海洋环境复杂偶合体系腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶与海洋工程结构等海洋结构物均由多种金属合金材料构成,极易形成电偶腐蚀,因此海洋结构物的耐久性除了与金属材料本身耐蚀性(腐蚀行为)有关外,还与金属合金材料之间的电偶腐蚀作用密切相关,电偶腐蚀给海洋结构物的安全性造成了巨大危害,研究海洋结构物金属材料的电偶腐蚀可为设计选材和腐蚀防护提供基础数据和技术基础,具有重要的理论意义和经济价值。本文选取典型海洋环境工程材料:工业纯钛(TA2)、低合金高强钢(1#钢,921A,2#钢)、铜镍合金(B10),系统地研究并获得了单一金属材料的腐蚀变化规律、双金属偶合TA2/921A,B10/921A,1#钢/921A,1#钢/2#钢,2#钢/921A电偶腐蚀变化规律和典型三金属偶合TA2/B10/921A与1#钢/2#钢/921A电偶腐蚀变化规律,同时探讨了涂层和牺牲阳极阴极保护对电偶腐蚀的控制作用。
     对单一金属材料腐蚀规律的研究发现,TA2与B10(钝化金属)在低溶解氧含量(0~6mg/L)时,氧分子浓度的升高利于钝化膜的形成与修复,其腐蚀速率随溶解氧增加而线性减小;在高溶解氧含量(≥6mg/L)时基本形成致密稳定的钝化膜,耐腐蚀性能随之稳定;对于低合金高强钢(非钝化金属),氧含量的升高加快了氧分子的扩散速度,致使阴极氧去极化的速度增大,腐蚀速率与溶解氧含量呈线性增大关系。温度升高对氧扩散速度的促进作用大于其对溶解氧含量降低作用,金属材料的耐蚀性随温度升高而下降。
     通过对双金属偶合体系腐蚀行为的研究发现,高电位差(≥500mV)偶对TA2/921A,B10/921A阳极发生溶解反应,腐蚀加剧,腐蚀过程与自腐蚀相同;电偶腐蚀的保护作用使阴极几乎不发生腐蚀,低电位差(≤75mV)偶对1#钢/921A,1#钢/2#钢,2#钢/921A阴极虽因电偶作用较小,未达到完全保护而依然发生自腐蚀,但腐蚀明显减缓。高电位差偶对的电偶腐蚀速率随阴阳极面积比(Sc/Sa)呈线性增长,但因电偶电位正移,驱动电压逐渐减小而存在极限值;低电位差偶对电偶腐蚀速率因电位差低,驱动电压随面积比增加下降很快,在较小的Sc/Sa情况下即达到极限值,且不与Sc/Sa呈线性关系。偶对电偶电流密度与氧含量呈线性函数增大关系;温度对电偶腐蚀速度的影响规律符合阿累尼乌兹定律。
     三金属偶合体系中阳极与自腐蚀同样发生溶解反应,不同之处在于电偶作用加速了腐蚀反应产生FeOOH的过渡步骤。高电位差偶系TA2/B10/921A发生强极化作用,阳极921A发生强烈腐蚀,阴极TA2与B10受到电偶作用的完全保护,几乎无腐蚀;低电位差偶系1#钢/2#钢/921A发生弱极化作用,阳极921A腐蚀加速,阴极1#钢与2#钢腐蚀明显减缓。高电位差偶系电偶腐蚀速率随阴阳极面积比(Sc/Sc/Sa)呈线性增长,但因面积比增大使阳极极化加大,电偶电位正移,驱动电压逐渐减小而存在极限值;低电位差偶系1#钢/2#钢/921A电偶电位随阴阳极面积增大而正移,在Sc/Sc/Sa为3:3:1时,2#钢腐蚀电位因低于电偶电位而发生极性逆转,由阴极转为阳极。偶系阳极的腐蚀电流密度与溶解氧浓度呈线性函数增大关系;与温度之间呈指数函数增大关系,其规律符合阿累尼乌兹定律。
     双金属和三金属偶合体系均符合混合电位理论,对电偶腐蚀行为采用极化曲线分析与实际测试结果具有很好的一致性,可利用极化曲线较快速准确预测多种材料构成的电偶腐蚀行为。
     涂层与牺牲阳极联合保护较单独采用涂层保护更好地对电偶腐蚀起到防护作用。在联合保护情况下,铝阳极提供完全保护电流及稳定的保护电位,有效地延缓了做为阴极的涂层体系失效过程,在120天的实验周期内,涂层电阻一直保持在7.3×10~7·cm~2以上。海水中溶解氧含量增加或温度升高对涂层劣化及电偶腐蚀有促进作用,但在联合保护情况下,增大的电偶作用有效地减缓了阴极涂层体系的劣化程度,在65℃条件下,涂层电阻仍达1.1×10~7·cm~2。
The structures of ship and ocean engineering are part of marine structures composed bymany kinds of metal alloy materials that is easy to form galvanic corrosion. Therefore, exceptthe relevance to corrosion resistance (corrosion) of metal materials, the durability of marinestructures is closely related to galvanic corrosion between metal alloy materials. As galvaniccorrosion is great dangerous to safety of marine structures, the galvanic corrosion research onmetal materials adopted by marine structures can provide data base and technical foundationfor the design of material selection and corrosion protection, that has important theoreticalsignificance and economic value. This paper selected the typical marine environmentalengineering material: commercially pure titanium (TA2), high strength low alloy steel (1#,2#,921A), copper nickel alloy (B10). The systematic study was conducted to obtain the changerule of single metal corrosion, and galvanic corrosion of bimetal coupling of TA2/921A,B10/921A,1#/921A,1#/2#and2#/921A and typical multi-material system of TA2/B10/921Aand1#/2#/921A. The control effect on galvanic corrosion of coating and sacrificial anodesprotection were also studied.
     For TA2and B10(the passive metal), increasing oxygen concentration is beneficial toformation and repair of passivation film with dissolved oxygen content at0~6mg/L, and thecorrosion rate decreases linearly with dissolved oxygen; the compact and stable passive filmwas formed with oxygen content≥6mg/L, and then the corrosion resistance trended tostability. For high strength low alloy steel (the non passivation metal), the oxygen contentincrease promotes the diffusion rate of oxygen molecules, resulting in the acceleration ofcathode oxygen depolarization, and the corrosion rate increases linearly with dissolvedoxygen. The effect of temperature raises on the diffusion rate of oxygen is greater than on thedecreases of dissolved oxygen content, and the corrosion resistance of metal materialsdecreased with the increase of temperature.
     The anode in bimetal coupling system had dissolution reaction, corrosion was aggravated,the corrosion process was the same as self-corrosion; cathodic reduction of dissolved oxygenoccurred, the protective effect of galvanic corrosion made the cathode of high potentialdifference (≥500mV) pair TA2/921A, B10/921A was almost no corrosion, and the cathode oflow potential difference (≤75mV) pair1#/921A,1#/2#,2#/921A was still self-corrosion due to small galvanic effect without complete protection, but the corrosion obviously slowed down.galvanic corrosion rate of high potential difference pair showed linear growth with the arearatio of cathode to anode (Sc/Sa), but had extreme because the galvanic potential shift anddriving voltage decreases; galvanic corrosion rate of low potential difference pair reachedextreme under small Sc/Sa without linear relationship, due to low potential difference andrapid decrease of driving voltage with area ratio increase. Density of pair galvanic currentincreased linearly with oxygen content. Galvanic current density increased with thetemperature accord with Arrhenius equation.
     The anode in multi-material system had dissolution reaction, corrosion process wasdifferent from corrosion in that the galvanic effect accelerates the transition step of corrosionreaction; reduction of dissolved oxygen occurred on catholic surface, high potential differencemulti-material system of TA2/B10/921A had strong polarization, anodic921A strongly wascorroded strongly, catholic TA2and B10were almost no corrosion due to completelyprotected by galvanic effect; low potential difference multi-material system of1#/2#/921A hadweak polarization, accelerated corrosion on anode921A and slowed down corrosionobviously on cathodic1#and2#. Galvanic corrosion rate of high potential differencemulti-material system showed linear growth with Sc/Sc/Sa, but had extreme because that theincreased area ratio enhanced anodic polarization, galvanic potential shifted positively anddriving voltage decreased gradually; galvanic potential of low potential differencemulti-material system of1#/2#/921A shifted positively with Sc/Sc/Sa increase, the2#corrosion potential reversed polarity as it was lower than galvanic potential under condition ofSc/Sc/Sa was3:3:1, from cathode to anode. The corrosion current density of anode couplingsystem increased linearly with oxygen content. Galvanic current density increased with thetemperature accord with Arrhenius equation.
     Bimetal and multi-material system are both accord with the mixed potential theory, andresults of polarization curve analysis with the galvanic corrosion behavior performed greatconsistence with the actual test. It can be applied to predict the galvanic corrosion behavior ofvarious materials by using polarization curve rapidly and accurately.
     Compared to the coating protection, the united protection of coating and sacrificial anodeshowed better resistance to the galvanic corrosion. Under united protection, the case ofaluminum anode provided complete protection current and stable protection potential, which effectively delayed the failure process of coating system as cathode. During120-daysexperimental period, the coating resistance has been maintained above7.3×10~7·cm~2. Theincrease of dissolved oxygen content and temperature in seawater promoted the coatingdegradation and galvanic corrosion, and galvanic corrosion further promote the failureprocess of anodic coating system with single coating. In united protection of coating andsacrificial anode, the enhanced galvanic effect slowed degradation speed of cathode coatingsystem, the coating resistance was maintained at1.1×10~7·cm~2under the worst condition of65℃.
引文
[1] Trethewey K R, Sargeant D A. The galvanic effect: a continuing corrosion problem[J],Metals and Materials,1992,8:378-382P
    [2]魏宝明编著.金属腐蚀理论及应用[M].北京:化学工业出版社,1984:142-143页
    [3]陈光章,吴建华,许立坤等.舰船腐蚀与防护[J].舰船科学技术,2001,2:38-43页
    [4]朱相荣,王相润编著.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社,1999:57-58页
    [5]曹楚南编著.腐蚀电化学原理[M].北京:化学工业出版社,2004:40-41页
    [6]朱相荣,黄桂桥.金属材料在海水中的接触腐蚀研究[J].海洋科学,1994,6:55-59页
    [7] Schumacher M. Seawater corrosion handbook[M]. USA:Noyes Data Corporation, NJ,USA.1979:2-16P
    [8]赵麦群,雷阿丽编著.金属的腐蚀与防护[M].北京:国防工业出版社,2002:98-102页
    [9]钟积礼.船板钢接触腐蚀的研究[C].国家科委腐蚀科学学科组等编.腐蚀与防护学术报告会议论文集,北京,1979.北京:1982:32-35页
    [10]张英,戴明安.海水中舰船钢低电位差电偶的腐蚀[J].中国腐蚀与防护学报,1993,13(1):87-90页
    [11]黄桂桥,郁春娟,李兰生.海水中钢的电偶腐蚀研究[J].中国腐蚀与防护学报,2001,21(1):46-53页
    [12] Mansfeld F. Area relationships in galvanic corrosion[J]. Corrosion,1971,27(10):436-442P
    [13]张艳成,吴荫顺,张健.带锈铸铁与304不锈钢的电偶腐蚀[J].腐蚀科学与防护技术,2001,13(2):66-70页
    [14] Su Fangteng, Charles EA. A theoretical approach to galvanic corrosion, allowingcathode dissolution[J]. Corrosion Science,1988,28(7):649-655P
    [15] Evans U R. Metal corrosion passivity, and protection[M]. London: Edward Arnoldand Co.,1937:531P
    [16] Whitman W G, Russell R P, Altieri V J. Effect of hydrogen ion concentration onsubmerged corrosion of steel[J]. Industrial Engineering Chemistry,1924,16:665-670P
    [17] Pryor M J, Keir D S J. Galvanic corrosion[J]. Electrochemical Society,1957,104:269P
    [18]杜敏,郭庆锟,周传静.碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究[J].中国腐蚀与防护学报,2006,26(5):263-266页
    [19]李淑英,陈玮.碳钢/紫铜在NaCl介质中的电偶行为[J].腐蚀科学与防护技术,2000,12(5):300-302页
    [20] Blasco-Tamarit E, Igual-Munoz A, Garc a Anton J. Effect of temperature on thegalvanic corrosion of a high alloyed austenitic stainless steel in its welded andnon-welded condition in LiBr solutions[J]. Corros.Sci.,2007,49:4472-4490P
    [21] Blasco-Tamarit E, Igual-Munoz A, Garc a Anton J. Comparison between open circuitand imposed potential measurements to evaluate the effect of temperature on galvaniccorrosion of the pair alloy31–welded alloy31in LiBr solutions[J]. Corros.Sci.,2008,50:3590-3598P
    [22] Blasco-Tamarit E, Igual-Munoz A, Garc a Anton J. Galvanic corrosion of titaniumcoupled to welded titanium in LiBr solutions at different temperatures[J]. Corros.Sci.,2009,51:1095-1102P
    [23] Yin Z F, Yan M L, Bai Z Q. Galvanic corrosion associated with SM80SS steel andNi-based alloy G3couples in NaCl solution[J]. Electrochemical Acta,2007,53:6285-6292P
    [24] Varela F E, Kurata Y, Sanada N. The influence of temperature on the galvanic corrosionof a cast iron-stainless steel couple (prediction by boundary element method)[J].Corros.Sci.,1997,39(4):775-788P
    [25]刘东,艾俊哲,郭兴蓬.二氧化碳环境中碳钢电偶腐蚀行为研究[J].天然气工业,2007,27(10):114-116页
    [26] Shalaby L A. Galvanic coupling of Ti with Cu and Al alloys in chloride media[J].Corros.Sci.,1971,11(10):767-778P
    [27]刘冬.二氧化碳环境中缓蚀剂抑制电偶腐蚀机理研究[D].哈尔滨:哈尔滨工程大学,2002:43-48页
    [28]朱相荣,戴明安,陈振进.高流速海水中金属材料的腐蚀行为[J].中国腐蚀与防护学报,1992,12(2):173-179页
    [29]戴明安,张英,殷正安.流动海水中电偶腐蚀动力学规律[J].腐蚀科学与防护技术,1992,4(3):209-211页
    [30] Arya C, Vassie P R W. Influence of cathode-to-anode area ratio and separation distanceon galvanic corrosion currents of steel in concrete containing chlorides[J]. Cement anConcrete Research,1995,25(5):989-998P
    [31] Song G L, Johannesson B, Hapugoda S. Galvanic corrosion of magnesium alloy AZ91D incontact with an aluminum alloy, steel and zinc [J]. Corros.Sci.,2004,46:955-977P
    [32]赵华莱.油套管及封隔器用钢在封隔液环境下的电偶腐蚀行为研究[D].成都:四川大学,2007:47-50页
    [33]皇甫淑君,王佳,韩霞等.黄铜-16Mn钢在氯化钠溶液中腐蚀电化学分布行为[J].物理化学学报,2008,24(12):2275-2281页
    [34] John W Fu, Siu-Kee Chan. Finite element modeling of galvanic corrosion during chemicalcleaning of Westinghouse series51steam generator[J]. Mathematical,1987,8:289-294P
    [35] Akira Tahara, Toshiaki Kodama. Potential distribution measurement in galvaniccorrosion of Zn/Fe couple by means of Kelvin probe[J]. Corros.Sci.,2000,42:655-673P
    [36] Crump A. Brief history of science as seen through the development of scientificinstruments[M]. London: Robinson,2002:254-257P
    [37]张春,许川壁.局部交流阻抗扫描技术对金属电偶腐蚀的研究[J].中国腐蚀与防护学报,1989,9(2):137-143页
    [38] Akid R, Mils D J. A comparison between conventional macroscopic and novelmicroscopic scanning electrochemical methods to evaluate galvanic corrosion[J].Corros.Sci.,2001,43:1203-1216P
    [39] Ell-moneim A A, Gebert A. Electrochemical characterization of galvanically coupledsingle phases and nanocrystalline NdFeB-based magnets in NaCl solutions[J]. Journalof Applied Electrochemistry,2003,33:795-805P
    [40]李章亚编著.油气田腐蚀与防护技术手册[M].北京:石油工业出版社,1999:176-183页
    [41]杨绮琴,方北龙编著.应用电化学[M].广州:中山大学出版社,2001:243-244页
    [42] Venkatesan P, Palaniswamy N, Rajagopal K. Corrosion performance of coatedreinforcing bars embedded in concrete and exposed to natural marine environment[J].Progress in Organic Coatings,2006,56:8-12P
    [43]陈麒,倪礼忠.船舶防腐涂料研制关键技术的探讨[J].涂料技术与文摘,2008,1:14-16页
    [44]史洪微,刘福春,王震宇.海洋防腐涂料的研究进展[J].腐蚀科学与防护技术,2006,56:8-12页
    [45]孙明先.舰船阴极保护技术的现状与发展[J].船舶科学技术,2001,15(2):44-46页
    [46]孙祖信,高通和.牺牲阳极和乙烯系长效涂料配套体系[J].材料保护,1995,28(8):27-29页
    [47]付治深.钢质海船的腐蚀与阴极保护[J].船海工程,2004,161(4):18-19页
    [48] Touzaina S, Le Thua Q, Bonneta G. Evaluation of thick organic coatings degradation inseawater using catholic protection and thermally accelerated tests[J]. Progress inOrganic Coatings,2005,52(4):311-319P
    [49]邵壮藩.不同船体钢之间的电偶腐蚀[J].中国腐蚀与防护学报,2006,26(5):37-41页
    [50]杨专钊.钛合金紧固件连接结构接触腐蚀行为及其控制技术研究[D].西安:西北工业大学,2004:40-45页
    [51]宋诗哲编著.腐蚀电化学研究方法[M].北京:化学工业出版社,1988:129-130页
    [52] M舒马赫著.李大超等译.海水腐蚀手册[M].北京:国防工业出版社,1985:4页
    [53] Glover T J. Copper nickel alloy for the construction of ship and boat hu11s[J]. BrCorrosion J,1982,17(4):155P
    [54] Domiaty A E, Alhajji J N. The susceptibility of90Cu-10Ni alloy to stress corrosioncracking in sulfide polluted seawater[C].13th ICC, Australia,1996:1-11P
    [55] HB/5374-87不同金属电偶腐蚀电流测定方法[S].北京:中华人民共和国航空工业部,1987
    [56] Baboian R,陈旭俊.用电化学技术预测电偶腐蚀[J].北京化工学院学报,1980,8:94-99页
    [57]吴荫顺,方智,曹备编著.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社,1996:24-27页,18-21页,31-65页
    [58]中国国家标准化管理委员会. GB/5776-86金属材料在表面海水中常规暴露腐蚀试验方法[S].北京:中国标准出版社,1986
    [59]中国国家标准化管理委员会. GB/6384-86船舶及海洋工程用金属材料在天然环境中的海水腐蚀试验方法[S].北京:中国标准出版社,1986
    [60]中国国家标准化管理委员会. GB/T19291-2003金属和合金的腐蚀——腐蚀试验一般原则[S].北京:中国标准出版社,2003
    [61]中国国家标准化管理委员会. GB/T16545-1996金属和合金的腐蚀——腐蚀试样上腐蚀产物的清除[S].北京:中国标准出版社,1996
    [62]郭为民,李文军,陈光章.材料深海环境腐蚀试验[J].装配环境工程,2006,3(1):10-15页
    [63]王佳,孟洁,唐晓等.深海环境钢材腐蚀行为评价技术[J].中国腐蚀与防护学报,2007,27(1):1-7页
    [64]张毅斌.船用钛合金表面改性技术研究进展[J].材料开发与应用,2009,25(5):70-74页
    [65]陈丽萍,娄贯涛.舰船用钛合金的应用及发展方向[J].舰船科学技术,2005,27(5):13-15页
    [66]张汉民.钛氧化着色技术[J].电镀与精饰,1992,14(4):14-17页
    [67]崔宝玉,张振邦.钛电极交流阻抗谱的弥散效应[J].腐蚀科学与防护技术,1994,6(2):123-130页
    [68] Brossia C S, Cragnolino G A, Brossia C S, et al. Effect of palladium on the corrosionbehavior of titanium[J]. Corros.Sci.,2004,46(7):1693-1711P
    [69] Schultze J W, Lohrengel M M. Stability reactivity and breakdown of passive films[J].Electrochimica Acta,2000,45(15):2499-2513P
    [70] Birch J R, Burleigh T D. Film formation and characterization of anodic oxides ontitanium for biomedical applications[J]. Corrosion,2000,56(12):1233-1241P
    [71]杜娟,王洪仁,杜敏等. B10铜镍合金流动海水冲刷腐蚀电化学行为[J].腐蚀科学与防护技术,2008,20(1):12-18页
    [72]何楷,徐成彦,甄良.树叶状α-Fe2O3微晶的水热合成与表征及生长机制[C].第十二届全国青年材料科学技术研讨会,江苏南京,2009.南京:南京工业大学,2010:243-246页
    [73]许慧丽,徐铸德,黄宛真.不同形貌的α-Fe2O3的水热控制合成[J].浙江大学学报理学版,2008,5:546-549页
    [74] Guangling Song, Birgir Johannesson, Sarath Hapugoda. Galvanic corrosion ofmagnesium alloy AZ91D in contact with an aluminum alloy, steel and zinc[J].Corros.Sci.,2004,46(4):955-977P
    [75] Shibata T, Zhu Y. The effect of temperature on the growth of anodic oxide film ontitanium[J]. Corros.Sci.,1995,37(1):133-144P
    [76] Cheng F T, Lo K H, Man H C. NiTi cladding on stainless steel by TIG surfacingprocess[J]. Surface and Coatings Technology,2003,172(2):308-315P
    [77]刘冉.工业纯钛和OOCr25Ni22Mo2不锈钢冲刷腐蚀和再钝化性能的探讨[D].北京:北京化工大学,2000:35-37页
    [78]孙婷婷,李宁,薛建军.环境因素对B10铜镍合金耐蚀性的影响[J].装备环境工程,2010,7(4):25-28页
    [79]刘伟华,曹中秋,郑志国. Cl-含量对铸态Cu-40Ni合金电化学腐蚀行为的影响[J].沈阳师范大学学报,2004,22(3):220-223页
    [80]辛湘杰,解峻峰,董敏.钛的腐蚀防护及工程应用[M].合肥:安徽科学技术出版社,1998:164-166页
    [81]邓淑珍,顾桂松,周立清等.钛在各种介质中的电化学行为的研究[J].海军工程学院学报,1999,87(2):57-60页
    [82] Wagner C, Traud W. On the interpreatation of corrosion processes through thesuperposition of electrochemical partial processes and on the potential of mixedelectrodes[J]. Electrochem.,1938,44:391页
    [83] Glover T J. Coppernickel alloy for the construction of ship and boat hulls[J]. BrCorrosion,1982,17(4):155页
    [84]林乐耘,徐杰,赵月红.国产B10铜镍合金海水腐蚀行为研究[J].中国腐蚀与防护学报,2000,20(6):361-367页
    [85] Abreu C M, Cristobal M J, Montemor M F. Galvanic coupling between carbon steel andaustenitic stainless steel in alkaline media[J]. Electrochimica Acta,2002,47(14):2271-2279P
    [86]孙冬柏,李涛,俞宏英等.铁铬合金摩擦破损微电偶的形成及作用[J].电化学,1998,4(3):307-312页
    [87]沈慕昭.电化学基本原理及其应用[M].北京:北京师范大学出版社,1987:121-123页
    [88]孙敏,肖葵,董超芳.带腐蚀产物超高强度钢的电化学行为[J].金属学报,2011,47(4):442-448页
    [89] Bordzi owski J, Darowicki K, Krakowiaka S, et al. Impedance measurements of coatingproperties on bridge structure[J]. Progress in Organic Coatings,2003,46:216-219P
    [90] Rosa De R L, Earl D A, Bierwagen G P. Statistical evaluation of EIS and ENM datacollected for monitoring corrosion barrier properties of organic coatings onAl-2024-T3[J]. Corros.Sci.,2002,44:1607-1620P
    [91] Mansfield F, Han L T, Lee C C, et al. Evaluation of corrosion protection by polymercoatings using electrochemical impedance spectroscopy and noise analysis[J].Electrachimica Acta,1998,43(19-20):2933-2945P
    [92]张雪.碳钢环氧基防腐涂层的性能研究[D].沈阳:沈阳工业大学,2009:43-44页
    [93] Zhong C, Tang X, Cheng Y F. Corrosion of steel under the defected coating studied bylocalized electrochemical impedance spectroscopy[J]. Electrochimica Acta,2008,53(14):4740-4747P
    [94] Miskovie Z, Stankovie V B, Zotovie J B, et al. Corrosion behavior of epoxy coatingselectrodeposited on steel electrochemically modified by Zn-Ni alloy[J]. ElectrochemicalActa,1999,1(44):4269-4277P
    [95] Batt C, Dodson J, Robinson M J. Hydrogen embitterment of catholically protected highstrength steel in sea water and seabed sediment[J]. British Corrosion Journal,2002,37:194-198P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700