TGF-β体外诱导调节性T细胞的信号机制及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:了解TGF-β家族成员BMP-2/BMP-4是否能够替代TGF-β,或者促进TGF-β体外诱导调节性T细胞(Treg)的能力,及其可能的机制。
     方法:利用免疫磁珠分选出不同基因型小鼠脾脏的Na?ve CD4+细胞,经过TCR刺激,加入IL-2 (20 U/ml),按照不同的培养要求加TGF-β(2 ng/ml), BMP-2 (10 ng/ml), BMP-4 (10 ng/ml)。在体外诱导3天后收集细胞,用细胞内染色检测Foxp3的变化。部分培养条件中加入Noggin,JNK和ERK的阻断剂。Western Blot检测BMP对Smad1磷酸化的影响。另外,将BMP体内注射,观察外周血,淋巴和脾脏内CD4~+CD25~+Foxp3~+T细胞占CD4~+T细胞的比例。分离出脾脏的CD4~+CD25~+T细胞通过混合淋巴细胞培养分析其抑制功能。
     结果:体外TCR刺激的情况下,BMP-2,BMP-4本身并不能够诱导产生Foxp3~+T细胞。Noggin阻断BMP受体,但并不影响TGF-β体外诱导Treg的能力。BMP-4能够增加TGF-β体外诱导Treg的能力。体内注射BMP不能增加Foxp3~+细胞的比例,但能够促进TsA增加Foxp3的能力。BMP本身不能够扩增自然Treg,另外BMP联合TGF-β诱导后的T细胞更能抵抗凋亡。BMP-2,BMP-4除了增加Smad1的磷酸化,主要能够增加ERK,JNK磷酸化来促进Foxp3~+ T细胞的诱导。
     结论:BMP-2,BMP-4单独并不能够诱导Treg;无论在体内还是体外,BMP都能促进TGF-β诱导Treg的能力;BMP这种能力主要依赖于MAKP的ERK和JN K信号。
     目的:探讨TGF-β诱导调节性T细胞和Th17生成中TGF-β下游信号机制,了解这两群细胞体外诱导分化中TGF-β作用的不同信号机制。
     方法:利用Auto MACS来分选出不同基因型小鼠脾脏内的Na?ve CD4~+T细胞。按照调节性T细胞和Th17细胞不同的诱导条件进行体外诱导。根据实验要求分别加入MAKP, P38,JNK或ERK阻断剂。体内实验通过向小鼠腹腔注射TsA,由FACS分析不同基因型小鼠体内Foxp3~+T细胞的变化。利用不同基因型小鼠来免疫诱导EAE小鼠模型,分离出脾脏淋巴细胞分析Th17含量的变化,一组EAE模型在免疫诱导后注射P38阻断剂,在相同时间点来分析Th17的含量的变化。
     结果:在体外实验中,敲除Smad2/Smad3基因后,TGF-β仍然能够诱导出Treg,但是能力稍弱。当加入MAKP,JNK或ERK阻断剂后能够明显削弱TGF-β体外诱导Treg的能力。体内实验中,缺乏Smad3信号时atRA仍然能够促进iTreg的生成和抑制Th17的生成。在EAE模型中,P38抑制剂能明显降低EAE的发病程度。
     结论: TGF-β信号是体外TGF-β诱导调节性T细胞和Th17细胞生成所必须的信号通路;Smad信号在TGF-β诱导调节性T细胞中只有部分作用;TGF-β的MAKP信号通路在TGF-β诱导调节性T细胞和Th17细胞生成中也起着关键性的作用。TGF-β下游的MAKP中,ERK和JNK信号通路参与了Treg的分化,而JNK和P38参与了Th17的分化。
     方法:体外分离出人外周血PBMC中的Naive CD4~+ T细胞,在体外经过anti-CD3CD28-beads的TCR刺激后,伴有IL-2,和/或TGF-β,和/或Rapamycin(RAPA)诱导7天后,检测细胞表面CTLA-4和细胞内FOXP3等的表达。通过混合淋巴细胞培养分析诱导后细胞体外抑制活性。将体外诱导的细胞和PBMC同时注射到免疫缺陷鼠体内观察其对异种移植物抗宿主反应的抑制情况。同时分析人细胞在小鼠组织内的浸润情况。
     结果:RAPA能够诱导TCR刺激后的Na?ve CD4~+细胞成为FOXP3~+T细胞,该功能在加入ALK5阻断剂后消失。RAPA联合TGF-β能够诱导出具有免疫抑制功能的CD4RAPA,该细胞表达膜表面TGF-β,其体外抑制功能在加入ALK5阻断剂后丧失。将PBMC(20×10~6)注射给RAG2~(-/-)γc~(-/-)小鼠会诱发急性异种移植物抗宿主病,同时给予CD4_(RAPA)则能够明显延长小鼠的存活时间,减少人细胞的组织浸润。
     结论:RAPA能够增加CD4~+ T细胞FOXP3的表达,依赖于TGF-β信号;RAPA能够联合TGF-β在体外诱导出类似于nTreg表型的FOXP3~+ T细胞。这群细胞高表达趋化因子的受体,该细胞本身在TCR刺激时并不在增殖。RAPA联合TGF-β诱导的Treg表达膜表面的TGF-β,其抑制活性依赖于mTGF-β。将RAPA联合TGF-β诱导的Treg输注给RAG2~(-/-)γc~(-/-)小鼠,能够明显减轻异种移植物抗宿主反应,延长小鼠的存活。
AIM: To clarify the possibility and mechanism of TGF-βsuperfamily members BMPs affect the development of Foxp3~+ Treg cells in vitro and in vivo.
     METHODS: Na?ve CD4~+ T cells were separated from the spleen cells from wild type and transgenic mice. These cells were underwent TCR stimulation, with IL-2 (20 U/ml) for 3days. TGF-β(2 ng/ml), BMP-2 (10 ng/ml), or BMP-4 (10 ng/ml) was added in some culture. Cell was intracellular stained with Foxp3. Some conditions were added Noggin, P38 inhibitor, JNK inhibitor, or ERK inhibitor. The effect of phosphorylation Smad by BMP was analyzed by Weston Blot. In vivo, BMP was i.p. injected into the mouse. The percentage of CD4~+CD25~+Foxp3~+T cells in the blood, lymph nodes and spleen was analyzed by FACS at day 12. Spleen CD4~+CD25~+ T cells was separated and assayed for assessment of the mixed lymphocyte reaction RESULT: BMP-2 and BMP-4, typical representatives of the BMPs, are unable to induce non-regulatory T cells to become Foxp3~+ regulatory T cells. Neutralization studies with Noggin have revealed that BMP-2/4 and the BMP receptor signaling pathway is not required for TGF-βto induce naive CD4~+CD25- cells to express Foxp3. However, BMP-2/4 and TGF-βhave a synergistic effect on the induction of Foxp3~+ regulatory T cells. BMP-2/4 affects non-Smad signaling molecules including phosphorylated ERK and JNK, which could subsequently promote the differentiation of Foxp3~+ regulatory T cells induced by TGF-β.
     CONCLUTION: TGF-βis a key signaling factor for Foxp3~+ regulatory T cell development. BMP-2 and BMP-4 significantly increased the ability of TGF-βto promote the generation of Foxp3~+ iTreg cells, and this synergistic effect was also dependent upon TGF-βreceptor signaling, as well as ERK and/or JNK MAPK pathways.
     AIM: To observation that Smad and non-Smad signaling pathways differentially affect the Th17 and Foxp3~+ Treg cell differentiation.
     METHODS: Na?ve CD4~+ T cells were separated from the spleen cells from wild type and transgenic mice. Under induction of Treg, cells were underwent TCR stimulation, with IL-2 (20 U/ml) for 3days. TGF-β(2 ng/ml), P38 inhibitor, JNK inhibitor, or ERK inhibitor, or atRA (10 nM) was added in some culture. The percentage of Foxp3~+ in T cells was analyzed by FACS following the injection of TsA. T cells were isolated from spleen, LN and blood in EAE mice at day 18 after immunization, intracellular IL-17 expression was stained and analyzed by FACS.
     RESULT: TGF-βcan induce regulatory cells from Smad2 or Smad gene knockout mice. The MAKP JNK, and ERK inhibitor can down regulate the ability of Treg induction by TGF-β. AtRA also can favorate the Treg and inhibitor the Th17 cells in Smad3 knockout mice.
     CONCLUTION: Neither Smad2 nor Smad3 deficiency abrogates TGF-β-dependent iTreg induction by a deacetylase inhibitor Trichostatin A (TsA) in vivo although loss of Smad2 or Smad3 partially reduces iTreg induction in vitro. Similarly, Smad2 and Smad3 have a redundant role in development of Th17 in vitro and in experimental autoimmune encephalomyelitis (EAE). In addition, ERK and/or JNK pathways were shown to be involved in regulating iTregs, while the p38 pathway predominately modulates Th17 and EAE induction.
     AIM: The possibility to induce human regulatory cells with stable suppressor function both in vitro and in vivo.
     METHODS: Na?ve CD4~+ T cells were separated from health donor PBMC. These cells were stimulated with anti-CD3CD28-beads. IL-2, TGF-β, and RAPA were added to some culture. The cells were harvested and stained the phenotypes of nature regulatory cells. Membran bound TGF-βwas stained after restimulation for 72 hours. The suppress function of different condition cells was analyzed by the dilution of CFSE of T cells. Human peripheral blood mononuclear cells (huPBMCs) with or whithout different condition cells were injected into RAG2~(-/-)γc~(-/-) mice. The weight and engraft human T cells of these mice were monitored.
     RESULT: Combine RAPA with TGF-βnot only enhanced FOXP3 expression by CD4~+ cells, but also appeared more resistant to apoptosis compared to others. The combination of RAPA and TGF-βenabled CD4~+ cells to express a phenotype and trafficking receptors similar to natural Tregs, and no significant cytotoxicity was observed. CD4RAPA were anergic and had potent in vitro suppressive activity. When transfer human peripheral blood mononuclear cells (huPBMCs) with CD4_(RAPA) into RAG2~(-/-)γc~(-/-) mice, CD4RAPA can decrease human cell engraftment and extend survival.
     CONCLUTION: Stimulation of human CD4+T cells in the presence of RAPA results in a highly increased suppressor function is TGF-βdependent, these cells also has stable in vivo suppressor function as compared with that of CD4+ T cells stimulated in the absence of the drug.
引文
1. Sakaguchi, S., Yamaguchi, T., Nomura, T. and Ono, M., Regulatory T cells and immune tolerance. Cell. 2008. 133: 775–787.
    2. Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F. and Ziegler, S.F., Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 2001. 276: 37672–37679.
    3. Bluestone, J.A., and Abbas, A.K., Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 2003. 3: 253–257.
    4. Horwitz, D.A., Zheng, S.G., Gray, J.D., Wang, J.H., Ohtsuka, K. and Yamagiwa, S., Regulatory T cells generated ex vivo as an approach for the therapy of autoimmune disease. Semin. Immunol. 2004. 16: 135–143.
    5. Horwitz, D.A., Zheng, S.G. and Gray, J.D., Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends. Immunol. 2008. 29: 429–435.
    6. Zheng, S.G., Gray, J.D., Ohtsuka, K., Yamagiwa, S. and Horwitz, D.A., Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 2002. 169: 4183–4189.
    7. Chen, W., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G. and Wahl, S.M., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003. 198: 1875–1886.
    8. Zheng, S.G., Wang, J.H., Gray, J.D., Soucier, H. and Horwitz, D.A., Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J. Immunol. 2004. 172: 5213–5221.
    9. Fantini, M.C., Becker, C., Monteleone, G., Pallone, F., Galle, P.R. and Neurath.M.F., Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 2004. 172: 5149–5153.
    10. Marie, J.C., Letterio, J.J., Gavin, M. and Rudensky, A.Y. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 2005. 201: 1061–1067.
    11. Zheng, S.G., Wang, J., Wang, P., Gray, J.D. and Horwitz, D.A., IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 2007. 178: 2018–2027.
    12. Piccirillo, C.A., Letterio, J.J., Thornton, A.M., McHugh, R.S., Mamura, M., Mizuhara, H. and Shevach, E.M., CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J. Exp. Med. 2002. 196: 237–246.
    13. Li, M.O., Sanjabi, S. and Flavell, R.A., Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006. 25: 455–4571.
    14. von Boehmer, H. and Nolting, J., What turns on Foxp3? Nat. Immunol. 2008. 9: 121–122.
    15. Sporn, M.B. and Roberts, A.B., The transforming growth factor bs. In Peptide growth factors and their receptor: Handbook of Experimental Pharmacology, M.B. Sporn and A.B. Roberts, eds. (Heidelberg: Springer-Verlag), 1991. pp. 419–472.
    16. Hogan, B.L., Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes. Dev. 1996. 10: 1580–1594.
    17. Bleul, C.C., and Boehm, T., BMP signaling is required for normal thymus development. J. Immunol. 2005. 175: 5213–5221.
    18. Bhatia, M., Bonnet, D., Wu, D., Murdoch, B., Wrana, J., Gallacher, L. and Dick, J.E., Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 1999. 189: 1139–1148.
    19. Shi, Y. and Massague, J., Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003. 113: 685–700.
    20. Massague, J., TGF-beta signal transduction. Annu. Rev. Biochem. 1998. 67: 753–791.
    21. Attisano, L. and Wrana. J.L., Smads as transcriptional co-modulators. Curr. Opin. Cell Biol. 2000. 12: 235–243.
    22. Licona-Limón, P., and Soldevila, G., The role of TGF-beta superfamily during T cell development: new insights. Immunol Lett. 2007. 109: 1–12.
    23. Sivertsen E.A., Huse, K., Hystad, M.E., Kersten, C., Smeland, E.B. and Myklebust, J.H., Inhibitory effects and target genes of bone morphogenetic protein 6 in Jurkat Tag cells. Eur. J. Immunol. 2007. 37: 2937–2948.
    24. Winnier, G., Blessing, M., Labosky, P. A. and Hogan, B. L., Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995. 9: 2105.
    25. Chang H., Huylebroeck, D., Verschueren, K., Guo, Q., Matzuk, M. M. and Zwijsen, A., Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 1999. 126: 1631–1642.
    26. Rifas, L., The role of noggin in human mesenchymal stem cell differentiation. J. Cell. Biochem. 2007. 100: 824–834.
    27. Tao, R., de Zoeten, E.F., Ozkaynak, E., Chen, C., Wang, L., Porrett, P.M., Li, B. et al., Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007. 13:1299-1307.
    28. Reilly, C.M., Thomas, M., Gogal, R. Jr., Olgun, S., Santo, A., Sodhi, R., Samy,E.T., Peng, S.L., Gilkeson, G.S. and Mishra, N., The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J. Autoimmun. 2008. 2:123-130.
    29. Huber, S., Schrader, J., Fritz, G., Presser, K., Schmitt, S., Waisman, A., Lüth, S., Blessing, M., Herkel, J. and Schramm, C., P38 MAP kinase signaling is required for the conversion of CD4+CD25- T cells into iTreg. PLoS ONE 2008. 3: e3302.
    30. Saraiva, M., Christensen, J.R., Veldhoen, M., Murphy, T.L., Murphy, K.M. and O'Garra, A., Interleukin-10 Production by Th1 Cells Requires Interleukin-12-Induced STAT4 Transcription Factor and ERK MAP Kinase Activation by High Antigen Dose. Immunity 2009. 29.
    31. Zheng, S.G. Wang, J.H., Koss, M.N., Quismorio, F. Jr., Gray, J.D. and Horwitz, D.A., CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J. Immunol. 2004. 172: 1531–1539.
    32. Zheng, S.G., Meng, L., Wang, J.H., Watanabe, M., Barr, M.L., Cramer, D.V., Gray, J.D. and Horwitz, D.A., Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient. Int. Immunol. 2006.18: 279–289.
    33. Walker, M.R., Carson, B.D., Nepom, G.T., Ziegler, S.F. and Buckner, J.H., De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc. Natl. Acad. Sci. USA 2005. 102: 4103–4108.
    34. Derynck, R. and Zhang, Y. E., Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003.425: 577–584.
    35. Zheng, S.G., Wang, J.H., Stohl, W., Kim, K.S., Gray, J.D. and Horwitz, D.A., TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J. Immunol. 2006.176:3321-3329.
    36. Huber, S., Stahl, F.R., Schrader, J., Lüth. S., Presser. K., Carambia. A., Flavell, R.A., Werner. S., Blessing. M., Herkel. J. and Schramm, C., Activin a promotes the TGF-beta-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells. J. Immunol. 2009. 182:4633-4640.
    37. Utsugisawa, T., Moody, J.L., Aspling, M., Nilsson, E., Carlsson, L. and Karlsson, S., A road map toward defining the role of Smad signaling in hematopoietic stem cells. Stem Cells 2006. 24: 1128–1136.
    1. Zheng, S. G., J. Wang, P. Wang, J. D. Gray, and D. A. Horwitz. 2007. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018-2027.
    2. Davidson, T. S., R. J. DiPaolo, J. Andersson, and E. M. Shevach. 2007. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178:4022-4026.
    3. Veldhoen, M., R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179-189.
    4. Bettelli, E., Y. Carrier, W. Gao, T. Korn, T. B. Strom, M. Oukka, H. L. Weiner, and V. K. Kuchroo. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235-238.
    5. Mangan, P. R., L. E. Harrington, D. B. O'Quinn, W. S. Helms, D. C. Bullard, C. O. Elson, R. D. Hatton, S. M. Wahl, T. R. Schoeb, and C. T. Weaver. 2006. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231-234.
    6. Korn, T., E. Bettelli, W. Gao, A. Awasthi, A. Jager, T. B. Strom, M. Oukka, and V. K. Kuchroo. 2007. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484-487.
    7. Zheng, S. G., J. D. Gray, K. Ohtsuka, S. Yamagiwa, and D. A. Horwitz. 2002. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 169:4183-4189.
    8. Chen, W., W. Jin, N. Hardegen, K. J. Lei, L. Li, N. Marinos, G. McGrady, and S. M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factorFoxp3. J Exp Med 198:1875-1886.
    9. Zheng, S. G., J. H. Wang, J. D. Gray, H. Soucier, and D. A. Horwitz. 2004. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213-5221.
    10. Fantini, M. C., C. Becker, G. Monteleone, F. Pallone, P. R. Galle, and M. F. Neurath. 2004. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149-5153.
    11.Wrana, J. L., L. Attisano, J. Carcamo, A. Zentella, J. Doody, M. Laiho, X. F. Wang, and J. Massague. 1992. TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71:1003-1014.
    12. Lagna, G., A. Hata, A. Hemmati-Brivanlou, and J. Massague. 1996. Partnership between DPC4 and Smad proteins in TGF-beta signalling pathways. Nature 383:832-836.
    13. Rubtsov, Y. P., and A. Y. Rudensky. 2007. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 7:443-453.
    14. Nomura, M., and E. Li. 1998. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393:786-790.
    15. Yang, X., C. Li, X. Xu, and C. Deng. 1998. The tumor suppressor Smad4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 95:3667-3672.
    16. Hata, A., R. S. Lo, D. Wotton, G. Lagna, and J. Massague. 1997. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388:82-87.
    17. Datto, M. B., J. P. Frederick, L. Pan, A. J. Borton, Y. Zhuang, and X. F. Wang. 1999. Targeted disruption of Smad3 reveals an essential role in transforminggrowth factor beta-mediated signal transduction. Mol Cell Biol 19:2495-2504.
    18. McKarns, S. C., R. H. Schwartz, and N. E. Kaminski. 2004. Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol 172:4275-4284.
    19. Anthoni, M., N. Fyhrquist-Vanni, H. Wolff, H. Alenius, and A. Lauerma. 2008. Transforming growth factor-beta/Smad3 signalling regulates inflammatory responses in a murine model of contact hypersensitivity. Br J Dermatol 159:546-554.
    20. Zhang, Y. E. 2009. Non-Smad pathways in TGF-beta signaling. Cell Res 19:128-139.
    21. Park, I. K., J. J. Letterio, and J. D. Gorham. 2007. TGF-beta 1 inhibition of IFN-gamma-induced signaling and Th1 gene expression in CD4+ T cells is Smad3 independent but MAP kinase dependent. Mol Immunol 44:3283-3290.
    22. Tone, Y., K. Furuuchi, Y. Kojima, M. L. Tykocinski, M. I. Greene, and M. Tone. 2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9:194-202.
    23. Xiao, S., H. Jin, T. Korn, S. M. Liu, M. Oukka, B. Lim, and V. K. Kuchroo. 2008. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181:2277-2284.
    24. Jana, S., P. Jailwala, D. Haribhai, J. Waukau, S. Glisic, W. Grossman, M. Mishra, R. Wen, D. Wang, C. B. Williams, and S. Ghosh. 2009. The role of NF-kappaB and Smad3 in TGF-beta-mediated Foxp3 expression. Eur J Immunol 39:2571-2583.
    25. Yang, X. O., R. Nurieva, G. J. Martinez, H. S. Kang, Y. Chung, B. P. Pappu, B. Shah, S. H. Chang, K. S. Schluns, S. S. Watowich, X. H. Feng, A. M. Jetten, andC. Dong. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44-56.
    26. Dominitzki, S., M. C. Fantini, C. Neufert, A. Nikolaev, P. R. Galle, J. Scheller, G. Monteleone, S. Rose-John, M. F. Neurath, and C. Becker. 2007. Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25 T cells. J Immunol 179:2041-2045.
    27. Zheng, S. G., J. H. Wang, M. N. Koss, F. Quismorio, Jr., J. D. Gray, and D. A. Horwitz. 2004. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol 172:1531-1539.
    28. Chen, H., F. Zhuang, Y. H. Liu, B. Xu, P. Del Moral, W. Deng, Y. Chai, M. Kolb, J. Gauldie, D. Warburton, H. L. Moses, and W. Shi. 2008. TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung. Eur Respir J 32:285-295.
    29. Stromnes, I. M., and J. M. Goverman. 2006. Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810-1819.
    30. Li, H. Y., Y. Wang, C. R. Heap, C. H. King, S. R. Mundla, M. Voss, D. K. Clawson, L. Yan, R. M. Campbell, B. D. Anderson, J. R. Wagner, K. Britt, K. X. Lu, W. T. McMillen, and J. M. Yingling. 2006. Dihydropyrrolopyrazole transforming growth factor-beta type I receptor kinase domain inhibitors: a novel benzimidazole series with selectivity versus transforming growth factor-beta type II receptor kinase and mixed lineage kinase-7. J Med Chem 49:2138-2142.
    31. Kano, M. R., Y. Bae, C. Iwata, Y. Morishita, M. Yashiro, M. Oka, T. Fujii, A. Komuro, K. Kiyono, M. Kaminishi, K. Hirakawa, Y. Ouchi, N. Nishiyama, K. Kataoka, and K. Miyazono. 2007. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. ProcNatl Acad Sci U S A 104:3460-3465.
    32. de Boer, J., A. Williams, G. Skavdis, N. Harker, M. Coles, M. Tolaini, T. Norton, K. Williams, K. Roderick, A. J. Potocnik, and D. Kioussis. 2003. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33:314-325.
    33. Fontenot, J. D., M. A. Gavin, and A. Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330-336.
    34. Tao, R., E. F. de Zoeten, E. Ozkaynak, C. Chen, L. Wang, P. M. Porrett, B. Li, L. A. Turka, E. N. Olson, M. I. Greene, A. D. Wells, and W. W. Hancock. 2007. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299-1307.
    35. Nakamura, K., A. Kitani, I. Fuss, A. Pedersen, N. Harada, H. Nawata, and W. Strober. 2004. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172:834-842.
    36. Xu, L., A. Kitani, I. Fuss, and W. Strober. 2007. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178:6725-6729.
    37. Zheng, S. G., J. Wang, and D. A. Horwitz. 2008. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112-7116.
    38. Mucida, D., Y. Park, G. Kim, O. Turovskaya, I. Scott, M. Kronenberg, and H. Cheroutre. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256-260.
    39. Lu, L., J. Ma, X. Wang, J. Wang, F. Zhang, J. Yu, G. He, B. Xu, D. D. Brand, D. A.Horwitz, W. Shi, and S. G. Zheng. 2009. Synergistic effect of TGF-beta superfamily members on the induction of Foxp3(+) Treg. Eur J Immunol 123 :1-11.
    40. Agrawal, A., S. Dillon, T. L. Denning, and B. Pulendran. 2006. ERK1-/- mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis. J Immunol 176:5788-5796.
    41. Nishikawa, M., A. Myoui, T. Tomita, K. Takahi, A. Nampei, and H. Yoshikawa. 2003. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum 48:2670-2681.
    42. Valencia, X., and P. E. Lipsky. 2007. CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat Clin Pract Rheumatol 3:619-626.
    43. Wan, Y. Y., and R. A. Flavell. 2007. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766-770.
    44. Kim, J. M., J. P. Rasmussen, and A. Y. Rudensky. 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8:191-197.
    45. Brunkow, M. E., E. W. Jeffery, K. A. Hjerrild, B. Paeper, L. B. Clark, S. A. Yasayko, J. E. Wilkinson, D. Galas, S. F. Ziegler, and F. Ramsdell. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68-73.
    46. Bennett, C. L., J. Christie, F. Ramsdell, M. E. Brunkow, P. J. Ferguson, L. Whitesell, T. E. Kelly, F. T. Saulsbury, P. F. Chance, and H. D. Ochs. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20-21.
    47. Zhou, X., S. L. Bailey-Bucktrout, L. T. Jeker, C. Penaranda, M.Martinez-Llordella, M. Ashby, M. Nakayama, W. Rosenthal, and J. A. Bluestone. 2009. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000-1007.
    48. Horwitz, D. A., S. G. Zheng, and J. D. Gray. 2008. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol 29:429-435.
    49. Piccirillo, C. A., J. J. Letterio, A. M. Thornton, R. S. McHugh, M. Mamura, H. Mizuhara, and E. M. Shevach. 2002. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237-246.
    50. Hill, J. A., J. A. Hall, C. M. Sun, Q. Cai, N. Ghyselinck, P. Chambon, Y. Belkaid, D. Mathis, and C. Benoist. 2008. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity 29:758-770.
    51. Komiyama, Y., S. Nakae, T. Matsuki, A. Nambu, H. Ishigame, S. Kakuta, K. Sudo, and Y. Iwakura. 2006. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566-573.
    52. Qian, Y., C. Liu, J. Hartupee, C. Z. Altuntas, M. F. Gulen, D. Jane-Wit, J. Xiao, Y. Lu, N. Giltiay, J. Liu, T. Kordula, Q. W. Zhang, B. Vallance, S. Swaidani, M. Aronica, V. K. Tuohy, T. Hamilton, and X. Li. 2007. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8:247-256.
    53. Wei, L., A. Laurence, K. M. Elias, and J. J. O'Shea. 2007. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 282:34605-34610.
    54. Tanaka, K., K. Ichiyama, M. Hashimoto, H. Yoshida, T. Takimoto, G. Takaesu, T. Torisu, T. Hanada, H. Yasukawa, S. Fukuyama, H. Inoue, Y. Nakanishi, T.Kobayashi, and A. Yoshimura. 2008. Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-gamma on STAT3 and Smads. J Immunol 180:3746-3756.
    1. Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057-1061.
    2. Walker, M. R., D. J. Kasprowicz, V. H. Gersuk, A. Benard, M. Van Landeghen, J. H. Buckner, and S. F. Ziegler. 2003. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 112:1437-1443.
    3. Boros, P., and J. S. Bromberg. 2009. Human FOXP3+ regulatory T cells in transplantation. Am J Transplant 9:1719-1724.
    4. Fantini, M. C., C. Becker, I. Tubbe, A. Nikolaev, H. A. Lehr, P. Galle, and M. F. Neurath. 2006. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut 55:671-680.
    5. Lu, L., G. Li, J. Rao, L. Pu, Y. Yu, X. Wang, and F. Zhang. 2009. In vitro induced CD4 ( + ) CD25 ( + ) Foxp3 ( + ) Tregs attenuate hepatic ischemia-reperfusion injury. Int Immunopharmacol 9:549-552.
    6. Lu, L., J. Wang, F. Zhang, Y. Chai, D. Brand, X. Wang, D. A. Horwitz, W. Shi, and S. G. Zheng. Role of Smad and Non-Smad Signals in the Development of Th17 and Regulatory T Cells. J Immunol.
    7. Tran, D. Q., H. Ramsey, and E. M. Shevach. 2007. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110:2983-2990.
    8. Coenen, J. J., H. J. Koenen, E. van Rijssen, A. Kasran, L. Boon, L. B. Hilbrands, and I. Joosten. 2007. Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T cells. Bone Marrow Transplant 39:537-545.
    9. Jacob, N., H. Yang, L. Pricop, Y. Liu, X. Gao, S. G. Zheng, J. Wang, H. X. Gao, C. Putterman, M. N. Koss, W. Stohl, and C. O. Jacob. 2009. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J Immunol 182:2532-2541.
    10. Gao, W., Y. Lu, B. El Essawy, M. Oukka, V. K. Kuchroo, and T. B. Strom. 2007. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant 7:1722-1732.
    11. Dodge, I. L., G. Demirci, T. B. Strom, and X. C. Li. 2000. Rapamycin induces transforming growth factor-beta production by lymphocytes. Transplantation 70:1104-1106.
    12. Valmori, D., V. Tosello, N. E. Souleimanian, E. Godefroy, L. Scotto, Y. Wang, and M. Ayyoub. 2006. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol 177:944-949.
    13. van Rijn, R. S., E. R. Simonetti, A. Hagenbeek, M. C. Hogenes, R. A. de Weger, M. R. Canninga-van Dijk, K. Weijer, H. Spits, G. Storm, L. van Bloois, G. Rijkers, A. C. Martens, and S. B. Ebeling. 2003. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- gammac-/- double-mutant mice. Blood 102:2522-2531.
    14. Nikolaeva, N., F. J. Bemelman, S. L. Yong, R. A. van Lier, and I. J. ten Berge. 2006. Rapamycin does not induce anergy but inhibits expansion anddifferentiation of alloreactive human T cells. Transplantation 81:445-454.
    15. Battaglia, M., A. Stabilini, and M. G. Roncarolo. 2005. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105:4743-4748.
    16. Mutis, T., R. S. van Rijn, E. R. Simonetti, T. Aarts-Riemens, M. E. Emmelot, L. van Bloois, A. Martens, L. F. Verdonck, and S. B. Ebeling. 2006. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice. Clin Cancer Res 12:5520-5525.
    17. Sehgal, S. N. 1998. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31:335-340.
    18. Strauss, L., M. Czystowska, M. Szajnik, M. Mandapathil, and T. L. Whiteside. 2009. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS One 4:e5994.
    19. Nakamura, K., A. Kitani, I. Fuss, A. Pedersen, N. Harada, H. Nawata, and W. Strober. 2004. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172:834-842.
    20. Nakamura, K., A. Kitani, and W. Strober. 2001. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629-644.
    1. Robert S, O'Shea, MSCE. Treatment of Alcoholic Hepatitis .Clinics in Liver Disease. 2005, 9(1):103-134.
    2. Josh Levitsky, Mark E, Mailliard. Diagnosis and Therapy of Alcoholic Liver Disease. Semin Liver Dis. 2004, 24(3):233-247.
    3. French SW. Alcoholic hepatitis: inflammatory cell-mediated hepatocellular injury. Alcohol. 2002, 27(1):43-46.
    4. Gao B, Jeong W I, Tian Z. Liver: An organ with predominant innate immunity. Hepatology, 2008. 47(2):729-736.
    5. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006, 43(2 Suppl 1): S54-62.
    6. Werner ER, Gorren AC, Heller R, et al. Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp Biol Med (Maywood). 2003, 228(11):1291-1302.
    7. Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000, 343(22):1467-1476.
    8. Cao Q, Batey R, Pang G, et al. Altered T-lymphocyte responsiveness to polyclonal cell activators is responsible for liver cell necrosis in alcohol-fed rats. Alcohol Clin Exp Res. 1998, 22(3): 723-729.
    9. Johnson RD, Williams R. Immune responses in alcoholic liver disease. Alcohol Clin Exp Res.1986,10:471-486.
    10. Chedid A, Mendenhall CL, Moritz TE, et al. Cell-mediated hepatic injury in alcoholic liver disease. Veterans Affairs Cooperative Study Group 275. Gastroenterology. 1993, 105(1):254-266.
    11. Lemmers A, Moreno C, Gustot T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009(2), 49:646-657.
    12. Viitala K, Israel Y, Blake JE, et al. Serum IgA, IgG, and IgM antibodies directed against acetaldehyde–derived epitopes: relationship to liver disease severity and alcohol consumption. Hepatology. 1997,25(6):1418-1424.
    13. Viitala K, Makkonen K, Israel Y, et al. Autoimmune responses against oxidant stress and acetaldehyde–derived epitopes in human alcohol consumers. Alcohol Clin Exp Res. 2000 Jul;24(7):1103-1109.
    14. Kim KD, Zhao J, Auh S, et al. Adaptive immune cells temper initial innate responses. Nat Med. 2007, 13(10):1248-1252.
    15. Horwitz DA, Gray JD, Zheng SG. The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases. Arthritis Res. 2002;4(4):241-246.
    16. Murphy TJ, Ni Choileain N, Zang Y, et al. CD4+CD25+ regulatory T cells control innate immune reactivity after injury. J Immunol. 2005, 174(5):2957-2963.
    17. Ralainirina N, Poli A, Michel T, et al. Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol. 2007, 81(1):144-153.
    18. Lim HW, Hillsamer P, Banham AH, et al. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol. 2005, 175(7):4180-4183.
    19. Fallarino F, Grohmann U, Hwang KW. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003, 4(12):1206-1212.
    20. Taams LS, van Amelsfort JM, Tiemessen MM, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol. 2005, 66(3):222-230.
    21. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004, 22:531-562.
    22. Mendenhall CL, Anderson S, Garcia-Pont P. Short-term and long-term survival in patients with alcoholic hepatitis treated with oxandrolone and prednisolone. N Engl J Med. 1984, 311(23):1464-1470.
    23. Xu L, Kitani A, Fuss I. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007, 178(11):6725-6729.
    24. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol. 2008, 180(11):7112-7116.
    25. D'Alessio FR, Tsushima K, Aggarwal NR, et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009,119(10):2898-2913.
    26. Zheng SG, Wang JH, Koss MN, et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol. 2004,172(3):1531-1539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700