不同来源调节性T细胞在小鼠角膜移植排斥反应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     角膜移植手术是治疗不可逆角膜盲的最重要手段,我国每年大约有3000例各种角膜疾病患者需要接受角膜移植手术。由于角膜赦免状态的存在,在所有固体器官移植中,角膜移植是成功率最高的手术。即便如此,角膜移植术后植片的长期存活率并不令人满意,排斥反应的发生仍然无法避免。长期随访观察结果表明,对于低危受体,移植后1年成功率高达90%,但10年后下降为60%~70%;而对于眼部有新生血管、严重化学烧伤多次移植失败等高危病例,10年后角膜移植成功率小于35%[107]。因此,进一步深入了解角膜移植排斥反应的发生机制及其预防、治疗方法,仍是眼科免疫领域的重要课题。
     研究表明,调节性T细胞(Treg)广泛存在于小鼠、大鼠、人的中枢和周围免疫系统中,在维持体内的免疫平衡,抑制器官移植排斥反应、自身免疫性疾病以及控制肿瘤的免疫治疗中起着关键的作用。Treg细胞能够有效抑制被某些自体抗原活化的CD4/CD8 T淋巴细胞,当机体缺乏Treg时将会导致结肠炎,关节炎,实验性脑脊髓膜炎,I型糖尿病等自身免疫性疾病;在同种异体移植模型中,也有报道Treg可抑制被供体抗原活化的CD4+效应T细胞,延长移植物存活时间。尽管Treg已经广泛应用于自身免疫性疾病、肿瘤以及器官移植的治疗中,然而,在角膜移植领域,尤其是针对角膜移植排斥反应,使用Treg诱导免疫耐受延长植片存活时间的相关研究还处于起步阶段,国内外鲜有文献报道。
     目的和内容
     通过TGF? 2-DC体内诱导Treg及Treg过继转移实验,对不同来源Treg细胞的表型、细胞因子表达、体内作用机制以及抗原特异性进行系统研究,以期揭示Treg在角膜移植排斥反应中的重要作用,进一步深入了解角膜移植排斥反应中Treg的作用机制,为临床有效调控、治疗角膜移植排斥反应及其他自身免疫性疾病提供重要的理论依据。
     方法
     1.Balb/c小鼠骨髓来源DC在含TGF-?2的培养液中培养,与供体来源(C57BL/6小鼠)的可溶性抗原共孵育后分离纯化。实验动物分别给予PBS,2×106 TGFβ2-DC尾静脉注射,7天后采用免疫磁珠方法分离纯化脾脏来源的表型为CD4+CD25+的Treg细胞。FACS分析不同来源Treg细胞表型和细胞因子水平;RT-PCR检测Foxp3的表达。MLR检测不同来源Treg在体外对活化CD4+CD25-T细胞增殖反应抑制情况,ELISA检测Treg对活化T细胞细胞因子水平的调节作用。
     2.分离纯化正常小鼠来源Treg(nTreg)或TGFβ2-DC诱导的Treg(iTreg),Balb/c小鼠分别给予PBS,106 Treg静脉注射,3天后进行小鼠同种异体角膜移植术(C57BL/6小鼠)。移植后不同时间点手术显微镜下观察植片存活时间及排斥曲线,移植后3天收集受体脾脏,FACS分析活化CD4+ T淋巴细胞数量、表型变化及T细胞内细胞因子的表达;MLR检测淋巴细胞增殖情况;ELISA检测淋巴细胞分泌IL-2, IL-10, IFN-γ及TGF-β水平;采用特定中和性抗体(anti-IL-10、anti-TGF-β)拮抗抑制性细胞因子,观察Treg抑制作用的具体机制。
     3.天然Treg或TGFβ2-DC诱导Treg免疫后的Balb/c小鼠接受C57BL/6小鼠来源的或无关第三方(C3H)小鼠来源的同种异体角膜移植术,移植后3天取受体脾脏T细胞为效应细胞,分别以C57BL/6、C3H小鼠脾细胞为刺激细胞,同时加入Treg共孵育。[3H]-TdR掺入法检测细胞增殖情况。
     结
     1.TGF-β2 DC注射后能提高小鼠脾脏中CD4+CD25+T细胞的表达数量(P<0.05);其中CD25、CTLA-4、+Foxp3 T细胞比例在iTreg组显著提高,而CD28细胞比例显著下降(P<0.05)。细胞因子方面iTreg组TGF-β表达较其他两组明显升高,提示TGF-β2 DC诱导的iTreg可以促进TGF-β的分泌。nTreg和iTreg组IL-10表达较CD25-T细胞组显著升高(P<0.05)。混合淋巴细胞培养(MLR)结果显示,iTreg对效应T细胞增殖反应的抑制较其他组差异有统计学意义(P<0.05)。
     2.天然Treg免疫抑制作用以细胞接触机制为主,获得性Treg兼顾了细胞接触和抑制性细胞因子分泌两种模式;获得性Treg注射组分泌TGF-β的浓度水平明显高于其他三组(P<0.01),而TGF-β2 DC组TGF-β水平无明显改变,说明增多的TGF-β来自获得性Treg细胞,而不是DC产生的。
     3.CD4+CD25+T细胞可以成功获得供体抗原特异性,获取了供体抗原特异性的获得性Treg可以有效延缓植片排斥反应的发生,MLR结果显示获得性Treg对供体抗原的抑制率(IR)为86.7%。
     结论
     TGF-β2 DC在体内可以有效扩增CD4+CD25+Tregs的数量及功能,不同来源Treg在细胞表型、细胞因子分泌等方面均有所不同。经TGF-β2 DC诱导产生、以间接方式获取异体抗原特异性的Treg比天然Treg具有更强的抑制功能,可特异性抑制受体对供体抗原的免疫反应,可以更有效地抑制角膜移植排斥反应。具有广阔的临床应用前景。
Purpose:
     To describe the difference of innate Treg and adaptive Treg in cell phenotype, cytokines, antigen specificity and function mechanism and investigate the different effect of innate Treg and adaptive Treg in immunomodulation of murine corneal allograft rejection.
     Methods:
     1.iTregs were generated and expanded in vivo by antigen-loaded immature DCs which had been induced by transforming growth factor beta-2 (TGFβ-2) for 5 days. CD4+CD25+Tregs were isolated by 2-step magnetic cell sorting (MACS) and the Treg–specific phenotypes were identified by FACS. Three days after the injection, the difference of the number and phenotype of different source of Treg (nTreg & iTreg) in SPL were analyzed by FACS in mice of difference groups.
     2.Two kinds of mechanism were used to observe the effects of nTreg and iTreg function. PBS, TGF-β2 DCs, nTregs or iTregs were injected into the murine tail veins. After that, allogeneic corneal transplantation was performed. Observe the grafts’survival rate and the time when rejection occurred.
     3.Purified and adoptive transfer different resource of Treg. 3 days later, performed corneal transplantation which the receptor were C57BL/6 or C3H mouse, respectively. Antigen-Specific suppression of graft rejection were observed in MLR by Ex Vivo Stimulated CD4+CD25+ Treg Cells.
     Results:
     1.TGF-β2 DC can enhance the number of CD4+CD25+T cells in SPL of mice(P<0.05); Foxp3 and CTLA-4 was preferentially expressed by iTreg cells and CD28 expression decreased in adaptive Terg cells. MLR showed that the suppression to the proliferation of effector T cells of iTreg was significantly higher than other groups.
     2.TGF-β2 DC increased the number and function of CD4+CD25+Tregs in vivo.The corneal allograft rejection was suppressed notably in iTreg injection group. In iTreg injection group, all the allografts remained clear until 60 days after transplantation and there was statistical difference between the four groups analyzed by NPar test(P<0.05). After adoptive Transfer of TGFβ2-DC, nTregs or iTregs , there was an upregulation in the percentage of CD4+CD25+, CD4+CD25+Foxp3+, CD4+CD25+CTLA-4+T cells in SPL 3 days after corneal allograft transplantation, and there was statistical difference between the these groups (P<0.01). Adaptive Tregs were more potent in suppressing effector than innate Treg (P<0.01).
     3.CD4+CD25+Treg can acquire alloantigen-specific. iTreg acquired donor antigenic specificity with high inhibition ratio to donator antigen at 86.7%.iTreg can prolong grafts’survival time. Compared with the other 4 groups,the survival time of transplanted corneal graft in adaptive Treg groupwas prolonged significantly (P<0.05).
     Conclusions:
     In summary, we indicate that iTreg have more suppressive function than nTreg. Alloantibody was an important effector mechanism for corneal allograft rejection. The suppressor regulatory T cells were involved in the induction of ACAID contribution to suppressing corneal allograft rejection which was through their well-established role in delayed-type hypersensitivity (DTH). Antigen-loaded TGF-β2 DCs could increase the number and function of Foxp3+CD4+CD25+Tregs. CD4+CD25+Tregs with indirect allospecificity were more potent than antigen-loaded TGF-β2 DCs or innate CD4+CD25+Tregs in suppressing effector in allograft rejection specific for the same antigen. Our results add a new important perspective for Treg-based immunotherapeutic strategies.
引文
[1] He YG, Ross J, Niederkorn. Promotion of murine orthotopic corneal allograft survival by systemic administration of anti-CD4 monoclonal antibody. J Immunol 2002; 168: 2028
    [2] Yamada J, Kurimoto I, Streilein JW. Role of CD4+ T cells in immunobiology of orthotopic corneal transplants in mice. IOVS 2001; 42: 386
    [3] Larkin DF, Caider VL, Lightman S. Identification and characterization of cells infiltrating the graft and aqueous humour in rat corneal allograft rejection. Chin Exp Immunol 1997; 107: 381-391
    [4] Yang P, Gong X, Zhou H. Immunological studies on the cellular phenotype involved in corneal allograft rejection. Chin Med J 1999; 112: 202
    [5] Holm TL, Nielsen J, Claesson MH. CD4+CD25+ regulatory T cells: I. Phenotype and physiology. APMIS 2004; 112:629
    [6] Ling EM, Smith T, Nguyen XD. Relation of CD4+CD25+ regulatory T cell suppression of allergen-driven T cell atopic status and expression of allergic disease. The Lancet 2004; 363:608
    [7] Veltkamp C, Sartor RB, Glese T. Regulatory CD4+CD25+ cells reverse imbalances in the T cell pool of bone marrow transplanted TGe26 mice leading to the prevention of colitis. Gut 2005; 54:207
    [8] Mottet C, Uhlig HH, Powrie F. Cutting Edge: Cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003, 170:3939
    [9] Alvarez CM, Paris SC, Arango L. Kidney transplant patients with long-term graft survival have altered expression of molecules associated with T-cell activation. Transplantation 2004; 78:15
    [10] Tai X, Cowan M, Feigenbaum L. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation. Nat Immunol, 2005; 6:152
    [11] Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev 2005; 203: 156
    [12] Ostrouknova M, Ray A. CD25(+) T cells and regulation of allergen-induced responses. Curr Allergy Asthma Rep, 2005; 5:35
    [13] Arif S, Tree T, Astill TP. Autoreactive T cells responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest, 2004; 113:451
    [14] Stephens LA, Barclay AN, Mason D. Phenotypic characterization of regulatory CD4+C25+ T cells in rat. Inter Immunol, 2004; 16:365
    [15] Gregg RK, Jain R, Schoenleber SJ. A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol, 2004; 173: 7308
    [16] Chen ML, Pittet MJ, Gorelik L. Regulator T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci, 2005; 102:419
    [17] Thornton AM, Shevach EM. Suppressor effector function of CD4+C25+ immunoregulatory T cells is antigen nonspecific. J Immunol, 2000; 164:183
    [18] Grundstro S, Cederbom L, Sundstedt A. Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4+CD25+ regulatory T cells in vivo. J Immunol, 2003; 170:5008
    [19] Kleinewietfeld M, Puentes F, Borsellino G, et al. CCR6 expression defines regulatory effector/memory-like cells withine the CD25+CD4+ T cell subset. Blood, 2004; 21, Epub
    [20] Kohm AP, Carpentier PA, Anger HA. CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol, 2002; 169:4712
    [21] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptoralpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
    [22] Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol, 2003, 3(3): 253-257.
    [23] Li S, Floess S, Hamann A, Gaudieri S, Lucas A, Hellard M, Roberts S, Paukovic G, Plebanski M, Loveland BE, Aitken C, Barry S, Schofield L, Gowans EJ. Analysis of FOXP3+ regulatory T cells that display apparent viral antigen specificity during chronic hepatitis C virus infection. PLoS Pathog. 2009;5(12):e1000707.
    [24] Corthay A. How do regulatory T cells work? Scand J Immunol 2009;70(4):326-36.
    [25] Takahashi T, Tagami T, Yamazaki S et al. Immunologic selftolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192:303–10.
    [26] Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996; 184:387–96.
    [27] Kohm AP, Carpentier PA, Anger HA, Miller SD. Cutting edge: CD41CD251 regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002; 169:4712–6.
    [28] McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses. J Allergy Clin Immunol 2002; 110:693–702.
    [29] Singh B, Read S, Asseman C et al. Control of intestinal inflammation by regulatory T cells. Immunol Rev 2001; 182: 190–200.
    [30] Wang HY, Peng G, Guo Z, Shevach EM, Wang RF. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD41 regulatory T cells. J Immunol 2005; 174:2661–70.
    [31] Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25(interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999; 59:3128–33.
    [32] Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD251CD41 T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163:5211–8
    [33] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD41CD251 regulatory T cells. Nat Immunol 2003; 4:330–6.
    [34] LinW, Truong N, Grossman WJ et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin Immunol 2005; 116:1106–15.
    [35] Ochs HD, Ziegler SF, Torgerson TR. Foxp3 acts as a rheostat of the immune response. Immunol Rev 2005; 203:156–64.
    [36] Gavin MA, Rasmussen JP, Fontenot JD et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007; 445:771–5.
    [37] Fritzsching E, Kunz P, Maurer B, P?schl J, Fritzsching B.Regulatory T cells and tolerance induction.Clin Transplant 2009 Dec;23 Suppl 21:10-4.
    [38] Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25-naive T cells to CD41CD251regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198:1875–86.
    [39] Sun CM, Hall JA, Blank RB et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007; 204:1775–8.
    [40] Mucida D, Park Y, Kim G. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317:256–60.
    [41] You S, Leforban B, Garcia C. Adaptive TGF-b-dependent Regulatory T cells control spontaneous autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci, in press.
    [42] Roncarolo MG, Gregori S, Battaglia M. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212: 28–50.
    [43] Vieira PL, Christensen JR, Minaee S, O’Neill EJl. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+regulatory T cells. J Immunol 2004; 172: 5986–5993.
    [44] Faria AM, Weiner HL. Oral tolerance. Immunol Rev 2005; 206:232–259.
    [45] cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells, J. Autoimmun. 16
    [46] M.G. Roncarolo, S. Gregori, M. Battaglia, R. Bacchetta, K. Fleischhauer, M.K. Levings, Interleukin-10-secreting type 1 regulatory T cells in rodents and humans, Immunol. Rev. 2006;212: 28-50.
    [47] Y. Carrier, J. Yuan, V.K. Kuchroo, H.L. Weiner, Th3 cells in peripheral tolerance. I: induction of Foxp3-positive regulatory T cells by Th3 cells derived fromTGF-beta T cell-transgenic mice. J Immunol 2007; 178:179–185.
    [48] Picca CC, Oh S, Panarey L, Aitken M, Basehoar A, Caton AJ.Thymocyte deletion can bias Treg formation toward low-abundance self-peptide.Eur J Immunol. 2009;39(12):3301-6.
    [49] Fields ML, Hondowicz BD, Metzgar MH, Nish SA, Wharton GN, Picca CC, Caton AJ, Erikson J.CD4+ CD25+ regulatory T cells inhibit the maturation but not the initiation of an autoantibody response. J Immunol. 2005 ;175(7):4255-64
    [50] Tuettenberg A, Schmitt E, Knop J, Jonuleit H. Dendritic cell-based immunotherapy of malignant melanoma: success and limitations. J Dtsch Dermatol Ges. 2007 Mar;5(3):190-6.
    [51] Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI.In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance.Blood. 2007 Jan 15;109(2):827-35. Epub 2006 Sep 26.
    [52] Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood.J Exp Med2001;193(11): 1285-1294
    [53] Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2003;81:331-71.
    [54] Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells.Eur J Immunol. 2000 Jun;30(6):1538-43.
    [55] Paust S, Lu L, McCarty N. Engagement of B7 on effector T cells by regulatory T cells prevent s autoimmune disease [J] . Proc Natl Acad Sci USA , 2004 ,101 (28) : 10398-10403.
    [56] Mellor AL , Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism [J]. Nat Rev Immunol, 2004 ,4 (10) :7622774
    [57] Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S.Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol, 2002;3(2): 135-142
    [58] Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, Shimizu J, Nomura T, Chiba T, Sakaguchi S.Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells.J Exp Med 2005;202(7): 885-891
    [59] Shimizu J, Yamazaki S , Takahashi T , et al . Stimulation of CD25 (+) CD4 (+) regulatory T cells t hrough GITR breaks immunological self -tolerance[J ] . Nat Immunol , 2002 ,3 (2) :135:142.
    [60] McHugh RS, Whitters MJ, Piccirillo CA. CD4+CD25+ immunoregulatory T cells : gene expression analysis reveals a functional role for t he glucocorticod2induced TNF receptor [J]. Immunity, 2002 ;16 (2) :311:323
    [61] Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA.CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes.Proc Natl Acad Sci U S A. 2003 16;100(19):10878-83.
    [62] Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O,Capron C, Vainchencker W, Martin F, Zitvogel LCD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med, 2005, 202(8): 1075-1085
    [63] Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJHuman T regulatory cells can use the perforin pathway to cause autologous target cell death.Immunity 2004, 21: 589-601
    [64] Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ.Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005, 174(4): 1783-1786
    [65] Lüth S, Huber S, Schramm C, Buch T, Zander S, Stadelmann C, Brück W, Wraith DC, Herkel J, Lohse AW. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J Clin Invest. 2008;118(10):3403-10.
    [66] Maloy KJ , Salaun L , Cahill R . CD4 + CD25 + TR cells suppress innate immune pat hology t hrough cytokine dependent mechanisms[J]. J Exp Med , 2003 ,197 (1) :1112119
    [67] Barthlott T, Kassiotis G, StockingerB. T cell regulation as aside effect of homeostasis and competition. J Exp Med, 2003, 197(1):451~460.
    [68] Zwar TD, Read S, van Driel IR. CD4 + CD25 + regulatory T cells inhibit the antigen-dependent expansion of self-reactive T cells in vivo. J Immunol, 2006, 176(1) 1609-1617.
    [69] Barthlott T, Kassiotis G, Stockinger B. T cell regulation as a sideeffect of homeostasis and competition. J Exp Med 2003; 197:451–460.
    [70] Salomon B, Lenschow DJ, Rhee L. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000;12: 431–440
    [71] Tang Q, Henriksen KJ, Bi M. In vitro-expanded antigenspecific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199: 1455–1465.
    [72] Sanchez-Fueyo A, Sandner S, Habicht A. Specificity of CD4+CD25+regulatory T cell function in alloimmunity. J Immunol 2006;176: 329–334.
    [73] Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 2001; 193:51–60.
    [74] de Heer HJ, Hammad H, Soullie T. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 2004; 200:89–98.
    [75] Zeiser R, Negrin RS. Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy. Cell Cycle 2008; 7:458–62.
    [76] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609): 1057-1061.
    [77] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003, 4(4): 330-336.
    [78] Kleer IM, Wedderburn LR, Taams LS, Patel A, Varsani H, Klein M, de Jager W, Pugayung G, Giannoni F, Rijkers G, Albani S, Kuis W, Prakken B.CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 2004 15;172(10):6435-43.
    [79] Tang Q, Henriksen KJ, Bi M. In vitro-expanded antigen specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199: 1455–1465.
    [80] Schenk S, Kish DD, He C. Alloreactive T cell responses and acute rejection of single class II MHC-disparate heart allografts are under strict regulation by CD4+ CD25+ T cells. J Immunol 2005; 174: 3741–3748.
    [81] Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB. The balance of deletion and regulation in allograft tolerance. Immunol Rev 2003; 196: 75–84.
    [82] Golshayan D, Jiang S, Tsang J. In vitro expanded donor alloantigen- specific CD4+CD25+ regulatory T cells promote experimentaltransplantation tolerance. Blood 2007; 109: 827–835.
    [83] Chen L, Wang T, Zhou P. TLR engagement prevents transplantation tolerance. Am J Transplant 2006; 6: 2282–2291.
    [84] Chen D, Zhang N, Fu S. CD4+CD25+regulatory T-cells inhibit the islet innate immune response and promote islet engraftment. Diabetes 2006; 55: 1011–1021.
    [85] Muthukumar T, Dadhania D, Ding R et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 2005; 353: 2342–2351.
    [86] Tang Q, Adams JY. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006; 7: 83–92.
    [87] Tadokoro CE, Shakhar G, Shen S. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 2006; 203: 505–511
    [88] Lu LF, Lind EF, Gondek DC. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442: 997–1002.
    [89] Streilein JW, Ksander BR, Taylor AW. Immune deviation in relation to ocular immune privilege. J Immunol, 1997, 158(8): 3557-3560.
    [90] Dana MR, Streilein JW. Loss and restoration of immune privilege in eyes with corneal neovascularization. Invest Ophthalmol Vis Sci, 1996, 37(12): 2485-2494.
    [91] Kosiewicz MM, Streilein JW. Intraocular injection of class II-restricted peptide induces an unexpected population of CD8 regulatory cells. J Immunol, 1996, 157(5): 1905-1912.
    [92] D'Orazio TJ, Niederkorn JY. Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology, 1998, 95(1): 47-55.
    [93] Takahashi M, Ishimaru N, Yanagi K, Saegusa K, Haneji N, Shiota H, Hayashi Y. Requirement for splenic CD4+ T cells in the immune privilege of the anterior chamber of the eye. Clin Exp Immunol, 1999, 116(2): 231-237.
    [94] Yokoi H, Streilein JW. Antigen-presenting cells are targets of regulatory T cells similar to those that mediate anterior chamber-associated immune deviation. Ocul Immunol IFNlamm, 2004, 12(2): 101-114.
    [95] Khodadorst AA, Silverstein AM:Transplantation and rejection of individual cell layers of the cornea. Invest Ophthalmol 1969;8:180-195
    [96] Fujikawa LS. Calvin RB,Bhan AK, Fuller TC, Foster CS; Expression lf HLA-A/B/C and DR locus antigens on epithelial stromal and endothelial xells of the human cornra. Cornea 1982;1:213-216
    [97] 109. Sonoda Y, Streilein JW. Orthotopic corneal transplantation in mice: evidence that the immunogenetic rules of rejection do not apply. Transplantation 1992;54:694-704
    [98] He YG, Ross J, Niederkorn. Promotion of murine orthotopic corneal allograft survival by systemic administration of anti-CD4 monoclonal antibody. J Immunol, 2002; 168: 2028
    [99]宫玉波,陆晓和,袁伟,周瑾,黄淑馨,柯晓云. FOXP3在角膜移植免疫排斥反应中的作用.眼科研究2008;26:285-290
    [100]闫峰. TGF-beta DC诱导调节性T细胞在角膜移植排斥反应中作用的实验研究.博士学位论文.西安:第四军医大学, 2007:60-64
    [101] Ring S, ThomeM, Pretsch L. Expanded murine regulatory T cells: analysis of phenotype and function in contact hypersensitivity reactions. J ImmunolMethods, 2007, 326 (122) : 10—21
    [102] Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S. Steinman RM. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992, 176(6): 1693-1702
    [103] Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000, 192(9): 1213-1222.
    [104] Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cellspromote experimental transplantation tolerance. Blood, 2007, 109(2): 827-835.
    [105] Yamazaki S, Iyoda T, Tarbell K, Olson K, Velinzon K, Inaba K. Steinman RM. Direct expansion of functional CD25+CD4+regulatory T cells by antigen-processing dendritic cells. J Exp Med, 2003, 198 (2): 235-247.
    [106] Yamagiwa, S., J. D. Gray, S. Hashimoto, and D. A. Horwitz. 2001. A role for TGF-_ in the generation and expansion of CD4_CD25_ regulatory T cells from human peripheral blood. J. Immunol 166:7282.
    [107]蔡莉.树突状细胞表型和功能的体外研究及其在小鼠同种异体角膜移植排斥反应中的免疫调节作用.博士学位论文.西安:第四军医大学, 2002:55-77
    [108] Ghiringhelli F, Puig PE, Roux S. Tumor cells convert immature myeloid dendritic cells into TGF-_–secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 2005; 202:919-929.
    [109] Yamazaki S, Bonito AJ, Spisek R, Dhodapkar M, Inaba K, Steinman RM. Dendritic cells are specialized accessory cells along with TGF- for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood. 2007 Dec 15;110(13):4293-302
    [110] Morelli AE, Zahorchak AF, Larregina AT. Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood. 2001;98:1512-1523
    [111] Mucida D, Park Y, Kim G. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317:256-260.
    [112] Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007;204:1765-1774.
    [113] The critical contribution of TGF-b to the induction of Foxp3 expression and regulatory T cell function. Ethan M. Shevach, Dat Q. Tran, Todd S. Davidson and John Andersson DOI 10.1002/eji.200738111
    [114] Salomon B, Lenschow DJ, Rhee L et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12: 431–440.
    [115] Kang SM, Tang Q, Bluestone JACD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant. 2007;7(6):1457-63.
    [116] Callaghan CJ, Rouhani FJ, Negus MC,Curry AJ, Bolton EM, Bradley JA, Pettigrew GJ. Abrogation of antibody-mediated allograft rejection by regulatory CD4+ T cells with indirect allospecificity. J Immunol, 2007, 178(4): 2221-2228.
    [117] Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, Angeli V, Li Y, Boros P, Ding Y, Jessberger R, Trinchieri G, Lira SA, Randolph GJ, Bromberg JS. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol, 2006, 7(6): 652-662.
    [118] Adeegbe D, Bayer AL, Levy RB, Malek TR. Cutting edge: allogeneic CD4+CD25+Foxp3+ T regulatory cells suppress autoimmunity while establishing transplantation tolerance. J Immunol, 2006, 176(12): 7149-7153.
    [119] Zheng SG, Meng L, Wang JH, Watanabe M, Barr ML, Cramer DV, Gray JD and Horwitz DA. Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient Int Immunol. 2006; 18:279-289.
    [120]张梅,徐书杭,徐瑜,刘翠萍,茅晓东,徐宽枫,刘超. CFSE标记抗原特异性CD4+CD25+T细胞在胰岛移植体内归巢的研究.细胞与分子免疫学杂志2008;24:1174-1176
    [121] Volker-Dieben HJ, Schreuder GM, Claas FH. Histocompatibility and corneal transplantation. Dev Ophthalmol 2003;36:22-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700