超级化学镀铜方法填充微道沟的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属铜由于其具有较低的电阻率和较高的抗电迁移能力,已被广泛地应用于超大规模集成电路的大马士革铜互联线工艺中。其铜互联线工艺的微孔和道沟的完全填充是通过超级电镀技术来实现的。随着集成电路芯片中铜互联线宽度迅速减小,均匀铜种子层很难获得,而使得电镀铜填充变得越来越困难。超级化学镀铜具有化学镀铜和超级填充的双重特点,无需种子层,能够实现无空洞完全填充,从而受到广泛关注。本文在乙醛酸作为还原剂的化学镀铜溶液中,通过对大量的抑制剂、加速剂的单独、协同加入对化学铜溶液超级填充的影响,实现了体系的超级化学铜填充。研究、总结了超级化学铜填充实现的方法,并通过电化学方法对其形成超级化学填充的机理进行探究。
     本论文首先选择了较大的大分子量的添加剂,研究添加剂的单独加入对化学铜溶液沉积速率的影响。发现分子量为3100的PPG-PEG-PPG三段聚醚(简称PEP-3100),对化学镀铜沉积速率具有较强的抑制作用。没有添加任何添加剂的化学镀铜沉积速率是8.2μm/h,当PEP-3100的浓度仅为1.0 mg/L时,化学镀铜的沉积速率降低至2.1μm/h。当化学铜溶液中PEP-3100浓度为1.0 mg/L,研究其添加对不同宽度微道沟的化学镀铜填充的影响。断面SEM图结果表明宽度100-380 nm、深度430nm的道沟均被化学铜完全填充。线性扫描伏安法测定结果进一步证明PEP-3100对抑制化学镀铜的沉积速率有较大的影响;作为对比,研究了添加EPE-8000(1.0 mg/L)作为抑制剂的化学镀铜溶液对微道勾填充能力的影响,发现EPE-8000对深径比较小的道勾能有效填充,而对深径比较大的微道勾,填充时底部容易出现了空洞。
     本论文的重要内容为设计、实现完全的超级化学填充体系。在对超级电镀铜沉积速率研究的基础上,我们设计出了实现完全超级化学铜沉积的方案。即通过加速剂加速底部化学铜的沉积,通过抑制剂和加速剂的协同作用,共同抑制化学铜在道沟口部和表面的沉积,从而实现化学铜对微孔和道沟的完全填充。在大量添加剂研究实验的基础上,我们发现单独添加SPS对化学镀铜沉积速率有加速作用;虽然PEG-4000单独加入对化学铜有抑制作用,而SPS和PEG-4000的共同加入,极大的抑制了化学铜的沉积速率。利用SPS分子量小,水溶性好,具有较高的扩散系数,能均匀分散在溶液中,而PEG-4000具有较大的分子量和低的扩散系数,从而使PEG-4000在道勾内部形成一定的浓度梯度的特点,使得PEG-4000在微孔表面和口部具有较大的浓度,微孔底部浓度很小。利用SPS和PEG-4000的协同作用,我们成功的实现了超级化学镀铜的完美填充。线性扫描伏安曲线表明,PEG和SPS混合添加对铜离子的还原和乙醛酸的氧化都有抑制作用。但添加添加剂SPS和PEG沉积的铜膜电阻率较大,不利于超大规模集成电路的应用。
     JGB在低浓度时具有加速化学镀铜沉积速率的作用,而在高浓度时对化学沉积速率具有抑制作用。在化学镀铜溶液中同时加入JGB和EPE-8000(分子量大约为8000),对化学镀铜沉积速率具有协同抑制作用。利用EPE-8000有较小的扩散系数,在道勾中形成一定的浓度梯度和JGB分子量较小的特点,EPE-8000抑制道沟口部、表面的化学镀铜沉积速率和JGB加速微道沟底部的化学镀铜沉积速率的协同作用,实现了超级化学镀铜的完美填充。化学镀铜填充道沟断面SEM图表明,宽度从130到520 nm,深度450到770 nm的道沟都能被完美填充。线性扫描伏安法和混合电位理论研究显示,单独添加JGB能加速乙醛酸的氧化,而当单独添加三段聚醚EPE-8000时能抑制乙醛酸的氧化。当JGB和EPE-8000混合添加时,能协调抑制了乙醛酸的氧化。
     大分子的抑制剂具有较低的扩散系数,小分子的加速剂具有较高的扩散系数,往化学铜溶液中添加小分子的加速剂和大分子的抑制剂,利用抑制剂对道沟口部、表面的化学镀铜的沉积速率具有抑制作用和加速剂对道沟底部的化学铜的沉积速率加速的作用,从而能够实现超级化学铜的完美填充。利用该实验原理,通过实验设计,利用小分子的JGB、SPS作为加速剂,利用大分子的聚合物PEP-3100、PEG-4000作为抑制剂,利用大分子聚合物PEP-3100、PEG-4000、EPE-8000和JGB对微道沟底部的化学镀铜沉积速率的协同抑制作用,同样能实现完美的超级化学镀铜的完美填充。利用该实验原理不仅可用于超级化学镀铜填充体系,也可以用于其他超级化学镀填充体系。
Copper is used widely for metal interconnection in ultralargescale integration (ULSI) owing to its low resistivity and high reliability against electromigration. Filling technology of micro-holes and micro-trenches for copper interconnection was completed by superfill plating. With shrinkage of copper interconnection width, Cu seed layer of uniformity is almost achievable, which results in becoming more difficult during electroplating. Superfilling of electroless copper has caught worldwide attention that it has the dual characteristics of electroless copper and superfilling, without seed layer, bottom-up fill without any void is achieved. In the article superfill of electroless copper is reached by adding to inhibitor, accelerator, synergy adding to influence bottom-up fill with glyoxylic acid as a reducing agent in solution of electroless copper. Technique of bottom-up fill is researched and summarized; the mechanism of superfill is explored by electrochemistry method.
     First of all, the effects of sole large molecular additives were studied to deposition rate of electroless copper. It was found that PEP-3100 (molecular weight 3100) had a strong inhibition for the electroless copper deposition. The deposition rate of the electroless copper was 8.2μm/h without any additive, when the PEP-3100 concentration was 1.0 mg/L, the deposition rate of electroless copper was decreased to 2.1μm/h. When the PEP-3100 concentration was 1.0 mg/L, the bottom-up filling behavior of the electroless copper bath for different trenches was investigated. The cross-section SEM observation indicated the trenches with different widths ranging from 100 to 380 nm and depth 430 nm were all filled completely by electroless copper. The inhibitions of PEP-3100 for both cathodic and the anodic reaction were demonstrated by linear sweep voltammetry (LSV) method. As a contrast, the bottom-up filling behavior of the electroless copper bath for different trenches was investigated by EPE-8000 as inhibitor, it is found that high aspect via trenches are all filled completely by electroless copper, but for the trenches with low aspect via, some voids appeared in the cross-section SEM images.
     Design and achievement of a complete bottom-up electroless copper filling is important contents in the article. On research basis of super-filling for electroless copper, we design the project of achievement of a complete bottom-up electroless copper filling, namely by increasing the deposition rate of electroless copper at bottom, by inhibiting the deposition rate of electroless copper on the surface with the synergy of inhibitor and accelerator, micro-holes and micro-trenches are all filled completely by electroless copper. It is found that an addition of SPS accelerate the deposition rate of electroless copper by number tests of additive; the deposition rates of electroless copper are inhibited by sole adding to PEG-4000, but an addition of SPS and PEG-4000 has a stronger inhibition for the electroless copper deposition. SPS has a small molecular weight and high diffusion rate, which caused it to distribute evenly in the solution, and PEG-4000 has a large molecular weight and low diffusion rate, which resulted in a concentration gradation of PEG-4000 in the submicrometer trenches and caused a lower concentration of PEG-4000 in the bottom than that at the opening and the surface of the trench. Bottom-up filling of trenches were all filled completely by synergy of SPS and PEG-4000. The effects of PEG and SPS on the behaviors of copper reduction and glyoxylic acid oxidation were investigated by linear sweep voltammetry (LSV) curve. But the resistance of copper film is high with an addition of SPS and PEG, which is not beneficial to apply for ULSI.
     Addition of SPS accelerates the copper deposition rate at a low concentration, inhibits the copper deposition rate at a high concentration. The synergy inhibition was found for the deposition rate of electroless copper with an addition of SPS and EPE-8000(molecular weight about 8000) in the plating bath. EPE-8000 has a low diffusion coefficient, which resulted in a concentration gradation in the submicrometer trenches, and JGB has a small molecular weight, so EPE-8000 inhibits the copper deposition rate at the opening and the surface of the trench, and JGB accelerates the copper deposition rate in the bottom of the trench, bottom-up filling of trenches were all filled completely by synergy of JGB and EPE-8000. The cross-section SEM observation indicated the trenches with different widths ranging from 130 to 520 nm and depth ranging from 450 to 770nm were all filled completely by electroless copper. Linear sweep voltammetry (LSV) method and mixed potential theory is the study to show that sole addition of JGB accelerates glyoxylic acid oxidation and sole addition of EPE-8000 inhibits glyoxylic acid oxidation, mixed addition of JGB and EPE-8000 synergistic inhibits glyoxylic acid oxidation.
     Large molecular inhibitor has low diffusion coefficient, small molecular accelerator has high diffusion coefficient. Bottom-up filling of trenches were all achieved completely with synergistic addition of inhibitor to inhibit the copper deposition rate at the opening and the surface of the trench and accelerator to accelerate deposition rate in the bottom of the trench. Using the experiment mechanism too, superfill of electroless copper is achieved completely by designing with synergistic inhibition that small molecular JGB as accelerator, which accelerates the copper deposition rate in the bottom of the trench, large molecular polymer PEP-3100, PEG-4000 as inhibitor, which inhibits the copper deposition rate at the opening and the surface of the trench. Not only superfill of electroless copper system but also superfill of electroless system is achieved completely by the experiment mechanism.
引文
[1]刘柏村,张鼎张.低介电常数材料应用于导体联机工艺技术的探讨.奈米通讯(台湾)[J].2004,1:1-8.
    [2]W. W. Lee, P. S. Ho. Low dielectric constant materials for ULSI interlayer dielectric applications[J]. MRS Bulletin.1997,22(10):19-24.
    [3]王永刚.集成电路的发展趋势和关键技术.电子元器件应用[J].2009,11(1):70-72.
    [4]庞恩文,林晶,汪荣昌.铜布线工艺中阻挡层钽膜的研究[J].固体电子学研究进展.2002,22(1):78-81.
    [5]X.W. Lin. Copper metallization for ULSI and beyond[J]. Crit Rev. Solid State Mater Sci.1995,20(2):87-124.
    [6]S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros, et al. Advanced multilayer metallization schemes with copper as interconnection metal [J]. Thin Solid Films. 1993,236(1-2):257-266.
    [7]H. A. Chang and C. K. Hu. Reaction between Cu and TiSi2 across different barrier layers[J]. Appl. Phys. Lett.1990,57:617-620.
    [8]Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, et al. Copper transport in thermal SiO2[J]. J. Electrochem. Soc.,1993,40:27-2432.
    [9]H. Ono, T. Nakano, T. Ohta. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W)[J]. Appl. Phys. Lett.,1994,64: 1511-1513.
    [10]J. O. Olowolafe, C. J. Mogab, R. B. Gregory, et al. Interdiffusions in Cu/reactive-ion-sputtered TiN, Cu/chemical-vapor-deposited TiN, Cu/TaN, and TaN/Cu/TaN thin-film structures:Low temperature diffusion analyses[J]. J. Appl. Phys.1992,72:4099-4103.
    [11]C. K. Hu, B. Luther, F. B. Kaufman, et al. Copper interconnection integration and reliability [J]. Thin Solid Films.1995,262:84-92.
    [12]K. Holloway, P. M. Fryer, C. Cabral, et al. Tantalum as a diffusion barrier between copper and silicon:failure mechanism and effect of nitrogen additions[J]. J. Appl. Phys.,1992,71:5433-5444.
    [13]刘玉岭,邢哲,檀柏梅等.ULSI多层铜布线钽阻挡层及其CMP抛光液的优 化[J].半导体技术.2004,29(7):18-20.
    [14]M. H. Tsai, S. Bothra. Metalorganic chemical vapor deposition of tantalum nitride by tertbutylimidotris (diethylamido) tantalum for advanced metallization[J]. Appl. Phys. Lett.1995,67:1128-1130.
    [15]P. Singer. New interconnect materials:chasing the promise of faster chips[J]. Semiconductor international.1994,11:54-58.
    [16]P. C. Andricacos. Copper on-chip interconnections[J]. The Electrochemical Society Interface.1999,10:32-37.
    [17]T. Ohmi, T. Saito, M. Otsuki, T. Shibata, et al. Formation of copper thin films by a low kinetic energy particle proces[J]. J. Electrochem. Soc.,1991,138: 1089-1097.
    [18]R. I. Hegde, R. W. Fiordalice, Edward O. Travis, et al. Thin film properties of low-pressure chemical vapor deposition TiN barrier for ultra large scale integration applications[J]. J. Vac. Sci. Technol. B.1993,11:1287-1296.
    [19]B. Chin, P. Ding, B. Sun, et al. Barrier and seed layers for damascene copper metallization[J]. Solid State Technology.1998,41(7):141-147.
    [20]A. E. Kaloyeros, M. A. Fury. Copper CVD for multilevel interconnect in ULSI[J]. MRS Bulletin.1993,6:22-29.
    [21]Y. K. Chae, Y. Shimogaki, H. Komiyama. The role of gas-phase reactions during chemical vapor deposition of copper from (hfac) Cu (tmvs)[J]. J. Electrochem. Soc.,1998,145(12):4226-4233.
    [22]N. I. Cho, D. I. Park. Microstructures of copper thin films prepared by chemical vapor deposition[J]. Thin Solid Films.1997,308:465-469.
    [23]T. Nguyen, J. L. Charneski, S. T. Hsu. Manufacturability of chemical vapor deposition of copper[J]. J. Electrochem. Soc.,1997,144(8):2829-2833.
    [24]W. J. Lee, S. K. Rha, S. Y. Lee, et al. Field-aided thermal chemical vapor deposition of copper using Cu(I) organometallic precursor[J]. J. Electrochem. Soc.,1997,144(2):683-686.
    [25]Y. Shacham-Diamand, V. Dubin, M. Angyal. Electroless copper deposition for ULSI[J]. Thin Solid Films.1995,262:93-103.
    [26]S. Gandikota, C. M. Gurik, D. Padhi et al. Characterization of electroless copper as a seed layer for sub 20.1μm interconnects[Z]. IEEE International Interconnect Conference.2001.30.
    [27]T. Andryuschenko, J. Reid. Electroess and electrolytic seed repair effect on damascene feature fill[Z]. IEEE International Interconnect Conference.2001, 30.
    [28]J. Rober, S. Riedel, S. E. Schulz et al. Influence of carrier gas on Cu nucleation, film properties and MOCVD reaction kinetics[J]. Microelectron. Eng.1997, 37/38:111-119.
    [29]C. H. Lee, S. Hwang, S. C. Kim, et al. Cu electroless deposition onto Ta substrates[J]. Electrochem. Solid-State Lett.,2006,9(10):C157-160.
    [30]L. G. Wang, T. T. Kee. The use of electroless copper seed in electrochemical deposited copper interconnects [J]. Thin Solid Films.2004,462/463:275-278.
    [31]熊海平,萧以德,伍建华等.化学镀铜的进展[J].表面技术.2002,31(12):5-7.
    [32]李晓娥,樊安,王训.纳米Ti02紫外线屏蔽性能的研究[J].涂料工业.2000,9:3-7.
    [33]S. Karthikeyan, T. Vasudevan, K. N. Srinivasan, et al. Stuies on formaldehyde free electroless copper deposition[J]. Plating Surface Finishing.2002,89(7): 54-57.
    [34]H. Honma, S. Komatsu, T. Fujinawi. Electroless copper deposition using glyoxylic acid as reducing agent [J]. J. Surf Finish Soc. Japan.1991,42(9): 913-917.
    [35]J. Darken. Printed circuit world conventions-v Glasgow[R]. B6/2 Technical Paper. U K:Society of Manufacturing Engineers,1990.
    [36]Y. Y. Shacham Diamond. Electroless copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization [J]. Electrochemical and Solid State Letters.2000,3(6):279-282.
    [37]Y. S. Kim, H. I. Kim, J. H. Cho, et al. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer[J]. Electrochimica Acta.2006,51(12):2400-2406.
    [38]H. Honma. Electroless copper deposition process using glyoxylicacid as a reducing agent[J]. J. Electrochem. Soc.,1994,141(3):730-733.
    [39]Y. Shacham-Diamand. Electroless copper deposition using glyoxylic acid as reducing agent for ultralargr scale integration metallization[J]. Electrochem Solid-State Let.2000,3(6):279-282.
    [40]唐电,魏喆良,邵艳群.难镀基材上乙醛酸作为还原剂的化学镀铜[J].中国有色金属学报.2003,13(5):1252-1256.
    [41]H. Honma, T. Kobayashi. Electroless copper deposition process using glyoxylic acid as a reducing agent[J]. J. Electrochem. Soc.,1994,141(3):730-733.
    [42]P. C. Andricacos, C. U. Zoh, J. O. Dukovic et al. Damascene copper electroplating for chip interconnections [J]. IBM J. Res. Dev.1998,42(5): 567-574.
    [43]Z. Nagy, J. P. Blaudeau, N. C. Hung, et al. Chloride ion catalysis of the copper deposition reaction[J]. J. Electrochem. Soc.,1995,142(6):L87-L89.
    [44]Z. V. Feng, X. Li, A. A. Gewirth. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths:a surface-enhanced raman study [J]. J. Phys. Chem. B.,2003,107:9415-9423.
    [45]方景礼.电镀添加剂理论与应用[M].北京:国防工业出版社.2006:60-63.
    [46]W. P. Dow, M. Y. Yen, S. Z. Liao et al. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochemica. Acta.,2008,53(28): 8228-8237.
    [47]M. S. Kang, S. K. Kim, J. J. Kim et al. The influence of thiourea on copper electrodeposition:adsorbate identification and effect on electrochemical nucleation[J]. Thin Solid Films,2008,516(13):3761-3766.
    [48]B. Bozzini, L. D'Urzo, C. Mele. Electrodeposition of Cu from acidic sulfate solutions in the presence of bis-(3-sulfopropyl)-disulfide (SPS) and chloride ions[J]. J. Electrochem. Soc.,2006,153(4):C254-C257.
    [49]M. Tan, J. N. Harb. Additive behavior during copper electrodeposition in solution containing Cl-, PEG and SPS[J]. J. Electrochem. Soc.,2003,150(6): C420-425.
    [50]W. P. Dow, M. Y. Yen, C. Chou et al. Practical monitoring of filling performance in a copper plating bath[J]. J. Electrochem. Soc.,2006,9(8):C134-C137.
    [51]S. K. Kim, J. J. Kim. Superfilling evolution in Cu electrodeposition dependence on the aging time of the accelerator [J]. Electrochem. Solid-State Lett.,2004, 7(9):C98-C100.
    [52]M. Tan, C. Guymo, D. R. Wheeler et al. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc.,2007, 154(2):D78-D81.
    [53]W. P. Dow, C. W. Liu. Evaluating the filling performance of a copper plating formula using a simple galvanostat method[J]. J. Electrochem. Soc.,2006, 153(3):C190-C194.
    [54]Y. Shacham-Diamand, V. Dubin, M. Angyal. Electroless copper deposition for ULSI[J]. Thin Solid Films,1995,262:93-103.
    [55]Y. Shacham-Diamand, S. Lopatin. High aspect ratio quarter-micron electroless copper integrated technology [J]. Microelectron. Eng.1997,37/38:77-78.
    [56]M. V. Dubi and Y. Shacham-Diamand. Selective and blanket electroless copper deposition for ultralarge scale integration[J]. J. Electrochem. Soc.,1997,144(3): 898-908.
    [57]李志坚.21世纪微电子技术发展展望[J].科技导报.1999,3:11-13.
    [58]陈智涛,李瑞伟.集成电路片内铜互连金属的发展[J].微电子学.2001,31(2):239-241.
    [59]张国海,夏洋,龙世兵.ULSI中铜互连技术的关键工艺[J].微电子学.2001,31(2):146-149.
    [60]S. Shingubara, Z. Wang, O. Yaegashi, et al. Bottom-up fill of copper in high aspect ratio via holes by electroless plating[C]. Proceedings of IEDM 03,6.3. 1-6.3.4.
    [61]S. Shingubara, Z. Wang, O. Yaegashi, et al. Bottom-up fill of copper in deep submicrometer holes by electroless plating[J]. Electrochem. Solid-State Lett., 2004,7(6):C78-C80.
    [62]Z. L. Wang, O. Yaegashi, H. Sakaue, et al. Bottom-up fill for submicrometer copper via holes of ULSIs by electroless plating[J]. J. Electrochem. Soc.,2004, 151(12):C781-C785.
    [63]Z. Wang, O. Yaegashi, H. Sakaue, et al. Effect of additives on hole filling characteristics of electroless copper plating[J]. Jpn. J. Appl. Phys.2004,10(43): 7000-7001.
    [64]S. Shingubara, Z. Wang. Formation and film characteristics of dual damascene interconnect by bottom-up electroless Cu plating[J]. AIP. Conference Proceedings.2006,817(1):13-22.
    [65]F. Inoue, Y. Harada, M. Koyanagi, et al. Perfect conformal deposition of electroless Cu for high aspect ratio through-Si vias[J]. Electrochem. Solid-State Lett.,2009,12(10):H381-H384.
    [66]Z. L. Wang, R. Obata, H. Sakaue, et al. Bottom-up copper fill with addition of mercapto alkyl carboxylic acid in electroless plating[J]. Electrochim. Acta.2006, 51:2442-2446.
    [67]Z. L. Wang, Z. J. Liu, H. Y. Jiang, et al. Bottom-up fill mechanisms of electroless copper plating with addition of mercapto alkyl carboxylic acid[J]. J. Vac. Sci. Technol. B.2006,24(2):803-806.
    [68]Z. F Yang, N. Li, X. Wang, et al. Bottom-up filling in electroless plating with an addition of PEG-PPG triblock copolymers[J]. Electrochem. Solid-State Lett., 2010,13(7):D47-D49.
    [69]C. H. Lee, S. C. Lee, J. J. Kim et al. Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochim. Acta,2005, 50:3563-3568.
    [70]C. H. Lee, S. C. Lee, J. J. Kim et al. Improvement of electrolessly gap-filled Cu using 2,2'-dipyridyl and bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochem. Solid-State Lett.,2005,8(8):C110-C113.
    [71]S. K. Cho, S. K. Kim, J. J. Kim et al. Superconformal Cu electrodeposition using DPS a substitutive accelerator for bis (3-sulfopropyl) disulfide[J]. J. Electrochem. Soc.,2005,152(5):C330-C333.
    [72]S. K. Kim, S. S. Hwang, S. K. Cho et al. Leveling of superfilled damascene Cu film using two-step electrodeposition[J]. Electrochem. Solid-State Lett.,2006, 9(2):C25-C28.
    [73]C. H. Lee, S. K. Cho, J. J. Kim. Electroless Cu bottom-up filling using 3-N, N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid[J]. Electrochem. Solid-State Lett.,2005,8(11):J27-J29.
    [74]C. H. Lee, A. R. Kim, S. K. Kim et al. Two-step filling in Cu electroless deposition using a concentration-dependent effect of 3-N, N-dimethyl-aminodithiocarbamoyl-1-propanesulfonic acid[J]. Electrochem. Solid-State Lett.,2008,11(1):D18-D21.
    [75]J. J. Kim, C. H. Lee, A. R. Kim et al. Electroless deposition of Cu and Ag for ULSI interconnection fabrication [J]. ECS. Trans.2007,2(6):29-41.
    [76]C. H. Lee, A. R. Kim, H. C. Koo, et al. Effect of 2-mercapto-5-benzimidazolesulfonic acid in superconformal Cu electroless deposition[J]. J. Electrochem. Soc.,2009,156(6):D207-D210.
    [77]M. Hasegawa, Y. Okinaka, Y. Shacham-Diamand et al. Void-free trench-filling by electroless copper deposition using the combination of accelerating and inhibiting additives[J]. Electrochem. Solid-State Lett.,2006,9(8):C138-C140.
    [78]M. Hasegawa, N. Yamachika, Y. Okinaka et al. An electrochemical investigation of additive effect in trench-filling of ULSI interconnects by electroless copper deposition[J]. Electrochemistry.2007,75(4):349-358.
    [79]M. Hasegawa, N. Yamachika, Y. Shacham-Diamand et al. Evidence for "superfilling" of submicrometer trenches with electroless copper deposit[J]. Appl. Phys. Lett.2007,90:101916-1~101916-3.
    [80]A. C. West, S. Mayer, J. Reid et al. A superfilling model that predicts bump formation[J]. Electrochem. Solid-State Lett.,2001,7(4):C50-C53.
    [81]T. P. Moffat, J. E. Bonevich, W. H. Huber et al. Superconformal electrodeposition of copper in 500-90 nm features[J]. J. Electrochem. Soc.,2000, 147(12):4524-4535.
    [82]J. W. Gallaway, A. C. West. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. J. Electrochem. Soc.,2008,155(10): D632-D639.
    [83]J. W. Gallaway, M. J. Willey, A. C. West, et al. Acceleration kinetics of PEG, PPG, and a triblock copolymer by SPS during copper electroplating[J]. J. Electrochem. Soc.,2009,156(4):D146-D154.
    [84]J. W. Gallaway, M. J. Willey, A. C. West et al. Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors[J]. J. Electrochem. Soc.,2009,156(8):D287-D295.
    [85]杨志峰.新型超级化学镀铜体系的研究[D].西安:陕西师范大学,2010.
    [86]何曼君,陈维孝,董西侠,高分子物理[M].复旦大学出版社,上海,2003:129-148.
    [87]S. L. Nolan, R. J. Phillips, P. M. Cotts et al. Light scattering study on the effect of polymer composition on the structural properties of PEO-PPO-PEO micelles[J]. J. Colloid Interface Sci.1997,191:291-294.
    [88]G. Wanka, H. Hoffmann, W. Ulbricht. The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution[J]. Colloid Polym. Sci.1990,268:101-117.
    [89]I. Goldmints, K. Friedrich, V. Gottberg, et al. Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region[J]. Langmuir.1997,13:3659-3664.
    [90]L. Yang, P. Alexandridis, C. David Steytler, et al. Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer pluronic L64 in aqueous solution[J]. Langmuir.2000,16: 8555-8561.
    [91]I. Goldmints, G. Yu, C. Booth, et al. Structure of (deuterated PEO)-(PPO)-(deuterated PEO) block copolymer micelles as determined by small angle neutron scattering[J]. Langmuir.1999,15:1651-1656.
    [92]Y. M. Lin, S. C. Yen. Effects of additives and chelating agents on electroless copper plating[J]. Appl. Surf. Sci.2001,178:116-126.
    [93]M. Paunovic, R. Arndt. The effect of some additives on electroless copper deposition[J]. J. Electrochem. Soc.,1983,130(4):794-799.
    [94]Z. S. Min. Electrodeposition of metal- principle and methods[M]. Shanghai: Shanghai press of science and technology,1987.
    [95]W. T. Tseng, C. H. Lo, S. C. Lee. Electroless deposition of Cu thin films with CuCl2-HNO3 based chemistry[J]. J. Electrochem. Soc.,2001,148(5): C333-C338.
    [96]H. H. Hsu, K. H. Lin, S. J. Lin, et al. Electroless copper deposition for ultralarge-scale integration [J]. J. Electrochem. Soc.,2001,148(1):C47-C53.
    [97]A. L. Patterson. The scherrer formula for X-ray particle size determination[J]. Phys. Rev.1939,56:978-982.
    [98]周元康,王满力,罗述.不锈钢着色的色泽控制[J].材料保护.1997,30:20-21.
    [99]T. E. Evans. The mechanism of the colored film on stainless steels[J]. Corrosion Science.1977,17:105-109.
    [100]周细应,万润根,韦金平.不锈钢化学着色工艺探讨[J].材料保护.1995,28:14-15.
    [101]张颖,陶珍东,马艳芳.不锈钢着色研究[J].腐蚀与防护.1998,19:175-177.
    [102]倪小平.不锈钢着黑色工艺[J].电镀与精饰.2000,22:31-33.
    [103]贾法龙,郭稚弧.不锈钢着色法研究的新进展[J].腐蚀与防护.2002,23:249-253.
    [104]贾法龙,郭稚弧.不锈钢着色新技术的研究[J].材料保护.2002,33:32-34.
    [105]廖小珍.交流方波电解法制备彩色不锈钢[J].电镀与涂饰.1995,14:19-21.
    [106]郭稚弧,贾法龙,邱于兵.三角波扫描电流法制备彩色不锈钢的研究[J].电镀与环保.2000,20:21-25.
    [107]李晓煜,谢致微,黎樵.不锈钢阳极氧化着金黄色技术研究[J].材料保护.1999,32:12-14.
    [108]施莱辛格,庞诺威奇.现代电镀[M].第四版.北京:化学工业出版社,2006:537-539.
    [109]李亚冰,王双元,王为.印制线路板微孔镀铜研究现状[J].电镀与精饰.2007,29:172-176.
    [110]J. J. Kellya, A. C. West. Leveling of 200nm features by organic additiver[J]. Electrochem. Solid-State Lett.,1999,2:561-563.
    [111]P. Taephaisitphongse, Y. Cao, A. C. West. Electrochemical and fill studies of a multicomponent additive package for copper deposition[J]. J. electrochem. Soc., 2001,148:C492-C497.
    [112]T. P. Moffat, J. E. Bonevich, W. H. Huber, et al. Sperconformal electrodeposition of copper in 500-90 nm features[J]. J. electrochem. Soc.,2000, 147:4524-4535.
    [113]K. Kondo, T. Matsumoto, K. Watanabe, et al. Role of additives for copper damascene electrodeposition[J]. J. electrochem. Soc.,2004,151:C250-C255.
    [114]K. O. Current, distribution on microprofiles[J]. Plating.1974,61:129-174.
    [115]李亚冰,王为,李永磊.封孔镀铜过程中JGB作用机理研究[J].无机化学学报.2008,24:534-540.
    [116]黄昆.固体物理学[M].北京:人民教育出版社,1966:82-83.
    [117]P. Taephaisitphongse, Y. Cao, A. C. West. Electrochemical and fill studies of a multicomponent additive package for copper deposition[J]. J. Electrochem. Soc., 2001,148(7):C492-C497.
    [118]P. Taephaisitphongse, Y. Cao, A. C. West. Electrochemical and fill studies of a multicomponent additive package for copper deposition[J]. J. Electrochem. Soc., 2001,148(7):C492-C497.
    [119]R. A. Waggoner, F. D. Blum, J. C. Lan et al. Diffusion in aqueous solutions of poly (ethylene glycol) at low concentrations[J]. Macromolecules.1995,28(8): 2658-2664.
    [120]K. Shimada, H. Kato, T. Saito et al. Precise measurement of the self-diffusion coefficient for poly (ethylene glycol) in aqueous solution using uniform oligomers[J]. J. Chem. Phys.2005,22:244914.
    [121]M. Hasegawa, N. Yamachika, Y. Shacham-Diamand, et al. Evidence for "superfilling" of submicrometer trenches with electroless copper deposition[J]. Appl. Phys. Lett.2007,90:101916-101916.
    [122]L. N. Ji, Z. G. Yang, J. S. Liu. Failure analysis on blind vias of PCB for novel mobile phones[J]. J. Fail. Anal. Prev.2008,8(6):524-532.
    [123]J. C. Boulliard, M. P. Sotto. Structural study of segregated sulphur on the stepped faces associated with Cu(100)[J]. Surf. Sci.1988,195:255-269.
    [124]P. A. Korzhavyi. Theoretical investigation of sulfur solubility in pure cooper and dilute copper-based alloys[J]. Acta Materialia.1999,47(5):1417-1427.
    [125]纪丽娜,杨振国.印制电路板镀盲孔的失效分[C].2009年全国电子电镀及表面处理学术交流会论文.2009:335-339.
    [126]W. P. Dow, C. W. Liu. Evaluating the filling performance of a copper plating formula using a simple galvanostat method [J]. J. electrochem. Soc.,2006, 153(3):C190-C194.
    [127]W. P. Dow, H. S. Huang, M. Y. Yen et al. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating[J]. J. electrochem. Soc.,2005,152(6):C425-C434.
    [128]J. Torres, J. L. Mermet. Copper-based metallization for VLSI circuits[J]. Microelectronic Engineering.1996,34(1):119-122.
    [129]S. Venkatesan. A high performance 118 V 0.12μm CMOS technology with copper metallization[C]. IEDM.1997,769-772.
    [130]E. D. Full Copper wiring in a sub-0125μm CMOS ULSI technology[C]. IEDM. 1997,773-775.
    [131]H. YokoyaAm, E. Kramer. Simulation of diffusion of asymmetric diblock and triblock copolymers in a spherical doAmin structure[J]. J. Amcromolecules. 2000,33:954-957.
    [132]A. Amlmsten, P. Linse, T. Cosgrove. Adsorption of PEO-PPO-PEO blocks copolymers at silica[J]. Amcromolecules.1992,25:2474-2481.
    [133]顾心群.适合于双面及多层印制板电路板的电镀铜溶液[J].航空精密制造技术.1995,31(3):44-45.
    [134]R. Liske, S. Wehner, A. Preusse et al. Influence of additive coadsorption on copper superfill behavior[J]. J. Electrochem. Soc.,2009,156(2):H955-H960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700