混凝土结构钢筋腐蚀的电化学特征与监测传感器系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对氯离子环境下混凝土中钢筋腐蚀的监测问题进行了研究,应用电化学方法揭示了混凝土中钢筋腐蚀的机理,给出了适合腐蚀监测实际工程应用方法,研制开发了五电极和全固态束流式两种腐蚀传感器,搭建了腐蚀监测系统,并在混凝土梁中进行了钢筋腐蚀监测实验。研究结果表明,所进行的一系列研究为实现钢筋腐蚀监/检测开辟了新的途径。
     首先,采用电化学阻抗谱(Electrochemical Impedance Spectrum, EIS)技术分别对不同温度、不同浓度NaCl溶液中内置Q235碳钢样品的混凝土试件的阻抗特性进行了研究。研究结果表明混凝土中钢筋腐蚀的EIS特性体现为三个方面:1)在Nyquist图的高频及中频段出现两段容抗弧。这说明除了钢筋/混凝土界面处体现的容抗特性以外,混凝土本身也存在一定的容抗特性。2)中频段的容抗弧发生一定程度压扁。这说明出现了体现弥散效应的常相位角元件(Constant Phase Element, CPE)项,弥散效应的产生是由于混凝土中钢筋/砂浆界面的粗糙性、孤立的反应区域以及混凝土本身异质特性决定的。3)低频段发生拖尾现象,说明腐蚀体系出现了Warburg阻抗。进一步分析发现低频段Nyquist图偏离了Warburg阻抗应体现的45°线,出现这一现象的原因有二:其一,钢筋/混凝土之间的粗糙界面导致扩散过程在一定程度上体现为球形电极扩散;其二,蚀点的存在使得Nyquist曲线在低频段呈现一定容抗特性。
     其次,基于电化学噪声(Electrochemical Noise,EN)技术,研究了0%及3.5%NaCl溶液中混凝土内钢筋点蚀特性。研究结果表明钝化态钢筋的EN信号体现为高频白噪声;而Cl-引起点蚀的电位噪声(Electrochemical Potential Noise,EPN)中存在较大的漂移,EPN及电流噪声(Electrochemical Current Noise,ECN)中出现了明显的暂态峰,两者都体现为暂态下降(升高)、缓慢恢复的特征。通过功率谱(Power Spectral Density,PSD)分析可知,EPN及ECN的PSD曲线中出现了典型的三段式分布。极限谱噪声阻Rf→0与EIS的研究结果比较可知,在信号趋势去除后Rf→0与EIS测得的阻抗模Z具有很好的一致性。考虑到工程中点腐蚀监测EN信号中存在较大的趋势,采用对时变系统分析具有诸多优点的Sym4小波对EN进行了分析,分析结果表明采用小波分析EN得到的信号能量分布曲线(Energy Distribution Plot,EDP)能够判断点蚀的发生,较PSD等对时变系统信号处理更具优势。
     第三,推导了混合电位控制下电极反应方程式,并分别对稳态及暂态的工程应用简化方法进行了研究。讨论了扩散作用及CPE项对暂态测量结果的影响。验证了时间常数比半电位法具有更大的优越性,在氧气匮乏湿度较大的环境下,能够准确判断钢筋的腐蚀状态。对不同浓度的NaCl溶液中内置Q235碳钢样品的砂浆试件在恒电流及恒电位激励下的充放电过程进行了测试,并对充电过程试验结果采用分段解析的方法进行了分析,验证了工程简化方法的准确性。
     第四,首先制备了腐蚀传感器的核心部件-全固态参比电极,并对所制备的参比电极进行了性能检测。检测结果表明所制备的参比电极长时电位稳定,不易受到混凝土内各种离子的干扰,具有良好的抗极化特性,温度响应系数为-0.48mv/℃~-5.2 mv/℃。其次,应用所制备的全固态参比电极研制、开发了五电极及全固态束流式腐蚀传感器,其中五电极腐蚀传感器能够进行常规电化学方法及EN测试;通过电场的有限元分析可知,全固态束流式腐蚀传感器能够较好地约束辅助电极的电力线分布,从而较准确地确定工作电极的面积,进而准确测定钢筋腐蚀速率。
     第五,应用所开发的传感器平台及工程测试方法对加速腐蚀后的钢筋混凝土梁的腐蚀状态进行了监测,并研究了不同腐蚀状态下梁基本力学性能的退化。监测的结果表明加速腐蚀完成后的混凝土内钢筋腐蚀的腐蚀电流密度icorr的量级为10+1μA/cm2,而钝化态梁内钢筋的腐蚀速率仅为10-1μA/cm2。EN的监测结果表明钢筋表面发生了严重的点蚀。梁的正截面承载力试验发现钢筋从未腐蚀到严重腐蚀过程中,梁的破坏形态从典型的适筋梁破坏逐渐转化成典型的少筋梁破坏。随着腐蚀程度的增加,梁的极限承载力下降、延性降低、刚度减小。
Corrosion monitoring of reinforcing steel in concrete with chloride iron environment has been studied in this paper. Electrochemcial methods have been used to explore the corrosion mechanics. Some corrosion monitoring methods for practical engineering have been discussed.Also, five-electrode corrosion sensor and all solid state-current confined corrosion snesor has been developed and the corrosion monitoring system has been setup. The corrosion monitoring system has been practiced in the RC beams. The results show that the research in the paper has explored a new way to realize the corrosion monitoring and detecting.The main works of this paper are as follows:
     1. The impedance character of the specimens of Q235 carbon steel embedded in cement mortar at different temperature and in different concentration of NaCl solution have been studied by electrochemical impdedance spectrum technique (EIS).The results show that the impedance charater of the specimen includes three aspects.1) There are two parts of capacitive arcs at the high frequencies and medium frequencies of the Nyquist diagram. This shows that the concrete has some capacitive character besides the interface between the steel bar and the concrete.2) The capcitive arc at the medium frequencies has been flattened in some degree.This phenomen is cuased by the constant phase element (CPE).CPE is also named dispersion effect.The coarse interface of the steel/concrete, isolated reaction region and the heterogeneous nature of concrete are the most important factors causing the dispersion effect.3) The phenomen of smearing effect has appeared at low frequencies.The Warburg impedance which is used to explain the diffusion effect can cause the smearning phenomen. But the plots in the Nyqusit diagram are deviated from the line with the coeff. of 1. There are two kinds of factors which can cause such phenomen. Firstly, the diffusion process from the concrete to the carbon steel can be treated as spheric electrode diffusion in some degree for the coarse surface of the specimen.Secondly, the corrosion pit causes that the character of the Nyqusit plots at low frequencies embodies some capacitive character.
     2. The electrochemical noise (EN) technique has been applied to study the pitting character of the carbon steel embedded in cement mortar. The concentration of the NaCl solution used to immersed the cement specimen are 0% and 3.5%, respectively.The results show that the EN of the passivated steel is white nosie. There is a large trend in the EPN when the specimen is immersed in 3.5%NaCl solution. The apparent transient peaks have appeared in EPN and ECN. Decreasing (or increasing) suddenly and recovery slowly is the typical shape of the transient peak. The typical three-segment plots have apperared in the PSD diagrams of EN.When the EN is detrended, the Rf→0 calculated by PSD is equal approximatly to the impedance Z measured by EIS.Concering the larger amplitude of the trend in EN in practical engineering, Sym4 wavelet has been used to analyze the EN. The results show that the energy distribution plot (EDP) can be used to confirm the occurrence of the corrosion pit.The EDP method is more effectively than PSD to treat time variance system.
     3. The reaction equation of the electrode which is controlled by mixed potential theory has been deduced and the simplified methods which adapt to practical engineering in steady state and transient state measurement have been studied.The influence of diffusion and CPE effects to the results by transitent measurement have been discussed. As the extition of the system is a current step, the time constant of the potential response is a more effective parameter to identify the corrosion status of the steel than that of the half-potential method.The time constant can identify the corrosion status correctly when the oxygen is rare or the humidity is very high in the concrete. Many specimens have been used in the experiments to certify the reability of the simplified methods.The data during the charging process has been analyzed by segmented method.
     4. A novel all solid state reference electrodes have been prepared and the performance of the reference electrode is studied. The reference electrode is immune to the irons in the concrete and the long time stability is perfect. Also, the anti-polarizetion character of the reference electrode is perfect. The coefficient of temperature response is from -0.48mv/℃to -5.2 mv/℃. Secondly, applying the all solid state reference electrode, the five-electrode corrosion sensor and all solid state-current confined corrosion sensor have been developed. The general electrochemical measurements and EN measurement can be realized on five-electrode corrosion sensor.According to the analysis results of the finite element method, the area of the working electrode(WE) can be identified exactly by the all solid state-current confined corrosion sensor, so the corrosion rate of the steel bar can be measured accurately by the corrosion sensor.
     5. The developed corrosion sensors have been used to monitor the corrison statues of the concrete beam.The basical mechanical property of the corroded beam has also been studied. After the accelerated corrosion, the corrosion current degree of the steel bar is almost 10+1μA/cm2.But the current of the steel bar in fresh concrete is 10-1μA/cm2.According to the change of the EDP, we can see that the pitting corrosion has occurred on the steel surface.By the experinments of the cross-section bearing capacity of the beams, we can find that the failure mode of the beams change from tipical adequacy beam to the insufficient beam.As the corrosion degree increases, the ulitimate bearing capacity, the ductility and the stiffness of the beams decrease gradually.
引文
1 R.Winston Revie主编.尤利格腐蚀手册.杨武等译.原著第二版.化学工业出版社, 2005:337
    2 Report of the National Materials Advisory Board. Concrete Durability-A Multibillion Dollar Opportunity.Publication No.NMAB-437, National Academy of Science.Washington.D.C., 1987:94
    3 P.K.Metha. Durability of Concrete-Fifty Years of Progress? Durability of Concrete-G.M.Idorn International Symposium, Detroit, 1991. American Concrete International SP-126
    4王恒栋.钢筋混凝土结构耐久性评估基础研究.大连理工大学博士学位论文.1996:6
    5罗福午.建筑结构缺陷事故的分析及防止.清华大学出版社,1996:56-61
    6卢木.混凝土耐久性研究现状和研究方向.工业建筑.1997, 27 (5):1-4
    7 J. P.Broomfield. Corrosion of Steel in Concrete. E&FN SPON, 1997:231-232
    8 Z.G.Matta. Deterioration of Concrete Structures in the Arabian Gulf.Concrete International.1993, 35(3):33-36
    9洪乃丰.钢筋混凝土基础设施腐蚀与耐久性.混凝土结构耐久性及耐久性设计会议论文集,北京,2002.清华大学,2002:119-124
    10金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望.浙江大学学报(工学版).2002, 36(4):371-380
    11洪定海.混凝土中钢筋的腐蚀与防护.中国铁道出版社,1998:21-25
    12牛荻涛,王庆霖,王林科.腐蚀开裂前混凝土中钢筋腐蚀量的预测模型.工业建筑.1996, 26(4)8-10
    13牛荻涛,王庆霖,王林科.腐蚀开裂后混凝土中钢筋腐蚀量的预测模型.工业建筑,1996, 26(4)11-13
    14肖从真.混凝土中钢筋腐蚀机理研究及数论模拟方法.清华大学博士学位论文.1995:11-13
    15陆新赢.利用Nemst-Ninstein方程测量氯离子在混凝土中的扩散系数,钢筋腐蚀与冻融破坏的预测模型年度研究报告,国家基础性研究重大项目(攀登计划B)“重大土木与水利工程安全性与耐久性的基础研究”,1997:19-28
    16范颖芳.受腐蚀钢筋混凝土构件性能研究.大连理工大学博士学位论文2002:11-17
    17 D.A. Jones. Principles and Prevention of Corrosion.2nd ed. Prentice-Hall, 1996:214
    18 M.T. Liang, J.J. Lan. Theoretical Elucidation on the Empirical Formulae for the Ultrasonic Testing Method for Concrete Structure. Cement and Concrete Research. 2005, (35) 542
    19何世钦.氯离子环境下钢筋混凝土构件耐久性试验研究.大连理工大学博士学位论文.2004:33
    20黄鹏飞.钢筋混凝土在环境腐蚀与弯曲荷载协同作用下的损伤失效研究.中国建筑材料科学研究院博士学位论文.2004:19
    21阎西康.盐腐蚀钢筋混凝土构件力学性能试验研究.天津大学博士学位论文.2005:26
    22仲伟秋.既有钢筋混凝土结构的耐久性评估方法研究.大连理工大学博士学位论文.2003:45
    23柯伟,杨武.腐蚀科学技术的应用和失效案例.化学工业出版社,2005:221
    24欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金.2005(1)8-12
    25赵雪峰.结构健康监测的光纤光栅传感网络及其工程应用.哈尔滨工业大学博士学位论文. 2007:12
    26 G. W. Housner, L. A. Bergman, T. K. Caughey et al. Structural Control: Past, Present, and Future. Journal of Engineering Mechanics. ASCE. 1997, 123(9):897-971
    27孙鸿敏,李宏男.土木工程结构健康监测的研究进展.防灾减灾工程学报.2003, 23(3):92-97
    28陈龙珠,陈晓宝,黄真.混凝土结构防灾技术.化学工业出版社, 2005:277
    29金伟良,赵羽习.混凝土结构耐久性科技论坛论文集.混凝土结构耐久性设计与评估办法.机械工业出版社, 2006:132
    30 M .R .Godfrey, T.Y.Chem. Some Principles of Service Life Calculation of Reinforcements and in Situ Corrosion Monitoring by Sensors in the Radioactive Waste Containers. Corrosion.2005, 51(10):797-804
    31 S.Robert, Clarke, J. Willis, et al. Electrochemical Methods in Corrosion on Petroleum Industry Laboratory and Field Results. R .U .S., 2003, 2 (5):306-414
    32 W. H.Smyrl, M.A.Butler. Investigation of the Initiation of Localized Corrosion on Aluminum Alloys by Using Fluorescence Microscopy. Electrochem.Soc. Interface.2005, 2(4):35-39
    33 Yegnaramon, U. Subramanran, G. Rao, et al. New Hypotheses for Hydrogenase Implication in the Corrosion of Mild Steel. Electrochem. 2006, 2(5):503 -504
    34 Jambo, Hermano, J. Antonio ,et al. Tafel Slopes Used in Monitoring of Copper Corrosion in a Bentonite Groundwater Environment. Brit UK,Pat.2 , 1995:298 -926
    35 J.Zosel, W.Fichtner, H.Kaden, et al. Corrosion Monitoring of Nickel-Containing Steels in Marine Atmospheric Environment. Corrosion.2006, 47(6):299-306
    36 Niedrach, W.Leonard, H.Williams. Application of AC Resistmetry to Monitoring of Localized Corrosion of Iron. Corrosion.2005, 41(1)45-51
    37 L.Hitachi, J.Kokkai. Tokkyo Koki. A Nnew Approach for Monitoring Corrosion and Flow Characteristics in Oil Brine Mixtures. Corrosion. 2006, (24):351-357
    38 Hilliavd, M.Hardd, Jordan, et al. Analysis of Electrochemical Noise Data with Phase Space Methods. Perform.2004, 23(5):43-55
    39 Niefrach, W.Leonard. Evaluation of the Protection against Corrosion of a Thick Polyurethane Film by Electrochemical Noise. J.Electrochem.Soc.2002, 129(7):1445-1449
    40 K.Berkely, S.Pathmanaban. Cathodic Protection of Reinforcement Steel in Concrete. Butterworths & Co. Ltd., 1990:765
    41 P.Pullar-Strecker. Corrosion Damaged Concrete: Assessment and Repair. Butterworths,1987:542-545
    42 Tomohiro Gotou, Masashi Noda.In Situ Health Monitoring of Corrosion Resistant Polymers Exposed to Alkaline Solutions Using pH Indicators. Sensors and Actuators B. 2006, (119):27-32
    43 F. Ansari. State of the Art in the Application of Fiber Optic Sensors to Cementitious Composites. Cement and Concrete Composites. 1997, 19(1)3-9
    44孙圣和,王廷云,徐影.光纤测量与传感技术.哈尔滨工业大学出版社,2000:7~8
    45 A.Mendez. Overview of Optical Fibre Sensors Embedded in Concret. SPIE Proceedings, Fibre Optic Smart Structures and Skin, 1992, (1978):205-216
    46 Wenzhong Jin. Corrosion Sensors. Ph.D. Dissertation of University of MINNESOTA. 2000:1-13
    47 L P.Fuhr, R. D.Huston. Corrosion Detection in Reinforced Concrete Roadways and Bridges via Embedded Fiber Optic Sensors. Smart Materials and Structures. 1998, 7(2):217-228
    48黎学明,朱永,陈伟民.一种监测钢筋腐蚀的光波导传感方法.激光杂志,.1999, 20( 6) : 44- 46
    49 J.A. Greene, M.E. Jones, P.G. Duncan. Grating-Based Optical Fiber Corrosion Sensors. SPIE. 2001, 3042(11):260-266
    50吴荫顺主编.金属腐蚀研究方法.化学工业出版社,1993:190
    51吴荫顺主编.腐蚀试验方法与防腐蚀检测概论.化学工业出版社,1996:26-
    52
    52中国机械工程学会无损检测学会编.无损检测概论.机械工业出版社,1993:24-57
    53何业东,齐慧滨.材料腐蚀与防护概论.机械工业出版社, 2005:293
    54 Thomason, H.M William. Corrosion of Concrete Sewers—The Kinetics of Hydrogen Sulfide Oxidation. Perform. 2004, 23(1):24-29
    55 Archbold, T.Sukalac, J.Picard, et al. Monitoring the Degradation of a High Solids Epoxy Coating by Means of EIS and EN. Mater. Congr.Int 3rd. 2007:449-454
    56 Evgen,Tiefmig, U.S.Patent5, 583, 42
    57 K.Abbas, D.Gilliland, M. F.Stroosnijder. Radioactivity Measurements for the Thin Layer Activation Technique. Applied Radiation and Isotopes. 2000, 53(2):179-184
    58 Kalman. Trends in Corrosion Research.Electrochimica Acta. 2001, 46(24):3 607-3 609
    59 G.Laguzzi, L.Tommesani, L.Uvidi,et al. Thin Layer Activation Technique Application in Bronze Corrosion Monitoring. Corrosion Science. 1999, 41(1):197-202
    60任吉林,吴礼平,李林编著.涡流检测.国防工业出版社,1985:61
    61中国无损检测学会编译.电磁检测.机械工业出版社,1985:25
    62 Fiona, W.Y.Chan. Reflective Fringe Pattern Technique for Subsurface Crack Detection. NDT &E International.2008, 41(8):602-610
    63 Suton,John.British UK patent 2,140, 564,1983
    64 J.F. Lataste, M.Behloul, D.Breysse. Characterisation of Fibres Distribution in a Steel Fibre Reinforced Concrete with Electrical Resistivity Measurements. NDT &E International.2008, 41(8):638-647
    65中国无损检测学会编译.超声波探伤.机械工业出版社,1987:33
    66 H.M. Gomes, N.R.S. Silva. Some Comparisons for Damage Detection on Structures Using Genetic Algorithms and Modal Sensitivity Method. Applied Mathematical Modelling.2008, 32(11):2216-2232
    67 A.Wac-Wlodarczyk, R.Goleman, D.Czerwinski, et, al. Mathematical Models Applied in Inductive Non-destructive Testing. Journal of Magnetism and Magnetic Materials. 2008, 320(20):1044-1048
    68 L.Bourguigonon. A Fluorescent Microscopy-Screening Test for Efficient STR-typing of Telogen Hair Roots. Forensic Science International :Genetics. 2008, 204(48):1233-1239
    69 C. Chang Lien, A. Chyung. Non-destructive Impact Test for Assessment of Tomato Maturity. Journal of Food Engineering. 2008, 55(4)139-143
    70 R.Carrillo, R.Eduardo. A Real-time Spiking Cerebellum Model for Learning Robot Control. Biosystems. 2008, 94(1-2) 18 -27
    71 K.Wakimoto, J.Blunt, C.Carlos, et al. Digital Laminography Assessment of the Damage in Concrete Exposed to Freezing Temperatures. Cement and Concrete Research. 2008, 38(10):1232-1245
    72 V.Casalegno, M.Salvo, M.Ferraris, et al. Non-destructive Characterization of Carbon Fiber Composite/Cu Joints for Nuclear Fusion Applications. Fusion Engineering and Design.2008, 83(5-6):702-712
    73 Sidney Mindess, J.Francis Young, David Darwin. Concrete. Prentice-HallInc., 2002:231
    74汪澜.水泥混凝土组成性能应用.中国建材工业出版社,2005:25
    75张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论.上海科学技术出版社,2003:66
    76 Xizhen Yang, Wu Yang, Thermodynamics of Metal Corrosion. Chemical Industry Press,1996:157
    77刘道新.材料的腐蚀与防护.西北工业大学出版社,2005:367
    78洪乃丰.混凝土碱度与钢筋腐蚀.混凝土及水泥制品.1991,27(3)281-283
    79吴荫顺.电化学保护和缓蚀剂应用技术.化学工业出版社,2005:693
    80赵铁军,郭自力.混凝土的化学组分与钢筋腐蚀.建筑技术.1996,21(1)44-45
    81刘秉京.混凝土结构耐久性设计.人民交通出版社,2006: 47-50
    82赵铁军.混凝土渗透性.科学出版社, 2005:131
    83中国工程院水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南.中国建筑工业出版社,2004:17,23-
    25,61,63
    84黄君哲,王胜年,潘德强.海工高性能混凝土结构使用寿命预测浅析.水运工程.2004,22(2)113-117
    85 G.S.Duffo, W.Morris, I.Raspini, et al. A Study of Steel Rebars Embedded in Concrete During 65 years. Corrosion Science. 2004, (46):2143-2157
    86 P.A.M. Basheer, P.R.V. Gilleece, A.E. Long, et al. Monitoring Electrical Resistance of Concretes Containing Alternative Cementitious Materials to Assess Their Resistance to Chloride Penetration. Cement & Concrete Composites. 2002, (24):437-449
    87 K.Tuutti.Corrosion of Steel in Concrete. CBI, Research Report 4:82, Stockholm, Sweden,1982
    88 Metha P.K.混凝土的结构、性能与材料.同济大学出版社,1991:121-134
    89牛荻涛.混凝土结构耐久性与寿命预测.科学出版社,2002:34-36
    90吴谨.钢筋混凝土结构腐蚀损伤.科学出版社,2004:8-12
    91李田,刘西拉.混凝土结构耐久性分析与设计.科学出版社,1999:1-12
    92李雪红.重大水工混凝土结构裂缝演变规律及转异诊断方法研究.河海大学博士学位论文,2003:10-15
    93包腾飞.混凝土裂缝的混沌特性及分析理论和方法.河海大学博士学位论文,2003:89-92
    94 Tang Luping,Calibration of the Electrochemical Methods for the Corrosion Rate Measurement of Steel in Concrete.NORDTEST Project No.1531-01,2002
    95 D.Macdonald, Brian M.Marx,Sejin Ahn, et al. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste. Department of Energy Environmental Science Program, Grant No.DE-FG07-97ER62515(Project60219), June15th, 2004
    96 Jun Liu. Electrochemical Emission and Impedance Spectroscopies of Passive Iron and Carbon Steel. Ph.D. dissertation of the Pennsylvania State University, 2002:75-94
    97 Yufeng Cheng. A Fundamental Understanding of the Electrochemical Noise Related to Pitting Corrosion of Carbon Steel. Ph.D. dissertation of University of Alberta. 2000:38-47
    98 Zhaolin Sun. Application of Electrochemical Methods in Corrosion and Battery Research. Ph.D. dissertation of University of Southern California. 2001:79-91
    99 Guoliang Chen. Novel Corrosion Control Coatings Evaluated by Scanning Probe Microscopy and Electrochemical Methods. Ph.D. dissertation of North Dakota State University. 2002:56-61
    100 Junping Li. Study on Corrosion Protection of Organic Coatings Using Electrochemical Techniques: Thermal Property Characterization, Film Thickness Investigation, and Coating Performance Elevaluation. Ph.D. dissertation of North Dakota State University. 2001:67-81
    101 Sebastien Richard.Atmospheric Corrosion Sensor Studies in Accelerated and Natural Environments. MSD thesis of Florida Atlantic University.2003:56-79
    102 Lifeng Chen. Modeling Pitting Corrosion of Iron Exposed to Alkaline Solutions Containing Nitrate and Nitrite. Ph.D. dissertation of University of South Carolina. 2001:88-91
    103 Chu-Chung Lee. Monitoring and Evaluating Polymer Coating Quality and Its Degradation Using Electrochemical Techniques and Artificial Neural Networks. Ph.D. dissertation of University of Southern California. 1998:34-39
    104 Peyman Khalafpour.Electrochemical Behavior of Carbon Steel in Nitrite Solutions. Ph.D. dissertation of University of Calgary. 2002:59-67
    105 Lung-Tien Han. Evaluation of Methods of Corrosion Protection Using Electrochemical Techniques. Ph.D. dissertation of University of Southern California. 1996:47-51
    106胡融刚.钢筋/混凝土体系腐蚀过程的电化学研究.厦门大学博士学位论文.2004:33-34
    107唐聿明.碳钢在含氯离子溶液中的点蚀早期电化学行为特征.北京化工大学博士学位论文.2001:56
    108董泽华. 16Mn钢局部腐蚀中的电化学噪声及其解析方法研究.华中科技大学博士学位论文.2001:43-51
    109雷良才.局部腐蚀发展速度实时在线监测技术的基础问题研究.中国科学院金属研究所博士学位论文.2002:76
    110吴建华,赵永韬.钢筋混凝土的腐蚀监测/检测.腐蚀与防护.2003,24(7):421-428
    111张际标.大气腐蚀起始过程中的微液滴现象研究.中国科学院研究生院博士学位论文.2005:65-68
    112胡荣宗,林昌健等.腐蚀介质中混凝土/钢筋界面电极电位分布的立体分析.电化学.2000,6(2):227-232
    113李相波.海洋环境中微生物附着的电化学特征及检测与控制方法研究.中国科学院研究生院博士学位论文.2004:32-34
    114姜丽娜,杜敏,杜林.弱极化技术用于海水中金属腐蚀监测的初探.腐蚀科学与防护技术.2005,17(3):192-194
    115姜丽娜.天然海水中金属材料腐蚀监测技术的实验室研究.中国海洋大学硕士研究生论文.2004:25-27
    116胡时友,姜昭群,王全成.长江三峡水库区岩土锚固检测技术.中国地质灾害与防治学报(增刊).2004,15(2):124-126
    117李琼玮,杨安全,李成龙等.长庆油田油套管腐蚀预测研究与建议.腐蚀科学与防护技术.2005,17(5):371-373
    118孙宁松,路国章,孙虎元.海洋采油平台新型腐蚀检测系统的研究.中国海洋平台.2002,17(2):38-40
    119范国义,曾为民,马玉录.交流阻抗法在凝汽器黄铜管腐蚀研究中的应用.表面技术.2006,35(1):85-88
    120刘玉,杜荣归,林昌健.氯离子对模拟混凝土孔隙液中钢筋腐蚀行为的影响.电化学.2005,11(3):333-336
    121胡融刚,杜荣归,林昌健.氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究.2003,9(2):189-195
    122刘玉,杜荣归,李彦,林昌健.模拟混凝土孔溶液中钢筋腐蚀的氯离子临界浓度测试.分析化学研究简报.2006,34(6):825-828
    123殷朋.内腐蚀在线监测技术在输气管道的应用.腐蚀与防护.2003,24(5):213-215
    124朱家玲,董海虹,孟宪级.线性极化技术测试地热腐蚀速率的试验研究.太阳能学报.2004,25(5):699-702
    125汤田磷,石伟等.中原油田腐蚀监测技术.油气田地面工程.2003,22(5):63-64
    126何德良,肖称如,陈范才,赵常就.智能化腐蚀监测仪的研制与应用.湖南大学学报.1998,25(6):20-24
    127丁元力,董泽华等.基于护环技术的混凝土中钢筋腐蚀监测研究.中国腐蚀与防护学报.2006, 26(5):257-262
    128 P.Rodriguez, E.Ramirez, J.A.Gonzalez. Methods for Studying Corrosion in Reinforced Concrete. Mag. Concr. Res. 1994, 46(167):81-90
    129 B.Elsener. Half-Cell Potential Mapping to Assess Repair Work on RC Structures. Construction and Building Materials. 2001, 15(23):133-139
    130 Thirumalai Parthiban, R.Ravi, G.T. Parthiban.Potential Monitoring System for Corrosion of Steel in Concrete. Advances in Engineering Software. 2006, (37) 375-381
    131 J.M.Malo and J.Uruchurtu. Corrosion Mapping of Steel Reinforced in Concrete Exposed to a Galvanizing Process Atmosphere. http://www.corrosio nsource.com/events/intercorr/techsess/papers/session1/abstracts/malo.htm
    132 S.G.Millard, D.Law, J.H.Bungey,et al. Environment Influences on Linear Polarization Corrosion Rate Measurement in Reinforced Concrete. NDT&E International. 2001, (34):409-417
    133 C.Andrade, M.Keddam, X.R.Novoa, et al. Electrochemical Behaviour of Steel Rebars in Concrete: Influence of Environmental Factors and CementChemistry. Electrochimica Acta.2001, (46):3905-3912
    134 G.Ping, J.J. Beaudoin. Obtaining Effective Half-Cell Potential Measurements in Reinforced Concrete Structures. Corrosion Science. 2004, (97):246-255
    135 R.B.Polder. Test Methods for on Site Measurement of Resistivity of Concrete-A RILEM TC-154 Technical Recommendation.Construction and Building Materials.2001, (15):125-131
    136 M.C.Alonso, C.Andrade, G J.A.onzales. Relation Between Resitivity and Corrosion Rate of Reinforcement in Carbonated Mortar Made with Several Cement Tepes.Cement & Concrete Resheacrh.1988, (8):687-698
    137 G.K.Glass, C.L.Page, N.R.Short. Factors Affecting the Corrosion Rate of Steel in Carbonated Mortars. Corrosion Science.1991, 32(12):1283-1294
    138 W.Lopez, J.A.Gonzalez. Cement &Concrete Research.1993, (23):368
    139 J.H.Bungey. The Testing of Concrete in Structures. Surrey University Press, 1989:335-347
    140 J.Kuta, E.Yeager.Techniques of Electrochemistry.Ed.by Yeager E.,Slkind A.J.,Vol.1,Chap 3, Wiley-Interscience,1972
    141 D.D. Macdonald.Transient Techniques in Electrochemistry. Plenum.1997:451
    142田昭武.电化学研究方法.科学出版社, 1984:231
    143曹楚南,张鉴清.电化学阻抗谱导论.科学出版社, 2002:32-145
    144 E.Barsoukov, J.R.Macdonald. ImpedanceSpectroscopy Theory, Experiment, and Applications. Second Edition. Wiley-Interscience, 2005:487
    145查全性.电极过程动力学导论.第三版,科学出版社, 2002:257
    146 R.Naderi, M.M.Attar. The Inhibitive Performance of Polyphosphate-based Anticorrosion Pigments Using Electrochemical Techniques. Dyes and Pigments. 2009, 80(3):349-354
    147 S. Chaudhari, A.B. Gaikwad, P.P. Patil. Poly (o-anisidine) Coatings on Brass: Synthesis, Characterization and Corrosion Protection. Current Applied Physics.2009, 9(1):206-218
    148 C. Brunetto, A. Moschetto, G. Tina. PEM Fuel Cell Testing by Electrochemical Impedance Spectroscopy. Electric Power System Research.2009, 79(1):17-26
    149 H. Ashassi-Sorkhabi, E. Asghari. Effect of Hydrodynamic Conditions on theInhibition Performance of I-methionine as a“green”Inhibitor. Electrochimica Acta. 2008, 54(2):162-167
    150 S. Khene, Daniela A.Geraldo, et al. Synthesis, Electrochemical Characterization of Tetra- and Octa-substituted Dodecyl-mercapto Tin Phthalocyanines in Solution and as Self-assembled Monolayers. Electrochimica Acta. 2008, 54(2):183-191
    151 N. Li, H.W. Zhao, K.F. Peng, et al. An Amperometric Immunosensor with a DNA Polyion Complex Membrane/Gold Nanoparticles-backbone for Antibody Immobilisation. Electrochimica Acta. 2008, 54(2):235-241
    152 L.A.C.J. Garcia, C.J.B.M. Joia , E.M. Cardoso, O.R. Mattos. Electrochemical Methods in Corrosion on Petroleum Industry: Laboratory and Field Results. Electrochimica Acta. 2001, (46):3879-3886
    153 J. Xie, K. Kohno, T. Matsumura, et al. Li-ion Diffusion Kinetics in LiMn2O4 Thin Films Prepared by Pulsed Laser Deposition. Electrochimica Acta. 2008, 54(2):376-381
    154 L. Yuan, H.M. Wang. Corrosion Behaviors of aγ-toughened Cr13Ni5Si2/Cr3Ni5Si2 Multi-phase Ternary Metal Silicide Alloy in NaCl Solution. Electrochimica Acta.2008, 54(2):421-429
    155 R.D.Armstrong,H M.enderson, H.R.Thirsk. Electrochemical Dissolution. Encyclopedia of Materials: Science and Technology. 2008, 35(7):2521-2525
    156 R.D.Armstrong, B.R. Horrocks. Thermodynamics for the Situation Where There Is a Discontinuous Change of the Electrode Condition with Potential Due to the Formation of a Two Dimensional Condensed Phase—Diffuse Layer Effects. Journal of Electroanalytical Chemistry.1999, 463(1):9-15
    157 R.D.Armstrong, B.R. Horrocks. The Double Layer Structure at the Metal-Solid Electrolyte Interface. Solid State Ionics.1997, 94(1-4):181-187
    158 R.D. Armstrong, A.T.A. Jenkins, B.W. Johnson. An Investigation into the uv Breakdown of Thermoset Polyester Coatings Using Impedance Spectroscopy. Corrosion Science. 1995, (10)1615-1625
    159 M.F.Montemor, A.M.P.Simones, M.M.Salta. Effect of Fly Ash on Concrete Reinforcing Steel Corrosion Studied by EIS. Cement and Concrete Composites. 2000, 22(3)175-185
    160 D.G.John, P.C.Searson. Use of the A.C. Impedance Technique in Studies on the Steel in Concrete in Immersed Condictions. Br.Corros.J.1981, (16):102
    161 L.Dhouibi, A.Triki, A.Raharinaivo. The Application of Electrochemical Impedance Spectroscopy to Determine the Long Term Effectiveness of Corrosion Inhibitors for Steel in Concrete. Cement and Concrete Composites. 2002, 24(1):35-43
    162 F. Mansfeld, J.C.S. Fernandes. Impedance Spectra for Aluminum 7075 during the Early Stages of Immersion in Sodium Chloride. Corros. Sci. 1993, (34):2105-2108
    163 S. Turgoose and R.A. Cottis. The Impedance Response of Film Covered Metals. Electrochemical Impedance Analysis and Interpretation Conference Proceedings, San Diego, CA (1991) (ASTM STP 1188)
    164 Li, T.C. Tan and J.Y. Lee. Impedance Spectra of the Anodic Dissolution of Mild Steel in Sulfuric Acid. Corros. Sci. 1996, (38):1935
    165 D.D. Macdonald and M.C.H. McKubre. Electrochemical Impedance Techniques in Corrosion Science. Electrochemical Corrosion Testing. ASTM STP. 1981, (727):110
    166 D.D.Macdonald. Reflections on the History of Electrochemical Impedance Spectroscopy. Electrochimica Acta. 2006, (51):1376-1388
    167 Y. Chen, W.P. Jepson. EIS Measurement for Corrosion Monitoring under Multiphase-Flow Conditions. Electrochimica Acta.1999,(44):4453-4464
    168 F.Wenger, L.Lemoine, J.Galland. International Congress on Metallic Corrosion Proceedings. Toronto, Canada, 1984:349-356
    169 A.A.Sagues, S.C.Kranc, E.I.Moreno. Corros.Sci.1995, (37):1097
    170 B.J.Christensen, T.O.Mason, H.M.Jennings. J.Am.Ceram.Soc.1992, (75):939
    171 B.B.Hope, J.A.Page. Cement and Concrete Research.1986, (16):771
    172 O.Poupard, A.Ait-Mokhtar, P.Dumargue. Impedance Spectroscopy in Reinforced Concrete: Part 1 Development of the Experimental Device. Journal of Materials Science. 2003, (38):2845-2850
    173 R.L. De Rosa, D.A. Earl, G.P. Bierwagen. Statistical Evaluation of EIS And ENM Data Collected for Monitoring Corrosion Barrier Properties of Organic Coatings on Al-2024-T3. Corrosion Science. 2002, (44 ):1607-1620
    174 Esra Kus, Florian Mansfeld. An Evaluation of the Electrochemical Frequency Modulation (EFM) Technique. Corros.Sci. 2006, (48):965-979
    175 R.A. Cottis, M.A.A. Al-Awadhi, H. Al-Mazeedi.Measures for the Detection of Localized Corrosion with Electrochemical Noise. Electrochimica Acta. 2001, (46):3665-3674
    176 V.Feliu, J.A.Gonzalez, C.Andrade. Equivalent Circuit for Modeling the Steel-Concrete Interface. I.Experimental Evidence and Theoretical Predictions. Corros. Sci. 1998, (39):864-882
    177 V.Feliu, J.A.Gonzalez, C.Andrade. Equivalent Circuit for Modeling the Steel-Concrete Interface. II.Complications in Applying the Stern-Geary Equation to Corrosion Rate Determinations. Corros. Sci. 1998, (40):995-1006
    178 A.A. Almusallam. Effect of Degree of Corrosion on the Properties of Reinforcing Steel Bars. Construction and Building Materials. 2001, (15):361 -368
    179 F.H. Cao, Z. Zhang, J.X. Su, et al. Electrochemical Noise Analysis of LY12-T3 in EXCO Solution by Discrete Wavelet Transform Technique. Electrochim.Acta. 2006, (51):1359
    180 C.Cai, Z.Zhang, F.H.Cao, et al. Analysis of Pitting Corrosion Behavior of Pure Al in Sodium Chloride Solution with the Wavelet Technique. J. Electroanal.Chem. 2005, 578 (1):143-150
    181 D.D. Macdonald, M.C.H. McKubre. Flow-through Electrochemical Cell for Accurate pH Measurements at Temperatures up to 400°C. Journal of Electroanalytical Chemistry.1999, 463(2):146-156
    182 D.D.Macdonald. Importance of Thermal Diffusion in High Temperature Electrochemical Cells. Electrochimica Acta. 2006, (51):1376-1388
    183 V. Feliu, J.A. Gonzalez, S. Feliu. Nano-structured Ni(II)–curcumin Modified Glassy Carbon Electrode for Electrocatalytic Oxidation of Fructose. J. Electrochem. Soc. , 2004, (151):134-140
    184 Z. Zhang, W.H. Leng, Q.Y. Cai, et al. Potentiodynamic Deposition of Poly (O-anisidine-co-metanilic Acid) on Mild Steel and Its Application as Corrosion Inhibitor. J.Electroanal. Chem. 2005, (578):357
    185 V.FeLiu, J.A.Gonzalez, C. Andrade. EIS Analysis of Hydrophobic andHydrophilicTiO2 Film. Corros. Sci.1998, (40):995-1006
    186樊云昌,曹兴国,陈怀荣.混凝土中钢筋腐蚀的防护与修复.中国铁道出版社, 2001:239-241
    187 U.Bertocci, F.Huet. Noise Analysis Applied to Electrochemical systems. Corrosion. 1995, (51):131-144
    188 J.M.Sykes. Electrochemical Noise: the Technique for the“90s”. Corrosion. 1991, (4):238
    189 W.P.Iverson. Transient Vltage Changes Produced in Corroding Metals and Alloys. Electrochem. Soc. 1998, (115):617-618
    190 P. R.Roberge. Analysis of Electrochemical Noise by the Stochastic Process Detector Method. Corrosion. 1994, (50):502-512
    191李劲风,张昭,程英亮等.NaCl溶液中Al-Li合金腐蚀过程的电化学特征.金属学报.2002,38(7):760-764
    192吴建华,刘光洲,于辉等.海洋微生物腐蚀的电化学研究方法.腐蚀与防护.1999, 20(5):231-237
    193 A.Legat. Monitoring of Steel Corrosion in Concrete by Electrode Arrays and Electrical Resistance Probes. Electrochinica Acta.2007, 52(27):7590-7598
    194 A. Legat, C. Zevnik. The Electrochemical Noise of Mild and Stainless Steel in Various Water Solutions. Corrosion Science.1993, 35(5-8):1661-1666
    195 K.Hladky, J.P.Lomas, D.G. John, et al. Corrosion Monitoring Using Electrochemical Noise: Theory and Practice.16-17 Feb. Corrosion Monitoring and Inspection in the Oil, Petrochmical and Process Industries, 1984, London, UK, 211-231, Oyez Scientific and Technical Services, Bath House, London EC1A, UK
    196 G.Engelhardt, M.Urquidi-Macdonald, D.D.Macdonald. A Simplified Method for Estimating Corrosion Cavity Growth Rates. Corrosion Science. 1997, l39(3):419-441
    197 George Engelhart, D.Macdonald. Estimation of Corrosion Cavity Growth Rate for Predicting System Service Life. Corrosion Science. 2004 (46):1159-1187
    198 G. Engelhardt, D.Macdonald. Unification of the Deterministic and Statistical Approaches for Predicting Localized Corrosion Damage.ⅠTheoreticalFoundation. Corrosion Science. 2004 (46):2755-2780
    199 J.A.Gonzalez and C.Andrade. Corrosion of Reinforcement in Concrete Construction. Br.Corrs.J.1982, (17):21
    200 S.Ahmad, B.Bhattacharjee. A Simple Arrangement and Precudure in- situ Measurement of Corrosion Rate Embedded in Concrete. Corrosion Science. 1995, 37(5):781-791
    201 R.L.LeRoy. Corrosion of Reinforcement Steel Embedded in High Water-cement Ratio Concrete Contaminated with Chloride. Corrosion. 1997, (31):173
    202 S.Feliu, J.A.Gonzalez, J.M.Miranda, et al. Possibilities and Problems of in -situ Techniques for Measuring Steel Corrosion Rates in Large Reinforced Concrete Structures. Corrosion Science. 2005, (47):217-238
    203 M.Stern, A.L.Geary. Electrochemical PolarizationⅠ. A Theoretical Analysis of the Shape of Polarization Curves. J.Electrochem Soc.1957, (104):56-63
    204 J.A.Gonzalez, A.Molina, C.Andrade. Errors in the Electrochemical Evaluation of Very Small Corrosion Rates.PartⅠ. Polarization Resistance Method Applided to Corrosion of Steel in Concrete. Corrosion Science. 1985, (25):917-930
    205 S.Feliu, M.L.Escudero, J.S.Feliu, J.A.Gonzalez. Possibilities of the Guard Ring for Electrical Signal in the Polarization Measurements of Reinforcements. Corrosion.1990, (46):1015-1020
    206 S.C.Kranc, A.A.Sagues. Polarization Current Distribution and Electrochemical Impedance Response of Reinforced Concrete When Using Guard Ring Electrodes. Electrochimica Acta.1993, (38):2055-2061
    207 Shamsad Ahmad.Reinforcement Corrosion in Concrete Structures, Its Monitoring and Service Life Prediction-A Review. Cement &Concrete Composites. 2003, (25):459-471
    208 J.P.Diard, G.L. Gorrec, C.Montella. Electrochemical Noise Analysis Methods for the Investigation of Corrosion Processe. J.Electrochem. Soc. 1995, 142(10):3612
    209 S.K.Rangarajan. Electrochemical Noise Generated during the Stress Corrosion Cracking of Sensitized Alloy 690. J.Electroanal. Chem. 1975,62(1):31
    210 J.Devay, L.Meszaros. Influence of Surface Morphology on the Oxidation of Metal Electrodes Studied by in-situ Grazing Incidence x-ray Diffractometry Acad. Sci. Hung. 1979, (100):183
    211 William Durnie, Roland De Marco, Alan Jefferson, et al. Harmonic Analysis of Carbon Dioxide Corrosion. Corrosion Science. 2002, (44):1213-1221
    212 A.P.Yadav, A.Nishikata, T.Tsuru. Electrochemical Impedance Study on Galvanized Steel Corrosion under Cyclic Wet-Dry Conditions–Influence of Time of Wetness. Corrosion Science.2004, (46):169-181
    213 A. Pirnat, L. Meszaros, B. Lengyel. A Comparison of Electrochemical and Analytical Chemical Methods for the Determination of the Corrosion Rate with Very Efficient Inhibitors. Corros. Sci. 1995, 37(6):963
    214阎培渝,崔路.腐蚀研究中电流阶跃法的频域分析.清华大学学报(自然科学版). 1999, 39(6):124-127
    215 G.K.Glass, C.L.Page, N.R.Short, et al. The Analysis of Potentiostatic Transients Applied to the Corrosion of Steel in Concrete. Corrosion Science. 1996, (9):1657-1663
    216赵永韬.恒电量脉冲暂态响应测试技术及解析方法研究.华中科技大学博士学位论文. 2005:34-38
    217 J.A.Gonzalez, J.M.Miranda, S.Feliu. Considerations on Reproducibility of Potentical and Corrosion Rate Measurements in Reinforced Concrete. Corrosion Science. 2004, (46):2467-2485
    218 F. Mansfeld, M. W.Kendig. The Electrochemical Behaviour of Stainless Steels following Surface Modification in Cerium-containing Solutions. ASTM STP. 1985, (866):122
    219 U.Bertocci, F.Huet. Noise Analysis Applied to Electrochemical Systems. Corrosion. 1995, (51):131-144
    220 W.P.Iverson. Transient Voltage Changes Produced in Corroding Metals and Alloys. Electrochem. Soc. 1968, (115):617-618
    221 P. R.Roberge. Analysis of Electrochemical Noise by the Stochastic Process Detector Method. Corrosion. 1994, (50):502-512
    222 S. Richter, L.R. Hilbert, R.I. Thorarinsdottir. On-line Corrosion Monitoringin Geothermal District Heating Systems.I. General Corrosion Rates. Corrosion Science. 2006, (48):1770-1778
    223 S. Richter, R.I. Thorarinsdottir, F.Jonsdottir. On-line Corrosion Monitoring in Geothermal District Heating Systems.II. Localized Corrosion. Corrosion Science. 2007, (49):1907-1917
    224 Z.Sun, F.Mansfeld. Localization Index Obtained from Electrochemical Noise Analysis. Corrosion.1999, 55(10):915-918
    225 J. G.Yu, P. R Norton. Investigation of Hydrogen-Promoted Pitting by the Electrochemical Noise Method and the Scanning Reference Electrode Technique. Langmuir.2002, (18):6637-6646
    226 Y. F.Cheng, M.Wilmott, J. L Luo. Analysis of the Role of Electrode Capacitance on the Initiation of Pits for A405 Carbon Steel by Electrochemical Noise Measurements. Corros. Sci.1999, (41):1245-1256
    227 D.A.Eden, D.G.John,L.I.Darson, US Patent,#5, 139, 627
    228 J.F.Chen, W.F.Bogaerts. The Physical Meaning of Noise Resistance. Corrs.Sci. 1995, 37(11):1839-1842
    229 U.Bertocci, C.Gabrielli, F.Huet. Noise Resistance Applied to Corrosion MeasurementsⅡ. Experiments Tests. J.Electrochem.Soc. 1997, 144(1):37-43
    230 F.Mansfeld, C.Chen. The Effect of Asymmetric Electrodes on the Analysis of Electrochemical Impedance and Noise Data. Corros.Sci.1996, 38(3):597-513
    231 U.Bertocci, C.Gabrielli, F.Huet. Noise Resistance Applied to Corrosion MeasurementsⅠ. Theoretical Analysis. J.Electrochem.Soc.1997, 144(1):31-37
    232 A.Legat, C.Zevik. The Electrochemical Noise of Mild and Stainless in Various Water Solution. Corros.Sci.1993, 35(58)1661-1667
    233 A.Legat, V.Eolecek.Chaotic Analysis of Electrochemical Noise Measured on Stainless Steel. J.Electrochem.Soc. 1995, 142(6):1851-1858
    234 U.Bertocci, J.Frydaman, C.Gabrielli, et al. Analysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies. J. Electrochem. Soc. 1998, 145(8):2780-2785
    235 F.Mansfeld. Analysis of Electrochemical Noise Data for Polymer Coated Steel in the Time and Frequency Domains. J.Electrochem.Soc.1996,143(12):286-289
    236 F.Mansfeld, Z.Sun, C.H.Hsu, A.Nagiub. Concerning Trend Removal in Electrochemical Noise Measurements. Corros.Sci. 2001, 158(2):190-196
    237 J. Smulko, K. Darowicki, A. Zielinski. Detection of Random Transients Caused by Pitting Corrosion. Electrochimica Acta. 2002, (47 ):1297-1303
    238 Guofu Qiao, Jinping Ou. Corrosion Monitoring of Reinforcing Steel in Cement Mortar by EIS and ENA. Electrochimica Acta. 2007, (52):8008-8019
    239 T.Schauer, H.Greisigen, L.Dulong.Details on MEM Analysis of Electrochemical Noise Data and Correlation with Impedance Measurements for Organic Coatings on Metals. Electrochim.Acta, 1998, 43(16):2423
    240 Chao Cai, Zhao Zhang. Analysis of Pitting Corrosion Behavior of Pure Al in Sodium Chloride Solution with the Wavelet Technique. Journal of Electroanalytical Chemistry. 2005, (578)143-150
    241 Zehua Dong, Xingpeng Guo. Calculation of Noise Resistance by Use of the Discrete Wavelets Transform. Electrochemistry Communications. 2001, (3)561-565
    242 R.L.De Rosa, D.A.Earl, G.P.Bierwagen. Statistical Evaluation of EIS and ENM Data Collected for Monitoring Corrosion Barrier Properties of Organic Coatings on Al-2024-T3. Corrosi.Sci. 2002, (44)1607-1620
    243林海潮,曹楚南.点蚀过程的电化学噪声研究.中国腐蚀与防护学报. 1986, 6(2):141-148
    244 J. Gui, T.M. Devine. A SERS Investigation of the Passive Films Formed on Iron in Mildly Alkaline Solutions of Carbonate/Bicarbonate and Nitrate. Corros. Sci. 1995, (37):1177-1181
    245 S. Music, I. Nowik, M. Ristic, Z. Orehovec, S. Popovic. Croatica Chemica Acta. 2004, (77):141
    246 L.T. Mammoliti, L.C. Brown, C. Hansson, et al. The Influence of Surface Finish of Reinforcing Steel and ph of the Test Solution on the Chloride Threshold Concentration for Corrosion Initiation in Synthetic Pore Solutions. Cem. Conc. Res. 1996, (26):545-550
    247 O.A. Kayyali, M.N. Haque. On the Intrinsic Electrochemical Nature of the Inductance in EIS: A Monte Carlo Simulation of the Two-consecutive-stepMechanism: The Flat Surface 2 D Case. Mag. Con. Res. 1995, (47):235
    248 K. Pettersson. Corrosion and Corrosion Protection of Steel in Concrete. Sheffield.1994:461
    249 B. Huet, V. L.Hostis, F. Miserque, et al. Electrochemical Behavior of Mild Steel in Concrete: Influence of pH and Carbonate Content of Concrete Pore Solution. Electrochim. Acta. 2005, (51):172-180
    250 S.E. Hussain, A. Rasheduzzafar, Al-Musallan, et al. Factors Affecting Threshold Chloride for Reinforcement Corrosion in Concrete. Cem. Conc.Res. 1995, (25):1543-1555
    251 W. Lopez, J.A. Gonzalez, C. Andrade. Influence of Temperature on the Service Life of Rebars. Ce. Conc. Res. 1993, (23):1130-1140
    252 M. Rasheduzafar, S.S. Al-Saadoun, A.S. Al-Gahtani, et al. Effect of Tricalcium Aluminate Content of Cement on Corrosion of Reinforcing Steel in Concrete. Cem. Conc.Res. 1990, (20):723-738
    253 J.M. Sanchez-Amaya, R.A. Cottis, F.J. Botana.Shot Noise and Statistical Parameters for the Estimation of Corrosion Mechanisms.Corrosion Science.2005, (47 ):3280-3299
    254 M. Thomas. Chloride Thresholds in Marine Concrete. Cem. Conc. Res. 1996, (26):513-519
    255 D. Baweja, H. Roper, V. Sirivivatnanon. Mechanistic Model and Numerical Analysis for Corrosion Damage of Reinforced Concrete Structure. ACI Mat.1999:306
    256 V.K. Gouda. Modeling Carbonation for Corrosion Risk Prediction of Concrete Structures. Br. Corr. 1970, (5):198
    257 C. Alonso, C. Andrade, M. Castellote, et al. Chloride Threshold Values to Depassivate Reinforcing Bars Embedded in a Standardized OPC Mortar. Cemen. Conc, Res. 2000, (30):1047-1055
    258 L. Bertolini, F. Bolzoni, T. Pastore, et al. Monitoring of Concrete Structures with Respect to Rebar Corrosion. Br. Corros. J. 1996, (31):218
    259 D.A. Hausmann. Utilisation of Electrical Resistance Method for the Evaluation of the State of Steel Reinforcement in Concrete and the Rate of Its Corrosion. Mater. Prot. 1967, (6):19
    260 M. Moreno, W. Morris, M.G. Alvarez, et al. Corrosion of Reinforcing Steel in Simulated Concrete Pore Solutions: Effect of Carbonation and Chloride Content . Corros. Sci. 2004, (46): 2681-2699
    261 J.-M.R. Genin, Ph. Refait, L. Simon, et al. Chloride Profiles in Two Marine Structures—Meaning and Some Predictions. Interact. 1998, (111): 313
    262 M.G. Fontana, N.D. Green, Corrosion Engineering, 2nd ed. McGraw-Hill, 1978:43
    263 D.A. Jones. Principles and Prevention of Corrosion, 2nd ed.Prentice-Hall, 1996:214
    264 P. Sandberg. Chloride Initiated Reinforcement Corrosion in Marine Concrete, Report TVBM-1015, Lund Institute of Technology, Lund, Sweden, 1998
    265 K.Shimizu, G.M.Brown, K.Kobayashi, et al. Ultramicrotomy—a Route Towards the eEnhanced Understanding of the Corrosion and Filming Behaviour of Aluminium and Its Alloys. Corros.Sci. 1998, (40):1049-1072
    266 G.K.Glass. C.P. Page. N.R. Short. An Investigation of Galvanostatic Transient Methods Used to Monitor the Corrosion Rate of Steel in Concrete. Corros.Sci. 1993, (35):1585-1592
    267 K.R.Gowers, S.G.Millard, J.S.Gill, et al. The Electrochemical Removal of Chlorides from Reinforced Concrete. Br.Corros.J. 1994, (29):25
    268 G.Rocchini. Dependence of the Polarization Resistance on the Voltage Sweep Rate. Corros.Sci. 1994, (36):1063-1076
    269 G.K.Glass. An Assessment of the Coulostatic Method Applied to the Corrosion of Steel in Concrete. Corros.Sci. 1995, (37):597-561
    270 A.A.Sques.S.C.Kranc.E.I.Moreno. The time-domain Response of a Corroding System with Constant Phase Angle Interfacial Component: Application to Steel in Concrete. Corros.Sci. 1995, (37):1097-1113
    271 D.Delahay, P.Delahay.Advancees in Electrochemistry and Electrochemical Engineering. Interscience.1991, (1):233
    272 Srinivasan Muralidharan, Tae Hyun Ha, Jeong Hyo Bae, et al. A Promising Potential Embeddable Sensor for Corrosion Monitoring Application in Concrete Structures. Measurement.2007, (40)600-606
    273 P.Broomfield, Kevin Davies, Karel Hladky. The Use of Permanent CorrosionMonitoring in New and Existing Reinforcing Concrete Structures. Cement &Concrete Composite. 2002, (24):27-34
    274 S.Philip, D.Marsh, M.Frangopol. Reinforced Concrete Bridge Deck Reliability Model Incorporating Temporal and Spatial Variations of Probabilistic Corrosion Rate Sensor Data. Reliability Engineering and System Safety. 2008, (93):394-409
    275曹楚南.腐蚀电化学原理.第二版.化学工业出版社.2004:167
    276 S. Care, A. Raharinaivo. Influence of Impressed Current on the Initiation of Damage in Reinforced Mortar Due to Corrosion of Embedded Steel. Cement and Concrete Research. 2007, 37(12):1598-1612
    277 J.Y. Zhang, Z. Lounis. Sensitivity Analysis of Simplified Diffusion-based Corrosion Initiation Model of Concrete Structures Exposed to Chlorides. Cement and Concrete Research. 2007, 36(7):1312-1323
    278 D. Chen, S. Mahadevan. Chloride-induced Reinforcement Corrosion and Concrete Cracking Simulation. Cement and Concrete Composites.2008, 30(3):227-238
    279 B.B.Hope, J.A.Page. Corrosion Rates of Steel in Concrete. Cement and Concrete Research, 1986, (16):771-781
    280 K. Darowicki, J. Majewska. The Effect of a Polyharmonic Structure of the Perturbation Signal on the Results of Harmonic Analysis of the Current of a First-order Electrode Reaction. Electrochimica Acta. 1999, (44):483-490
    281 T. Vidal, A. Castel, R. Francois. Analyzing Crack Width to Predict Corrosion in Reinforced Concrete. Cement and Concrete Research.2004, (34):165-174
    282 V.Feliu, S.Feliu.A Method of Obtaining the Time Domain Response of an Equivalent Circuit Model. Journal of Electroanalytical Chemistry. 1997, (435):1-10
    283 Alberto, A.Sagues, S.C.Kranc,et al.Evaluation of Electrochemical Impedance with Constant Phase Angle Component from the Galvanostatic Step Response of Steel in Concrete. Electrochimica Acta.1996, (41):1239-1243
    284 Nick Birbilis, Kate M.Nairn, et al. Transient Response Analysis of Steel in Concrete.Corrosion Science. 2003, (45):1895-1902
    285 S.Y. Qian, J.Y. Ying, D.Y. Qu. Theoretical and Experimental Study ofMicrocell and Macrocell Corrosion in Patch Repairs of Concrete Structures. Cement and Concrete Composites. 2006, 28(8):685-695
    286 T. Bellezze, M. Malavalta, A. Quaranta, et al. Corrosion Behaviour in Concrete of Three Differently Galvanized Steel Bars. Cement and Concrete Composites. 2006, 28(3):246-255
    287 M.T. Liang, J. J. Lan. Reliability Analysis for the Existing Reinforced Concrete Pile Corrosion of Bridge Substructure. Cement and Concrete Research.2005, 35(3):540-550
    288 N.Birbilis, R.G.Buchheit, L.J. Holloway. Application of the Time Constant for the Corrosion Monitoring of the Steel Bar in Concrete. Corrosion/2006, Paper 06332, NACE, 2006
    289 N. Birbilis, L.J. Holloway. Use of the Time Constant to Detect Corrosion Speed in Reinforced Concrete Structures. Cement & Concrete Composites 2007, (29):330-336
    290 N.Birbilis. Application of Electrochemcial Methods in Concrete Materials. Ph.D. dissertation of Monash University. 2004:67-69
    291 W.Spencer Guthrie, John Hema. Concrete Bridge Deck Condition Assessment Guidelines. Submitted by: Brigham Young University Department of Civil & Environmental Engineering.Prepared for: Utah Department of Transportation Research and Development Division. Report No.UT-05.01
    292 Capcis Limited. Review of Corrosion Management for Offshore Oil and Gas Processing. Health and Safety Executive.Offshore Technology Report 2001/044
    293 Veerachai Leelalerkiet, Je-Woon Kyung, Masayasu Ohtsu, et al. Analysis of Half-Cell Potential Measurement for Corrosion of Reinforced Concrete. Construction and Building Materials. 2004, (18):155-162
    294 B.Elsener. Half-Cell Potential Mapping to Assess Repair Work on RC Structures. Construction and Building Materials. 2001, (15):133-139
    295 M.Ohtsu, T.Yamamoto. Compensation Procedure for Half-Cell Potential Measurement. Construction and Building Materials.1997, (11)395-402
    296 C.Andrade, C.Alonso. On-site Measurement of Corrosion Rate ofReinforcements. Construction and Building Materials. 2001, (15):141-145
    297 Michael Raupach, Peter Schiessl. Monitoring System for the Penetration of Chlorides, Carbonation and the Corrosion Risk for the Reinforcement. Construction and Building Materials. 1997, (11):207-214
    298 J.M. R. Genin, P.H. Refait, M.Abdelmoula. Green Rusts and Their Relationship to Iron Corrosion; a Key Role in Microbially Influenced Corrosion. Hyperfine Interactions. 2002, (139-140): 119-131
    299 The OECD Nuclear Energy Agency.Electrochemical Techniques to Detect Corrosion in Concrete Structures in Nuclear Installations. Technical note. 2002, (7):18
    300 Yong-Jun Tan. An Experimental Comparison of Three Wire Beam Electrode Based Methods for Determining Corrosion Rates and Patterns. Corrosion Science. 2005, (47):1653-1665
    301 Yong-Jun Tan, Stuart Bailey, Brian Kinsella. Mapping Non-uniform Corrosion Using the Wire Beam Electrode Method.ⅠMulti-phase Carbon Dioxide Corrosion. Corrosion Science. 2001, (43):1905-1918
    302 M.F.Montemor, A.M.P.Simoes. Chloride-Induced Corrosion on Reinforcing Steel:From the Fundamentals to the Monitoring Techniques. Cement&Concrete Composites. 2003, (25):491-502
    303 Srinivasan Muralidharan, Tae-Hyun Ha, Jeong-Hyo Bae,et al. Electrochimical Studies on the Solid Embeddable Reference Sensors for Corrosion Monitoring in Concrete Structure. Materials Letters. 2006, (60):651-655
    304 L.J.John. Monitoring of Concrete Structures with Respect to Rebar Corrosion. Construction and Building Materials. 1996, (10):367-373
    305 Halit Eren, Alexander, M.Lowe, et al. An Auto-switch for Multi-sampling of a Wire Beam Electrode Corrosion Monitoring System. IEEE Transactions on Instrumentation and Measurement. 1998, (47):1096-1101
    306周海晖,陈范才,张小华,赵常就.Ag/AgCl固体参比电极的研究.腐蚀科学与防护技术.2001,13(4):234-235
    307王燕华,张涛.Kelvin探头参比电极技术在大气腐蚀研究中的应用.中国腐蚀与防护学报.2004,24(1):59-64
    308田斌,胡明,李春福.高温高压水溶液用Ag/AgCl参比电极研究现状及发展趋势.中国腐蚀与防护学报.2003,23(6):371-372
    309翁永基,李相怡.中国腐蚀与防护学报,1991 ,11(2):145
    310张燕,宋玉苏,王元升.Ag/AgCl参比电极性能研究.中国腐蚀与防护学报.2007,27(3):176-179
    311李谋成,曾潮流,林海潮.参比电极体系内阻对电化学阻抗谱的影响.腐蚀科学与防护技术.2001,13(5):125-127
    312张玲铃,杜敏,颜民.工程用参比电极的研究进展.腐蚀科学与防护技术.2001,13(5):125-127
    313 Srinivasan Muralidharan, Tae-Hyun Ha, Jeong-Hyo Bae. Electrochemical Studies on the Solid Embeddable Reference Sensors for Corrosion Monitoring in Concrete Structure. Materials Letters. 2006, (60):651-655
    314葛兆明.混凝土外加剂.化学工业出版社,2004:247-258
    315 J.Cairns, Z.Lin. Behavior of Concrete Beams with Exposed Reinforcement. Proc.Instn. Civ.Engrs.Structures&Bledgs. 1993, (99):141-145
    316 P.S.Mangat, S.E Mahmoud. Flexural Strength of Concrete Beams with Corroding Reinforcement.ACI Structural Journal. 1999, 96(1):149-158
    317 J.Rodriguez, L.M.Ortega, J.Casal. Load Carrying Capacity of Concrete Structures with Corroded Reinforcement.Construction and Building Materials. 1997,11(4):239-248
    318 S.C.Ting, A.S. Nowak. Effect of Reinforcing Steel Area Loss on Flexural Behavior of Reinforced Concrete Beams.ACI Structural Journal. 1991, 88 (3):309-314
    319 T.Uomoto, S.Misra Behavior of Concrete Beams and Columns in Marine Environment When Corrosion of Reinforcing Bars Take Place. ACI Special Publication SP-109. 1988, (12):127-145
    320 Yoshihiro Tachibana, Ken-Ichi Maeda, Yasuo Kajikawa, et al. Mechanical Behavior of RC Beams Damaged by Corrosion of Reinforcement.Corrosion of Reinforcement in Concrete. Society of Chemical. 1990, (27):178-187
    321 J.Kiyoshi Okada, Kazuo Kobayashi, Toyoaki Miyagawa. Influence of Longitudinal Cracking Due to Reinforcement Corrosion on Characteristics of RC Members. ACI Structural Journal. 1988, 87(2):134-140
    322袁迎曙,余索.腐蚀钢筋混凝土梁的结构性能退化.建筑结构学报.1997,18(4):51-57
    323惠云玲,李荣,林志伸等.混凝土基本构件钢筋腐蚀前后性能试验研究.工业建筑.1997, 27(6):14-18
    324 M.Dekoster, F. Buyle-Bodin, O.Maurel,et al. Modeling of the Flexural Behaviour of RC Beams Subjected to Localized and Uniform Corrosion.Engineering Structures.2003, (25),1333-1341
    325 R.Capozucca, M.Nilde. Identification of Damage in Reinforced Concrete Beams Subjected to Corrosion. ACI Structure Journal, 2000, 97(6):902-909
    326吴庆,袁迎曙,张风洁.基于钢筋腐蚀的混凝土结构性能退化研究综述(Ⅰ).四川建筑科学研究. 2007, 33(6):9-13
    327 S.Pritpal, S. Elgart, Mahmoud, et al. Flexural Strength of Concrete Beams with Corroding Reinforcement. ACI Structure Journal, 1999, 156(1):149 - 158
    328袁迎曙,贾福萍,蔡跃.腐蚀钢筋混凝土梁的结构性能退化模型[J] .土木工程学报,2001, (3) :47 -32
    329金伟良,赵羽习.腐蚀钢筋混凝土梁抗弯强度的试验研究[J] .工业建筑, 2001 , (5) :9 -11
    330 G.J.Sulaimani, M. Kaleemullah. Influence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Members. ACI Structure Journal, 1990, 87(2):220 -231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700