抗白介素6单克隆抗体抑制小鼠心脏移植急性排斥反应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究Th17细胞及其相关细胞因子IL-17在小鼠心脏移植急性排斥反应中的表达及意义。
     方法:建立小鼠颈部异位心脏移植模型,C57小鼠作为受体,BALB/c小鼠作为供体或受体,实验动物随机分为同系移植组和同种异体移植组,观察2组移植心脏的存活时间。应用realtime-PCR检测各组移植心脏中IL-17、RORγt、IFN-γmRNA在移植术后第1天至第7天的动态表达水平;Western blot检测各组移植心脏中IL-17、RORγt、IFN-γ在移植术后第1、3、5、7天的表达水平;HE染色检测移植术后第7天各组移植物中淋巴细胞浸润情况;免疫荧光法观察同种异体移植组术后第7天移植心脏中CD4+、CD8+T细胞的浸润情况,并检测CD4+、CD8+T细胞中细胞因子IL-17的表达。
     结果:同种异体移植组中,IL-17和RORγtmRNA的表达均早于IFN-γ,在移植术后第1天即可于移植心脏中检测到两者的表达,而IFN-γmRNA在移植术后第2天才可检测到表达,三者mRNA的转录水平伴随移植排斥反应的进程均逐渐升高。Western blot检测各组移植物中IL-17、RORγt、IFN-γ蛋白表达亦得出相似的结果。免疫荧光结果显示,移植术后第7天同种异体移植组移植心脏中有大量CD4+、CD8+T细胞浸润,而细胞因子IL-17主要由CD4+T细胞即Th17细胞分泌。
     结论:Th17细胞参与了小鼠同种异体心脏移植急性排斥反应的发生和发展,对移植脏器中细胞因子IL-17的检测可作为急性排斥反应早期诊断的预见性和特异性指标。
     目的:观察应用anti-IL-6 mAb对同种异体小鼠心脏移植急性排斥反应的抑制作用,并探讨其可能的作用机制。
     方法:以Balb/c和C57小鼠分别作为供受体,建立小鼠心脏移植急性排斥反应模型。实验动物随机分为anti-IL-6 mAb组、anti-IL-17 mAb组及rat-IgG对照组,术后每日通过触诊受鼠颈部移植心脏观察各组小鼠移植心脏存活时间并结合组织学检测。应用realtime-PCR检测各组移植心脏中细胞因子IL-17、IFN-γ及Th17细胞特异性转录因子RORγtmRNA表达水平,流式细胞术分别检测各组受鼠脾脏CD4+、CD8+T细胞中IL-17、IFN-γ的表达。
     结果:Anti-IL-6 mAb、anti-IL-17 mAb输注均可显著抑制小鼠急性排斥反应的发生,移植心脏存活时间分别延长至(22.0±2.3天)、(13±1.8天),anti-IL-6 mAb组抑制排斥反应发生的效果更加显著。组织病理学结果显示anti-IL-6 mAb输注可减轻移植心肌结构的破坏,移植心脏中浸润的淋巴细胞明显减少。Realtime-PCR结果显示,anti-IL-6 mAb组移植心脏中IL-17、IFN-γ和RORγtmRNA的转录水平较rat-IgG对照组及未治疗组显著下降,anti-IL-17 mAb输注可部分下调IFN-γmRNA的转录水平。流式细胞仪检测结果显示anti-IL-6 mAb组受鼠脾脏CD4+及CD8+T细胞中IFN-γ的比例均有不同程度的下降,且CD4+IFN-γ+T细胞较CD8+IFN-γ+T细胞下降更为明显,同时CD4+IL-17+T(Th17)细胞的比例在anti-IL-6 mAb组中亦明显下降。
     结论:anti-IL-6 mAb可有效抑制急性排斥反应小鼠体内Th17和Th1细胞的活化,并延长同种异体心脏移植物的存活时间。
     目的:探讨CD4+CD25+Foxp3+调节性T细胞在anti-IL-6 mAb抑制同种异体心脏移植急性排斥反应中的作用及机制。
     方法:以Balb/c和C57BL/6小鼠分别作为供受体,建立小鼠心脏移植急性排斥反应模型。实验动物随机分为anti-IL-6 mAb组、anti-IL-17mAb组及rat-IgG对照组,流式细胞仪检测各组受鼠移植术后第7天脾脏及移植心脏中CD4+CD25+Foxp3+调节性T细胞的比例。分别于anti-IL-6 mAb组术后第1、3、5天给予anti-CD25 mAb输注,于术后第7天取受鼠脾脏及移植心脏检测CD4+CD25+Foxp3+调节性T细胞的比例,观察移植心脏存活时间并结合组织学检查;realtime-PCR检测anti-CD25 mAb输注后第3、7、10天移植心脏中IFN-γmRNA的表达情况。使用去增殖的BALB/c或C3H小鼠脾脏淋巴细胞作为刺激细胞,各实验组受鼠移植物来源的淋巴细胞作为反应细胞,行混合淋巴细胞培养检测细胞增殖情况。
     结果:Anti-IL-6 mAb组移植术后第7天CD4+CD25+T细胞的比例明显升高,CD4+CD25+Foxp3+调节性T细胞占CD3+T细胞的比例表现出同样的趋势,而anti-IL-17mAb组与未治疗组比较无明显差异。Anti-CD25 mAb输注anti-IL-6 mAb组明显缩短了小鼠移植心脏的存活时间(10.6±1.2天),伴随着CD4+CD25+Foxp3+调节性T细胞占CD3+T细胞的比例明显下降,同时移植物中IFN-γmRNA的转录水平升高。混合淋巴细胞培养结果显示anti-IL-6 mAb组受鼠淋巴细胞经刺激后其细胞增殖程度较rat-IgG对照组、anti-IL-6 mAb+anti-CD25 mAb组及未治疗组明显下降,而针对来自第三方C3H小鼠的脾脏淋巴细胞刺激则无此抑制效应。
     结论:Anti-IL-6 mAb延长小鼠移植心脏存活可能是通过促进移植小鼠脾脏及移植心脏中CD4+CD25+Foxp3+调节性T细胞的产生而实现的。使用anti-CD25 mAb降低CD4+CD25+T细胞水平抑制了anti-IL-6 mAb的抗排斥效应,并且伴随着移植物中IFN-γmRNA转录水平的升高。
Objective:To investigate the role of Th17 cell and its cytokines on cardiac acute allograft rejection in mice.
     Methods:The heterotopic cardiac transplantation models was established, C57BL/6 mice were used as recipients, whereas BALB/c mice were used as donors, recipients mice were randomly divided into two groups:isograft group and untreated allogeneic group. Mean survival time (MST) was measured. The grafts of recipient in each group were harvested on postoperative day (POD) 1 to 7. The expression of IL-17、RORγt and IFN-γwere detected by realtime-PCR and Western blot. The expression of IL-17 in CD4+or CD8+T cells were observed on POD 7 by immunofluorescence techniques.
     Results:The examination of allograft cytokines mRNA showed that IL-17 and RORyt mRNA expressed earlier on the first postoperative day. However we could not find the same early appearance on IFN-γ. Allograft expression for IL-17, RORyt and IFN-γincreased significantly in untreated allogeneic group throughout the experimental time. Immunofluorescence staining of the allografts indicated that both CD4+and CD8+T cells were present on POD 7, but the majority of the graft-infiltrating lymphocytes in untreated allogeneic group were IL-17-producing CD4+T cells.
     Conclusion:Th17 cells may play an important role in the development of cardiac transplant rejection. IL-17 could serve as a predictive parameter for allograft rejection in the future.
     Objective:To investigate the effects of anti-IL-6 mAb on acute allograft rejection and the potential mechanisms in a mouse heart transplantation model.
     Methods:The heterotopic cardiac transplantation models was performed from Balb/c to C57 mice. The anti-IL-6 mAb was administered to recipient mice after cardiac grafting. Results were compared with administration of anti-IL-17 mAb or rat-IgG The strength and quality of cardiac impulses were assessed by palpation on daily basis in combination of histological evaluation of graft. Quantitative polymerase chain reaction assay and flow cytometric analysis were employed to determine the mRNA expression of pro-inflammatory cytokines in graft-infiltrating lymphocytes and splenocytes of recipients, respectively.
     Results:The results showed that the cardiac allograft survival in anti-IL-6 mAb treated mice prolonged significantly compared to that of the untreated or anti-IL-17 mAb treated mice (22.0±2.3 d, P<0.01). Histological analysis of cardiac allografts harvested on POD 7 in anti-IL-6 mAb treated mice revealed relatively intact myocardium and remarkable reduced infiltration of inflammatory cells. The mRNA expression of IL-17、IFN-γand RORγt in heart treated with anti-IL-6 mAb was markedly reduced. Whereas administration of anti-IL-17 mAb only modestly attenuated the mRNA expression of IFN-γ. Anti-IL-6 mAb treatment suppressed the production of IFN-γin both CD4+and CD8+T cells. The proportion of CD4+IFN-γ+cells in the recipients treated with anti-IL-6 mAb decreased significantly than those mice treated with anti-IL-17 mAb or rat-IgG or untreated. The population of T cells expressing IFN-γreduced more markly for CD4+T cells than for CD8+T cells. Moreover, compared with untreated mice, the proportion of CD4+IL-17+ cells (Th17) in anti-IL-6 mAb treated was dramatically decreased, whereas slightly reduced IL-17-producing CD8+T cells in the spleen.
     Conclusion:Administration with anti-IL-6 mAb may be protective against acute rejection after cardiac transplantation through suppressing the activation of effector Th17 and Thl cells.
     Objective:To assess the proportion and function of CD4+CD25+Foxp3+regulatory T cells in anti-IL-6 mAb treated mice.
     Methods:The heterotopic cardiac transplantation models was performed from Balb/c to C57 mice. The anti-IL-6 mAb or anti-IL-17 mAb or rat-IgG was administered to recipient mice after cardiac grafting. The proportion of CD4+CD25+Foxp3+Treg cells were determined in the allograft and spleen in POD 7 by flow cytometry. Anti-CD25 mAb was administered on POD 1,3, and 5 to delete CD4+CD25+Foxp3+Treg cells in anti-IL-6 mAb treated mice and graft survivals were compared. Allograft of recipients were collected on POD 3,7 and 10, then subjected to expression analysis of IFN-γby real-time PCR. Mitomycin-treated BALB/c or C3H splenocytes were used as stimulator cells, T cells of GIL isolated from each treatment recipients on POD 5 were used as responder cells, and lymphocytes proliferations were observed.
     Results:The proportion of CD4+CD25+T cells increased in both spleen and allografts pre-treated with anti-IL-6 mAb, moreover, the average percentage of CD4+CD25+Foxp3+ Cells in the CD3+T-cell pool showed significant increase on POD 7 after anti-IL-6 mAb administration in the spleen and allografts compared to those recipients pre-treated with rat-IgG or untreated. Whereas the anti-IL-17 mAb treated mice have no evident increased proportion of Tregs. Administration of anti-CD25 mAb to anti-IL-6 mAb treated mice decreased the absolute number of CD4+CD25+Foxp3+Tregs. The MST of grafts in anti-IL-6 mAb+anti-CD25 mAb treated mice was 10.6±1.2 d, which was slightly longer than untreated mice (P>0.05). Moreover, anti-IL-6 mAb treated mice receiving anti-CD25 mAb displayed restored the expression of IFN-y when compared with mice treated with anti-IL-6 mAb alone as determined by real-time PCR. In comparison with GIL from untreated mice, GIL from allograft of anti-IL-6 mAb treated mice showed a profound inhibition of proliferation in response to donor cells, but not to third-party cells.
     Conclusion:Increased CD4+CD25+Foxp3+Treg cells play an important role in anti-IL-6 mAb treated mice, at least partly via decreasing the expression of IFN-γ.
引文
1. Barnes EJ, Abdel Rehim MM, Goulis Y, et al. Applications and limitations of blood eosinophilia for the diagnosis of acute cellular rejection in liver transplantation. Transplant 2003; 3 (4):432-438.
    2. Constant SL, Bottomly K. Induction of Thl and Th2 CD4+T cell responses:the alternative approaches. Annu Rev Immunol 1997; 15:297-322.
    3. Zheng W, Flavell RA. The transcription factor GATA 3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89 (4):587-596.
    4. Saleem S, Konieczny B T, Lowry R P, et al. Acute rejection of vascularized heart allografts in the absence of IFN gamma. Transplantation,2006,62 (12):1908-1911.
    5. Nickerson P, Zheng XX, Teiger J, et al. Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transpl Immunol,1996,4 (1):81-85.
    6. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6 (11):1069-1070.
    7. Miossec P. Interleukin-17 in rheumatoid arthritis:if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 2003; 48 (3):594 601.
    8. Garrett-Sinha LA, John S, Gaffen SL. IL-17 and the Th17 lineage in systemic lupus eryhtematosus. Curr Opin Rheumatol 2008; 20 (5):519-525.
    9. Xiao M, Wang C, Zhang J, et al. IFN gamma promotes papilloma development by upregulating Th17 associated inflammation. Cancer Res 2009; 69 (5):2010-2017.
    10. Leveque L, Deknuydt F, Bioley G, et al. Interleukin 2 mediated conversion of ovarian cancer associated CD4+regulatory T cells into proinflammatory interleukin 17 producing helper T cells. J Immunother 2009; 32 (2):101-108.
    11. Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 2008; 14 (11):3254-3261.
    12. Happel KI, Zheng M, Young E, et al. Cutting edge:roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003; 170 (9):4432-4436.
    13. Loong CC, Hsieh HG, Lui WY, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197 (3):322-332.
    14. Hsieh HG, Loong CC, Lui WY, et al. IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transpl Int 2001; 14 (5):287-298.
    15. Burrell BE, Csencsits K, Lu G, et al. CD8+Th17 mediate costimulation blockade resistant allograft rejection in T-bet deficient mice. J Immunol 2008; 181 (6):3906-3914.
    16. Yuan YX, Paez CJ, Schmitt KI, et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205 (13):3133-3144.
    17. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090):235-238.
    18. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-β induces development of the T(H)17 lineage. Nature 2006; 441 (7090):231-234.
    19. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24 (2):179-189.
    20. Sakaguchi S. Regulatory T cells:Key controllers of immunologic self-tolerance. Cell 2000; 101 (5):455-458.
    21. Morse MA, Clay TM, Mosca P, et al. Imnunoregulatory T cells in cancer immunotherapy. Expert Opin Biol Ther 2002; 2 (8):827-834.
    22. Shevach EM, Mchugh RS, Piccirillo CA, et al. Control of T-cell activation by CD4+CD25+suppressor T cells. Immunol Rev 2001; 182:58-67.
    23. Pasare C, Medzhitov R. Toll dependent control mechanisms of CD4 T cell activation. Immunity 2004; 21 (5):733-741.
    24. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448 (7152):484-487.
    25. Moller B, Villiger PM. Inhibition of IL-1, IL-6, and TNF alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol 2006; 27(4):391-408.
    26. Serada S, Fujimoto M, Mihara M, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Thl7 cells and Thl cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2008; 105 (26):9041-9046.
    1. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24 (2):179-189.
    2. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090):235-238.
    3. Mangan PR, Harrington LE, O Quinn DB, et al. Transforming growth factor beta induces development of the T (H) 17 lineage. Nature 2006; 441 (7090):231-234.
    4. Miossec P. Interleukin-17 in rheumatoid arthritis:if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 2003; 48 (3):594 601.
    5. Garrett Sinha LA, John S, Gaffen SL. IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 2008; 20 (5):519-525.
    6. Xiao M, Wang C, Zhang J, et al. IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 2009; 69 (5):2010-2017.
    7. Leveque L, Deknuydt F, Bioley G, et al. Interleukin 2-mediated conversion of ovarian cancer-associated CD4+regulatory T cells into proinflammatory interleukin 17-producing helper T cells. J Immunother 2009; 32 (2):101-108.
    8. Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 2008; 14 (11):3254-3261.
    9. Happel KI, Zheng M, Young E, et al. Cutting edge:roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. Immunol 2003; 170 (9):4432-4436.
    10. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004; 21 (4):467-476.
    11. Saleem S, Konieczny BT, Lowry RP, et al. Acute rejection of vascularized heart allografts in the absence of IFNgamma. Transplantation 1996; 62 (12):1908-1911.
    12. Konieczny BT, Dai Z, Elwood ET, et al. IFN-gamma is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. J Immunol 1998; 160 (5):2059-2064.
    13. Zhou P, Szot GL, Guo Z, et al. Role of STAT4 and STAT6 signaling in allograft rejection and CTLA4-Ig-mediated tolerance. Immunol 2000; 165 (10):5580-5587.
    14. Fanslow WC, Clifford KN, Park LS, et al. Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. Immunol 1991; 147 (2):535-540.
    15. Nickerson P, Zheng XX, Steiger J, et al. Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transpl Immunol 1996; 4 (1):81-85.
    16. Zhai Y, Ghobrial RM, Busuttil RW, et al. Thl and Th2 cytokines in organ transplantation:paradigm lost? Crit Rev Immunol 1999; 19 (2):155-172.
    17. Vanauderaerde BM, Wuyts WA, Dupont LJ, et al. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro:a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J Heart Lung Transplant 2003; 22 (11):1280-1283.
    18. Chen ZH. A technique of cervical heterotopic heart transplantation in mice. Transplantation 1991; 52 (6):1099-1101.
    19. Li H, Chen J, Huang A, et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA 2000; 97 (2):773-778.
    20. Starnes T, Broxmeyer HE, Robertson MJ, et al. Cutting edge:IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. Immunol 2002; 169 (2):642-646.
    21. Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17 Rhl. J Biol Chem 2001; 276 (21):1660-1664.
    22. Starnes T, Robertson MJ, Sledge G, et al. Cutting edge:IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. Immunol 2001; 167 (8):4137-4140.
    23. Shi Y, Ullrich SJ, Zhang J, et al. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J Biol Chem 2000; 275 (25):19167-19176.
    24. Fossiez F, Djossou O, Chomarat P, et al. T cell interlkin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183 (6):2593-2603.
    25. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.Nat Immunol 2005; 6 (11):1133-1141.
    26. Loong CC, Hsieh HQ Lui WY, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197 (3):322-332.
    27. Merville P, Pouteil-Noble C, Wijdenes J, et al. Detection of single cells secreting IFN-gamma, IL-6, and IL-10 in irreversibly rejected human kidney allografts, and their modulation by IL-2 and IL-4. Transplantation 1993; 55 (3):639-646.
    28. Van KC, Boonstra JG, Paape ME et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998; 9 (8):1526-1534.
    29. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J 2006; 27 (4):779-787.
    30. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation 2001; 72 (2):348-350.
    31. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection:IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol 1999; 162 (1):577-584.
    32. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in alloimmunity:A novel IL-17 antagonist promotes heart graft survival. Transplant Proc 1999; 31 (1-2):93-95.
    1. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24 (2):179-189.
    2. Mangan PR, Harrington LE, O Quinn DB, et al. Transforming growth factor-beta induces development of the T (H) 17 lineage. Nature 2006; 441 (7090):231-234.
    3. Fanslow WC, Clifford KN, Park LS, et al. Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. Immunol 1991; 147 (2):535-540.
    4. Nickerson P, Zheng XX, Steiger J, et al. Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transpl Immunol 1996; 4 (1):81-85.
    5. Zhai Y, Ghobrial RM, Busuttil RW, et al. Thl and Th2 cytokines in organ transplantation:paradigm lost? Crit Rev Immunol 1999; 19 (2):155-172.
    6. Burrell BE, Csencsits K, Lu G, et al. CD8+Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. J Immunol 2008; 181 (6):3906-3914.
    7. Yuan YX, Paez-Cortez J, Schmitt-Knosalla I, et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205 (13): 3133-3144.
    8. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation 2001; 72 (2):348-350.
    9. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection:IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol 1999; 162 (1):577-584.
    10. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090):235-238
    11. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 2006; 441 (24):231-234
    12. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24 (2):179-189
    13. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1 beta and 6 but not transforming growth factor beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8 (9):942-949
    14. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8 (9):950-957
    15. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature 2007; 448 (7152):484-487.
    16. Moller B, Villiger PM. Inhibition of IL-1, IL-6, and TNF alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol 2006; 27 (4):391-408.
    17. Serada S, Fujimoto M, Mihara M, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2008; 105 (26):9041-9046.
    18. Korn T, Mitsdoerffer M, Croxford AL, et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+regulatory T cells. Proc Natl Acad Sci USA 2008; 105 (47):18460-18465.
    19. Loong CC, Hsieh HG, Lui WY, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. Pathol 2002; 197 (3):322-332.
    20. Hsieh HG, Loong CC, Lui WY, et al. IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transpl Int 2001; 14 (5):287-298.
    21. Vanaudenaerde BM, Wuyts WA, Dupont LJ, et al. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro:a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. Heart Lung Transplant 2003; 22 (11):1280-1283.
    22. Jovanovic DV, Battista JA, Martel J, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-1β nd TNF-α, by human macrophages. Immunol 1998; 160 (7):3513-3521.
    23. Wang CY, Naka Y, Liao H, et al. Cardiac graft intercellular adhesion molecule-1 (ICAM-1) and interleukine-1 expression mediate primary isograft failure and induction of ICAM-1 in organs remote from the site of transplantation. Circ Res 1998; 82 (6): 762-772.
    24. Hirahara N, Nio Y, Sasaki S, et al. Reduced invasiveness and metastasis of Chinese hamster ovary cells transfected with human interleukin-17 gene. Antic-ancer Res 2000; 20 (5A):137-142.
    1. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol,2006; 126 (1):15-24
    2. Sakaguchi S. Regulatory T cells:Key controllers of immunologic self-tolerance. Cell 2000; 101 (5):455-458.
    3. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat Immunol 2003; 4 (36):330-336.
    4. Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD4+CD25+regulatory T cells. Int Immunol 2004; 16 (11):1643-1656.
    5. Hong J, Li N, Zhang X, et al. Induction of CD4+CD25+regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA 2005; 102 (18):6449-6454.
    6. Pasare C, Medzhitov R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 2004; 21 (5):733-741
    7. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T (H)17 cells. Nature 2007; 448 (7152):484-487
    8. Kohm AP, McMahon JS, Podojil JR, et al. Cutting Edge:Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol,2006,176 (6):3301-3305.
    9. Jiang X, Morita M, Sugioka A, et al. The importance of CD4+CD25+regulatory T cells in mouse hepatic allograft tolerance. Liver Transpl 2006; 12 (7):1112-1118.
    10. Li W, Kuhr CS, Zheng XX, et al. New Insights into Mechanisms of Spontaneous Liver Transplant Tolerance:The Role of Foxp3-Expressing CD25+CD4+Regulatory T cells. American Journal of Transplantation,2008,8 (8):1639-1651.
    11. Li W, Carper K, Liang Y, Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance. Transplant Proc,2006,38 (10):3207-3208.
    12. Vlad G, Ho EK, Vasilescu ER, et al. Anti-CD25 treatment and FOXP3-positive regulatory T cells in heart transplantation. Transpl Immunol 2007; 18 (1):13-21.
    13. Pan H, Lu HM, Hu WM, et al. Anti-CD25 mAb, anti-IL 2 mAb, and IL2 block tolerance induction through anti-CD 154 mAb and rapamycin in xenogeneic islet transplantation. Transplant Proc 2007; 39 (10):3452-3454.
    14. Tenorio EP, Olguin JE, Fernandez J, et al. Reduction of Foxp3+cells by depletion with the PC61 mAb induces mortality in resistant BALB/c mice infected with Toxoplasma gondii. J Biomed Biotechnol 2010; 12 (9):786078-786083.
    15. Serada S, Fujimoto M, Mihara M, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Thl cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2008; 105 (26):9041-9046.
    16. Selvaraj RK, Geiger TL. Mitigation of experimental allergic encephalomyelitis by TGF-induced Foxp3 regulatory T lymphocytes through the induction of anergy and infectious tolerance. J Immunol 2008; 180 (5):2830-2838.
    17. Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997; 6 (3):315-325.
    18. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090):235-238.
    19. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factorβ induces development of the TH17 lineage. Nature 2006; 441 (36):231-234.
    20. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24 (2):179-189.
    21. Dai Z, Li Q, Wang Y, et al. CD4+CD25+regulatory T cells suppress allograft rejection mediated by memory CD8+T cells via a CD30-dependent mechanism. J Clin Invest 2004; 113 (2):310-317.
    22. Mosmann TR, Sad S. The expanding universe of T-cell subsets:Th1, Th2 and more. Immunol 1996; 17 (3):138-146.
    23. Szabo SJ, Sullivan BM, Stemmann C, et al. Distinct effects of T-bet in TH1 lineage commitment and IFN gamma production in CD4 and CD8 T cells. Science 2002; 295 (5553):338-342.
    24. Piccirillo CA, Shevach EM. Cutting edge:control of CD8+T cell activation by CD4+ CD25+immunoregulatory cells. J Immunol 2001; 167 (3):1137-1140.
    1. Castellino F, Germain RN. Cooperation between CD4+and CD8+T cells:when, where, and how. Annu Rev Immunol 2006; 24 (55):519-540.
    2. Constant SL, Bottomly K. Induction of Thl and Th2 CD4+T cell responses:the alternative approaches. Annu Rev Immunol 1997; 15 (3):297-322.
    3. Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment. Cell 2000; 100 (6):655-669.
    4. Szabo SJ, Sullivan BM, Stemmann C, et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 2002; 295 (5553):338-342.
    5. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89 (4):587-596.
    6. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nature Immunol 2003; 4 (4):330-336.
    7. Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA2005; 102 (14):5126-5131.
    8. Sakaguchi S. Regulatory T cells:Key controllers of immunologic self-tolerance. Cell 2000; 101 (5):455-458.
    9. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6 (11):1133-1141.
    10. Lubberts E, Joosten LA, Schwarzenberger P, et al. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm Res 2002; 51 (2):102-104.
    11. Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24 (6):677-688.
    12. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4 (+) CD25 (+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193 (11):1285-1294.
    13. McGeachy MJ, Cua DJ. T cells doing it for themselves:TGF-β regulation of Thl and Th17 cells. Immunity 2007; 26 (5):547-549.
    14. Liblau RS, Singer SM, McDevitt HO. Thl and Th2 CD4+T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 1995; 16 (1):34-38.
    15. Matthys P, Vermeire K, Mitera T, et al. Anti-IL-12 antibody prevents the development and progression of collagen-induced arthritis in IFN gamma receptor-deficient mice. Eur J Immunol 1998; 28 (7):2143-2151.
    16. Ferber IA, Brocke S, Taylor-Edwards C, et al. Mice with a disrupted IFN gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996; 156(1):5-7.
    17. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421 (6924): 744-748.
    18. Li H, Chen J, Huang A et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA 2000; 97 (2): 773-778.
    19. Starnes T, Broxmeyer HE, Robertson MJ, et al. Cutting edge:IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol 2002; 169 (2):642-646.
    20. Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homologIL-17 Rhl. J Biol Chem 2001; 276 (2):1660-1664.
    21. Starnes T, Robertson MJ, Sledge G, et al. Cutting edge:IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 2001; 167 (8):4137-4140.
    22. Shi Y, Ullrich SJ, Zhang J, et al. A novel cytokine receptor ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J Biol Chem 2000; 275 (25):19167-19176.
    23. Ferretti S, Bonneau O, Dubois GR, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide induced airway neutrophilia:IL-15 as a possible trigger. J Immunol 2003; 170 (4):2106-2112.
    24. Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108 (3):430-438.
    25. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448 (7152):480-483.
    26. Shin HC, Benbernou N, Esnault S, et al. Expression of IL-17 in human memory CD45RO+T lymphocytes and its regulation by protein kinase A pathway. Cytokine 1999; 11 (4):257-266.
    27. Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 2001; 276 (12):1660-1664.
    28. Miyamoto M, Prause O, Sjostrand M, et al. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 2003; 170 (9):4665-4672.
    29. Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3 (6):811-821.
    30. Attur MG, Patel RN, Abramson SB, et al. Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum 1997; 40 (6):1050-1053.
    31. Laan M, Lotvall J, Chung KF, et al. IL-17 induced cytokine release in human bronchial epithelial cells in vitro:role of mitogen activated protein (MAP) kinases. Br J Pharmacol 2001; 133 (1):200-206.
    32. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183 (6): 2593-2603.
    33. Ferretti S, Bonneau O, Dubois GR, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide induced airway neutrophilia:IL-15 as a possible trigger. J Immunol 2003; 170 (4):2106-2112.
    34. Ye P, Rodriguez FH, Kanaly S, et al. Requirement of interleukin-17 receptor signaling for lung CXC chemokine and granulocyte colony stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 194 (4):519-527.
    35. Witowski J, Pawlaczyk K, Breborowicz A, et al. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. J Immunol 2000; 165 (10):5814-5821.
    36. Yao Z, Painter SL, Fanslow WC, et al. Human IL-17:a novel cytokine derived from T cells. J Immunol 1995; 155 (12):5483-5486.
    37. You S, Thiebl E, Alyana K, et al. Transforming growth factor beta and Tcell mediated immuno regulation in the control of autoimmune diabetes. Immunol Rev 2006; 212 (11):185-202.
    38. Mangan PR, Harrington LE, OQuinn DB, et al. Transforming growth factor beta induces development of the T(H) 17 lineage. Nature 2006; 441 (7090):231-234.
    39. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17 producing T cells. Immunity 2006; 24 (2):179-189.
    40. Bettelli E, Korn T, KuchrooVK. Th17:the third member of the effector T cell trilogy. CurrOpin Immunol 2007; 19 (6):652-657.
    41. Gorelik L, Flavell RA. Abrogation of TGF-P signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12 (2):171-181.
    42. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature 2007; 448 (7152):484-487.
    43. Langrish CL, Chen NY, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Exp Med 2005; 201 (2):233-240.
    44. Chen Z, Laurence A, Kanno Y, et al. Selective regulatory function of Socs3 in the formation of IL-17 secreting T cells. Proc Natl Acad Sci USA 2006; 103 (21):8137-8142.
    45. Ivanov I, McKenzie BS, Zhou L, et al. The orphan nuclear receptor ROR gammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell 2006; 126 (2):1121-1133.
    46. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28 (1):29-39.
    47. Eberl G, Littman DR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of ROR gammat+cells. Science 2004; 305 (5681):248-251.
    48. Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+CD4+T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001; 167 (1):188-195.
    49. Apostolou I, von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004; 199 (10):1401-1408.
    50. Hoeve MA, Savage ND, BT de, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 2006; 36 (3):661-670.
    51. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17 producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6 (11):1123-1132.
    52. Rangachari M, Mauermann N, Marty RR, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 2006; 203 (8):2009-2019.
    53. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090):235-238.
    54. Pennington DJ, Silva-Santos B, Silberzahn T et al. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 2006; 444 (7122):1073-1077.
    55. Murphy CA, Langrish CL, Chen Y, et al. Divergentproand anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198 (12):1951-1957.
    56. Lubberts E, Joosten LA, vande Loo FA, et al. Reduction of interleukin-17 induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum 2000; 43 (6):1300-1306.
    57. Jovanovic DV, Martel-Pelletier J, Di Battista JA, et al. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/ macrophages:a possible role in rheumatoid arthritis. Arthritis Rheum 2000; 43 (5): 1134-1144.
    58. Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 2003; 100 (10):5986-5990.
    59. Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen induced arthritis in IL-17-deficient mice. J Immunol 2003; 171 (11):6173-6177.
    60. Lubberts E, Koenders MI, Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis:lessons from animalmodels. Arthritis Res Ther 2005; 7 (1):29-37.
    61. Jovanovic DV, Dibattista JA, Martel-Pelletier J, et al. Modulation of TMP-1 synthesis by antiinflammatory cytokines and prostaglandin E2 in interleukin 17 stimulated human monocytes/macrophages. J Rheumatol 2001; 28 (4):712-718.
    62. Ryu S, Lee JH, Kim SI.Il-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes. Clin Rheumatol 2006; 25 (1):16-20.
    63. Chabaud M, Fossiez F, Taupin JL, et al. Enhancing effect of IL-17 on IL-1 induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 1998; 161 (1):409-414.
    64. Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor alpha induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts:a possible role as a 'fine-tuning cytokine'in inflammation processes. Arthritis Rheum 2001; 44 (9): 2176-2184.
    65. LeGrand A, Fermor B, Fink C, et al. Interleukin-1, tumor necrosis factor alpha, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis Rheum 2001; 44 (9):2078-2083.
    66. Hwang SY, Kim HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cells 2005; 19 (2):180-184.
    67. Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103 (9):1345-1352.
    68. Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17:a T cell derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999; 42 (5):963-970.
    69. Chabaud M, Lubberts E, Joosten L, et al. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001; 3 (3):168-177.
    70. Yamada H, Nakashima Y, Okazaki K, et al. Thl but not Th17 cells predominate in the joints of patientswith rheumatoid arthritis. Ann Rheum Dis 2008; 67 (22):1299-1304.
    71. Brentano F, Ospelt C, Stanczyk J, et al. Abundant expression of the IL-23 subunitpl9, but low levels of bioactive IL-23 in the rheumatoid synovium:differential expression and Toll-like receptor-(TLR) dependent regulation of the IL23 subunits, p19 and p40, in rheumatoid arthritis. Ann Rheum Dis 2009; 68 (1):143-150.
    72. Lubberts E. IL-17/Th17 targeting:On the road to prevent chronic destructive arthritis. Cytokine 2008;41(2):84-91.
    73. Saleem S, Konieczny BT, Lowry RP, et al. Acute rejection of vascularized heart allografts in the absence of IFN gamma. Transplantation 1996; 62 (2):1908-1911.
    74. Zhou P, Szot GL, Guo Z, et al. Role of STAT 4 and STAT 6 signaling in allograft rejection and CTLA4-Ig mediated tolerance. J Immunol 2000; 165 (10):5580-5587.
    75. Nickerson P, Zheng XX, Steiger J, et al. Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transpl Immunol 1996; 4 (1):81-85.
    76. KC van, Boonstra JG, Paape ME, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998; 9 (8):1526-1534.
    77. Hsieh HG, Loong CC, Lin CY. Interleukin-17 induces src/MAPK cascades activation in human renal epithelial cells. Cytokine 2002; 19 (4):159-174.
    78. Loong CC, Hsieh HG, Liu WY, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197 (3):322-332.
    79. Vanaudenaerde BM, Wuyts WA, Dupont LJ, et al. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro:a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J Heart Lung Transplant 2003; 22 (11):1280-1283.
    80. Woltman AMHS, Boonstra JG, Gobin SJ, et al. Interleukin-17 and CD40 ligand synergistically enhance cytokine and chemokine production by renal epithelial cells. J Am Soc Nephrol 2000; 11 (11):2044-2055.
    81. Yoshidaa BE, Haquec A, Mizobuchib T, et al. Anti Type V Collagen Lymphocytes that Express IL-17 and IL-23 Induce Rejection Pathology in Fresh and Well Healed Lung Transplants. Am J Transplant 2006; 6 (4):724-735.
    82. Li J, Simeoni E, Fleury S, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg 2006; 29 (5):779-783.
    83. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation 2001; 72 (2):348-350.
    84. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection:IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol 1999; 162 (1):577-584.
    85. Tesar BM, Du W, Shirali AC, et al. Aging Augments IL-17 T Cell Alloimmune Responses. Am J Transplant 2009 (1):54-63.
    86. Hoshino H, Laan M, Sjostrand M, et al. Increased elastase and myeloperoxidase activity associated with neutrophil recruitment by IL-17 in airways in vivo. J Allergy Clin Immunol 2000; 105 (1):143-149.
    87. Ye P, Rodriguez FH, Kanaly S, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 194(4):519-527.
    88. Schwarzenberger P, La RV, Miller A, et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy derived method for in vivo evaluation of cytokines. J Immunol 1998; 161 (11):6383-6389.
    89. Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth related oncogene alpha, and granulocyte colony stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol 2002; 26 (6):748-753.
    90. Rahman MS, Yamasaki A, Yang J, et al. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells:role of MAPK (Erk1/2, JNK, P38) pathways. J Immunol 2006; 177 (6):4064-4071.
    91. Laan M, Palmberg L, Larsson K, et al. Free, soluble interleukin-17 protein during severe inflammation in human airways. Eur Respir J 2002; 19(12):534-547.
    92. Hellings PW, Kasran A, Liu Z, et al. Interleukin 17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 2003; 28 (5):42-50.
    93. Kobayashi T, Okamoto S, Hisamatsu T, et al. IL23 differentially regulates the Th1/ Th17 balance in ulcerative colitis and Crohn's disease. Gut 2008; 57 (12):1682-1689.
    94. Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52 (1):65-70.
    95. Arican O, Aral M, Sasmaz S, et al. Serum levels of TNF alpha, IFN gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005; 2005 (5):273-279.
    96. Homey B, eu-Nosjean MC, Wiesenborn A, et al. Upregulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol 2000; 164 (11):6621-6632.
    97. Matusevicius D, Kivisakk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999; 5 (2): 101-104.
    98. Biesinger B, Muller-Fleckenstein I, Simmer B, et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci USA 1992; 89 (7): 3116-3119.
    99. Patera AC, Pesnicak L, Bertin J, et al. Interleukin 17 modulates the immune response to vaccinia virus infection. Virology 2002; 299 (1):56-63.
    100.Luzza F, Parrello T, Monteleone G, et al. Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori infected human gastric mucosa. J Immunol 2000; 165 (9):5332-5337.
    101. Chung DR, Kasper DL, Panzo RJ, et al. CD4+T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol 2003; 170 (4): 1958-1963.
    102.Hirahara N, Nio Y, Sasaki S, et al. Reduced invasiveness and metastasis of Chinese hamster ovary cells transfected with human interleukin-17 gene. Anticancer Res 2000; 20 (5A):3137-3142.
    103.Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2 dependent angiogenesis. J Immunol 2005; 175 (9):6177-6189.
    104.Kato T, Furumoto H, Ogura T, et al. Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun 2001; 282 (3):735-738.
    105.Steiner GE, Newman ME, Paikl D, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 2003; 56 (3):171-182.
    106.Wrobel T, Mazur G, Jazwiec B, et al. Interleukin-17 in acute myeloid leukemia. J Cell Mol Med 2003; 7 (4):472-474.
    107.Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non small cell lung cancer in SCID mice through promoting CXCR 2 dependent angiogenesis. J Immunol 2005; 175 (9):6177-6189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700