.The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of it’s receptor.Eur J Immunol,2000,30(18):2211-2215
    32 Parish IA, Waithman J, Davey GM, et al. Tissue destruction caused by cytotoxic T lymphocytes induces deletional tolerance. [J] Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3901-6. Epub 2009 Feb 20
    33 Ahmed KA, Xie Y, Zhang X,et al. Acquired pMHC I complexes greatly enhance CD4(+) Th cell's stimulatory effect on CD8(+) T cell-mediated diabetes in transgenic RIP-mOVA mice. [J] Cell Mol Immunol. 2008 Dec;5(6):407-15
    34 Zhu XP, Chen ZZ, Li CT,et al. In vitro inducing effect of dendritic cells cotransfected with survivin and granulocyte-macrophage colony-stimul- ating factor on cytotoxic T cell to kill leukemic cells. [J] Chin Med J (Engl). 2008 Nov 5;121(21):2180-4
    35 Balkow S, Loser K, Krummen M,et al. Dendritic cell activation by combined exposure to anti-CD40 plus interleukin (IL)-12 and IL-18 efficiently stimulates anti-tumor immunity. [J] Exp Dermatol. 2009 Jan;18(1):78-87. Epub 2008 Oct 22
    1 BrancaM, Giorgi C, Santini Det al·Survivin as a marker of cervical intraepithelialneoplasia and high-risk human papillomavirus and a pre-dictor of virus clearance and prognosis in cervical cance〔rJ〕·Am JClin Patho,l 2005, 124 (1): 113
    2 Baseman JG, koutsky LA, The epidemiology of human papillomavirus infection [J].Clin Virol,2005,32(1):16-24
    3 WalletMA, Sen P, Tisch R. Immunoregulation of dendritic cells [J].ClinMed Res, 2005, 3(3): 166-175
    4 Miyake M, Tali T, Hitomi S, et al. Correlation of expression of H/Ley/Leb antigen with survival in patients with carcinoma of the lung. N Engl J Med, 1992, 327: 14-18
    5 Denny L. The prevention of cervical cancer in developing countries [J]. BJOG, 2005, 112(9): 1204-1212.
    6 Taylor S,Kuhn L,Dupree W,et al·Direct comparison of liquid-based an conventional cytology in a south african screening trial [J]·Cancer 2006,118(4): 957-962
    7 Bercovici N,Haicheur N,Massicard S,et al.Analysis and characterization of antitumor T-cell response after admin-istration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients[J].J Immunoth-er,2008,31(1):101
    8 Hus I,Rolinski J,Tabarkiewicz J,et al.Allogeneic den-dritic cells pulsed with tumor lysates or apoptotic bodiesas immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia[J]. Leukemia, 2005, 19(9): 1621
    9 Kyte JA,Mu L,Aamdal S,et al.PhaseⅠ/Ⅱt rial of mel-anoma therapy with dendritic cells transfected with autol-ogous tumor-mRNA [J]. Cancer Gene Ther, 2006, 13(10):905
    10 Matsumoto S,Saito H,Tsujitani S,et al.Allogeneic gas-tric cancer cell-dendritic cell hybrids induce tumor antigen(carcinoembryonic antigen) specific CD8+T cells[J]. Cancer Immunol Immunother, 2006, 55(2):131
    11 Hao S,Bai O,Yuan J,et al.Dendritic cell-derived exosomes stimulate stronger CD8+CTL responses and anti-tumor immunity than tumor cell-derived exosomes[J].Cell Mol Immunol,2006,3(3):205
    12王红艳,贾继辉邢咏梅等。乳酸杆菌对Hela细胞免疫标志表达和效应影响的初步研究。中华微生物学和免疫学杂志[J].2004,24(9):737
    13 Wu H, Walters G, Knight F,etal. DNA vaccination against specific pathogenic TCRs reduces proteinuria in active Heymann nephritis by inducing specific auto antibodies[J].J Immunol, 2003, 171: 4824-4829
    14牛家峰,张彩,张建华等. IFN-α对宫颈癌细胞MHC-I类链相关蛋白A表达的上调作用.细胞与分子免疫学杂志[J].2006, 22(5): 557-563
    15宁燕王智彪伍烽等.高强度超声对荷宫颈癌小鼠腹腔巨噬细胞分泌TNF-α的影响[J].中国超声医学杂志. 2007, 23(6). 414-416
    16刘彤,唐立,张婵等,乳酸杆菌发酵滤液对人宫颈癌细胞株Hela细胞的细胞周期和细胞凋亡的影响,中国微生物学杂志[J],2009,21(10)880-882
    17朱青,韩苏夏,李明众,等.宫颈癌细胞凋亡及Fas、FasL基因的表达.西安医科大学学报,2001,22(4):358-360
    18 Dearstyne EA,Kerkvliet NJ. Meohanismof 2,3,7,8 tetrach- Lorodibenzo- p-dioxin(TCDD)-induced decrease in anti CD3 activated CD4+T cells: the role of apopotosis,Fas,and TNFToxicology,2002, 170(12):139151
    19 Gutierrez LS, Noria F, FinolH, et a.l Fas ligand expres-sion and its correlation with apoptosis and proliferation inLobund-W istar prostate carcinomas [J]. Pathobiology,2005, 72(5): 260
    20 Ibrahim R, FredericksonH, ParrA, et a.l Expression of FasL in squamouscell carcinomas of the cervix and cervi-cal intraepithelial neoplasia and its role in tumor escape mechanism[J]. Cancer, 2006, 106(5): 1 065
    21 Muschen M7 Warskulat U7 Beckmann MW. Defining CD95 as a tumor suppressor gene. J Mol Med 7 2000 778(6) N312-325
    22郑航,罗荣城,张罗生,等.干扰素对肿瘤细胞Fas表达的上调作用及与细胞凋亡的关系.第一军医大学学报,2002,22(12):1090-1092
    23 Tamm I,Wang Y,Sausville E,Scudiero DA,et al.IAP-family protein Survivin inhibits caspase activity and apoptosis induced by Fas(CD95), Bax,caspases,and anticancer drugs[J]. Cancer Res.1998 Dec 1;58(23): 5315-5320
    24 EspinosaM, Cantu D, HerreraN, et a.l Inhibitors of apoptosis proteins in human cervical cancer[J]. BMC Cancer, 2006, 6: 45
    25 Li F, Ling X·Survivin study: An update of“What is the nextwave”(J)·JCellularPhysico,l 2006, 208 (3): 476
    26杜俊瑶,姚嘉斐,辛彦等.Survivin与Fas在宫颈不典型增生和宫颈癌中的表达及临床意义.中国实用产科与妇科杂志[J].2005,21 (11). 672- 674
    27 Lindstrom AK, StendahlU,TotT, et a.l Predicting the out come of squamous cell carcinoma of the uterine cervix using combinations of individual tumor marker expression[J].AnticancerRes, 2007, 27(3B): 1 609
    28 BrancaM,Giorgi C, Santini D, et a.l Survivin as a marke of cervical intraepithelial neoplasia and high-risk huma papillomavirus and a predictor of virus clearance and prognosis in cervical cancer[J]. Am J Clin Patho,l 2005, 12(1): 113
    29 Wang HP,Chen ZY,Sun SP,et a1.Expression of survivinggene and its relationship witll expression of Bcl-2 and Caspase-3 in bladder carcinoma [J].China Joumal of Modem Medicine,2006,16(3):325-328.Chinese
    30 UENO NT。BARTHOLOMEUSZ C,HERRMANN JL, et a1. E1A- mediated paelitaxel sensitization in HER-2-neu-over expressing ovarian cancer SKOV3.ipl through aportosis involving the Caspase-3 pathway [J].Clini Cancer Res,2000,6:250-259
    31 SHE XL,FENG DY,ZHENG H,et a1.Relationship between expressions of surviving and caspase-3 proteins and its biological significance in hepatocellular carcinomas [J].China Joumal of Modem Medicine,2005,15(18):2750-753.Chinese
    32薛军.凋亡蛋白抑制因子家族成员(IAPs)之一Survivin的研究进展[J].国外医学内科学分册2003,(30):1,28-30
    33 Skoufias DA,Mollinari C,Lacroix FB,et al.Human Surviving is akinetochore-associated passenger protein[J].J Cell Biol,2000 Dec25,151 7) 1575-1582
    34 Shin S,Sung BJ,Cho YS,etal.Ananti-apoptotic protein human Survivin is a direct inhibitor of caspase-3 and caspase-7, Biochemistry, 2001, 40: 1117-1123
    35 TakaiN , MiyazakiT , NishidaM , etal. ExPression Of survivin is associated with malignant Potential in epithelial ovarian carcinoma.Int J MOI Med.2002;10(2): 211-216
    36 Lehner R,EnomotoT,MeGregorJA,etd.Correlation of survivin mRNA detection with histolgic diagnosis in normal endometrium and endometrial carcinoma·Acta obstet Gynecol Scand.2002;81(2):162-67
    37 Kim,HS; Shiraki,-K; Park,-S-H. Expression of Survivin in CIN and invasive squamous cell carcinoma of uterine cervix. Anticancer-Res[J]. 2002 Mar-Apr;22(2A): 805-808
    38 Wang HP,Chen ZY,Sun SP,et a1.Expression of surviving gene and its relationship witll expression of Bcl-2 and Caspase-3 in bladder carcinoma [J].China Joumal of Modem Medicine,2006,16(3):325- 328.Chinese
    39 Jimenez LG, AguilarMC,Monroy OL, et a.l Detection ofautoantibodies to survivin in cervicalmucus from patients with human papillomavirus- associated cervical cancer and precursor lesions[J].Autoimmunity, 2007, 40(1): 66
    40 Borbély A,MurvaiM, Kónya J, et a.l Effects of human papillomavirus type 16 oncoproteins on survivin gene ex-pression[J]. JGen Viro,l 2006, 87(Pt2): 287
    1潘春华,罗荣城.树突状细胞疫苗在妇科肿瘤免疫治疗领域的研究现状[J].中国免疫学杂志, 2003, 19(10): 732-735
    2 Miller G, Pillarisetty V G, Shah AB, et al. Endogenous GM-CSF overexpression in vivo results in the long term recruitment of a distinct dendritic cell population with enhanced immuno-stimulatoryfunction [J].JImmunol,2002,169(6): 2875-2885
    3 HsuDH,PazP,Villalforqetal.Exosomesasatumorvaccine:enhancingpotencythroughdirectloadingofantigenicpeptides.JImmunother.2003,26(5):440-50
    4 Moll H.Antigen delivery by dendritic cells[J].Int J Med Mi-crobiol, 2004,294(5):337-344
    5 Mendoza L,Bubenk J, Smov J,et al.Tumor-inhibitory effects of dendritic cells administered at the site of HPV 16-induced neoplasms.Folia Biol(Praha),2002,48(3):114-119
    6 Yao V, Platell C, Hall JC.Dendritic cells.A N Z J Surg.2002,72(7):501-506.
    7 Tourkova I L,Yamabe K Chatta G etal.NK cells mediate Flt3 ligand- indueed Portection of dendritic cell Percursors in vivo f rom the inhibition by Prostate carcinoma in the murine bone maorrw metastasis model[J]. J Immunother 2OO3,26(6):468-472
    8 Santin AD, Bellone S, Palmieri M, et al. Induction of tumor-specific cytotoxicity in tumor infiltrating lymphocytes by HPV16 and HPV18 E7-pulsed autologous dendritic cells in patients with cancer of the uterine cervix. Gynecol Oncol. 2003,89(2):271-280
    9 Bubenik J al. Genetically modified cellular vaccines for therapy of human papilloma virus type 16 (HPV 16)-associated tumours. [J] Curr Cancer Drug Targets. 2008 May;8(3):180-6
    10 Santin AD, Bellone S, Palmieri M, et al.. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. [J] J Virol. 2008 Feb;82 (4):1968-79. Epub 2007 Dec 5
    11 Santin AD, Bellone S, Gokden M, et al. Vaccination with HPV-18 E7-Pulsed dendritic cells in a patient with metastatic cervical cancer [J]. N Engl J Med. 2002,346(22):1752-1753
    12 Matsumoto S,Saito H,Tsujitani S,et al.Allogeneic gas-tric cancer cell-dendritic cell hybrids induce tumor antigen(carcinoembryonic antigen) specific CD8+T cells[J].Cancer Immunol Immunother,2006,55(2):131
    13 Mudesrpach Wilczynski S,Roman L et al.A plaseⅠtrail of a human papillomavirus(HPV) peptide vaccine for human with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive.J clin cancer res 2000 6(9):3406-3416
    14贾英,孔繁兵等,负载宫颈癌肿瘤裂解物的树突状细胞诱导的CTL杀伤效应。实用妇产科杂志2005,21(7):416-418
    15 Li Y L, Wu Y G, Wang Y Q,et al. Bone marrow-derived dendritic cells pulsed with tumor lysates induce anti-tumor immunity against gastric cancer ex vivo[J]. World J Gastroenterol, 2008,14(46):7127-7132
    16 Adams M, Navabi H, Jasani B, et al. Dendritic cell(DC)based therapy for cervical cancer:use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly[C(12)U](AmpligenR) vaccine,2003,21(7-8):787-790
    17 Bercovici N,Haicheur N,Massicard S,et al.Analysis and characterization of antitumor T-cell response after admin-istration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients[J].J Immunoth-er,2008,31(1):101
    18 Fonteneau JF, Larsson M,Bhardwaj N,etal. Interactions between dead cells and dendritic cells in the induction of nativiral CTL responses【J】. Curr Opin Immunol,2002,14(4):471-477
    19 Silvija JJ,Rolf D P,Stein S L,etal. Evaluation of dendritic cells loaded with paoptotic cancer cells or expressing tumour mRNA as Potential cancer vaccines against leukemia[J].BMC Canec,2005,5:20
    20 Adams M, Navabi H, Jasani B, et al. Dendritic cell(DC)based therapy for cervical cancer:use of DC pulsed with tumour lysate and matured with anovel synthetic clinically non-toxic double stranded RNA analogue poly[I]:poly[C(12)U](AmpligenR) vaccine,2003,21(7-8):787-790
    21 Hung CF. Monie A.Alvarez RD , et al.. DNA vaccines for cervical cancer: from bench to bedside. [J] Exp Mol Med. 2007 Dec 31;39(6):679-89
    22 Wang TL, Ling M, Shih IM,et al. Intramuscular administration of E7-transfected dendritic cells generates the most potent E7-specific anti-tumor immunity[J].Gene Ther,2000,7(9):726-733
    23 Kim D, Hoory T, Wu T C,et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life and intracellular targeting strategies with a strategy to boost CD4+ T cell[J]. Hum Gene Ther, 2007,18(11):1129-1139
    24 Kyte JA,Mu L,Aamdal S,et al.PhaseⅠ/Ⅱtrial of meanoma therapy with dendritic cells transfected with autoogous tumor-mRNA [J]. Cancer Gene Ther, 2006, 1(10):905
    25 Dell K, Klein C, Gissmann L. Comparison of DNA-and mRNA- transfected mouse dendritic cells as potential vaccines against the human papillomavirus type 16 associated oncoprotein E7[J]. Antivir Ther, 2008,13(4):495-509
    26 Kim TW, Hung CF, Juang J,et al. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Ther, 2004, 11(3):336-342
    27 Kuppeveld FJ,de Jong A,Dijkman HB,et al.Studies towards the potential of polivoirus as a vector for the expression of HPV 16 virus-like-particles[J]. FEMS Immunol Med Microbiol,2002;34(3):201~208
    28 Naka T,Iwahashi M,Nakamura M,et al.Tumor vaccine therapy against recrudescent tumor using dendritic cells simultaneously transfected with tumor RNA and granulo-cyte macrophage colony-stimulating factor RNA [ J].Cancer Sci,2008,99(2):407
    29 Miller PW, Sharma S, Stolina M, et al. Interatumoral administration of adenoviral interleukin 7 gene modified dendritic cellsaugments specific antitumor immunity andachieves tumor eradication.Human Gene Therapy,2000,11(1):53-65
    30 Terando A, Chang AE. Applications of gene transfer to cellular immun- otherapy[J]. Surg Oncol Clin North Am, 2002,11(3):621-643
    31 Hao S,Bai O,Yuan J,et al.Dendritic cell-derived exosomes stimulate stronger CD8+CTL responses and anti-tumor immunity than tumor cell-derived exosomes[J].Cell Mol Immunol,2006,3(3):205
    32 Walgate R.Vaccine against cervical cancer passes“proof of principle”[J]. Bull World Health Organ,2003;81(1)
    33 Matsumoto S,Saito H,Tsujitani S,et al.Allogeneic gas-tric cancer cell-dendritic cell hybrids induce tumor antigen(carcinoembryonic antigen) specific CD8+T cells[J].Cancer Immunol Immunother,2006,55(2):131
    34 Adams M,Borysiewiczl L,Fiander A,et al.Clinical studies of human papillom vaccines in pre-invasive and invasive cancer[J]. Vaccine,2001, 19(17-19):25 49-2556
    35 Simova J, Bieblova J, Jandlova T, et al. Immunotherapy of HPV16-associated tumours with tumour cell line/dendritic cell line (TC-1/DC2.4) hybrid vaccines. Folia Biol, 2003,49(5):203-206
    36 Walgate R.Vaccine against cervical cancer passes“proof of principle”[J]. Bull World Health Organ,2003;81(1):73
    37 Bubenik J al. Genetically modified cellular vaccines for therapy of human papilloma virus type 16 (HPV 16)-associated tumours. [J] Curr Cancer Drug Targets. 2008 May;8(3):180-6
    1王敏,宋磊,姚立红,等.223例健康育龄妇女阴道内乳酸杆菌菌群的鉴定[J].中国妇产科临床杂志,2009,10(3):200-203
    2石玫.乳酸杆菌和线索细胞对细菌性阴道病的诊断231例分析[J].中国误诊学杂志,2008,8(5):222
    3杨常敏,骆志成,周晓黎,等.外阴阴道念珠菌病阴道乳酸杆菌的分布及作用[J].中国艾滋病性病,2007,13(3):20.
    4 De Moreno de LeBlaIlc A,Matar c,IJeBlanc N,et.al.Effects of milk fememed by Lactobacillus helveticus R389on a murine breast cance- rmodel[J].Breast cancer Res,2005,7(4):R477-486
    5 Rowland I.Probiotics and coloIectal cancerrisk[J].Br J Nutr,2004,9l(6):805-807
    6 DENNY L. The prevention of cervical cancer in developing countries [J]. BJOG, 2005, 112(9): 1204-1212
    7 Stoler M H1Human papillomavirus and cervical neoplsia:a model for carcinogenesis.Int J Gynaecol Pathol,2000,19(1):16-281
    8 Korshunov VM, Kafarskaia LI, Bagirova MSh,et al. The effect of Sol-coTrichovac on the vaginal microflora of patients with a papillo- mavirus IFNection associatedwith a cervical intraepithelial neoplasm. ZhMikrobi-ol Epidemiol Immunobiol, 1994,5:13-17
    9曹卉,李秀真,曹蕊,梁卫平.乳酸杆菌与顺铂对小鼠宫颈癌抑瘤作用比较. <济宁医学院学报> 2004. Vol 27( 4.) 31
    10孙建芝,贾继辉,曲伟等.多种乳酸杆菌粘附活性的研究<医学检验与临床> 2006 Vol 17( 5.) 38-38
    11 Cortes-Perez NG, Azevedo V, Alcocer-González JM, et.al Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococ- cuslactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target. 2005 Feb;13(2):89-98
    12 TomasMS, Nader-MaciasME. Comparison of the growth and hydrogen peroxide production by vaginal probiotic lactobacilli under differentculture conditions [J]. Am J Obstet Gyneco,l2003, 188(1) : 35-44
    13 Lee HS, Han SY, Bae EA, et al. Lacticacid bacteria inhibit proinf- lammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice [J]. Int Immunopharmacol, 2008,8(4):574-580
    14王丽莉,陈其御.产H202:乳酸杆菌对大肠杆菌的体外拮抗作用.基础医学与临床,2006,26(1):88-91
    15 Pascual LM, Daniele MB, Pajaro C Lactobacillus sPecies isolated from the vagina: identification Hydrogen Peroxide Production And nonoxynol- 9 resistance. Contraception 2006,73(1):78-81
    16 Kitazawa H,et al.Immunostimulatory oligonucleotide,CpG-like motif exists inLactobacillus delbrueckii ssp.bulgaricus NIAI B6.Int J Food Microbiol,2003,(85)122:11-21
    17 Takahashi T,et al.Antitumor effects of the in-travesical instillation of heat killed cell of the Lactobacillus casei strain Shirota on the murine orthotopic bladder tumor MBT22.J Urol,2001,(166)6:2506-2511
    18 Lammers KM,et al.Immunomodulatory effects of probiotic bacteria DNA:IL-1and IL-10 response in human peripheral blood mononuclear cells.FEMS Immunol Med Microbiol,2003,(38)2:165-172
    19 Murosaki S, Muroyama K, Yamamoto Y, et al. Antitumor effect ofheat-killedLactobacillus plantarumL-137 through restoration of impaired interleukin-12 production in tumor-bearing mice, Cancer Immunol Imm- unother, 2000,49(3):157-164
    20 Louise Hjerrild Zeuthen,* Hanne Risager Christensen,? and Hanne Fr?ki?r Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Factor Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria J Clin Vaccine Immunol. 2006 March; 13(3): 365-375
    21 Heui DongP, ChangHo R. Antimutagenic activity of lactobacillus plan-tarum KLAB21 isolated from Kimchi Korean fermented vegetablesBiotechnol Lett, 2001,23(19):1583-1589
    22李秀真,朱万浮,曹卉,等.乳酸杆菌诱导小鼠宫颈鳞癌U14细胞凋亡的动物实验[J].中华微生物和免疫学杂志,2004,24(4):268-271
    23 Aires KA, Cianciarullo AM, Carneiro SM, Villa LL, Boccardo E, Pérez-Martinez G, Perez-Arellano I, Oliveira ML, Ho PL.Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl Environ Microbiol. 2006 Jan;72(1):745-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700