QFN封装电磁屏蔽用化学镀Cu的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在环氧树脂塑料封装基底表面利用化学镀铜方法制备电磁屏蔽薄膜的研究。结果表明,所得到的化学镀铜工艺稳定性好、镀液寿命长,铜镀层具有表面电阻率低、均匀性好、电磁屏蔽(EMI shielding)性能良好、与基底间的结合力高的特性,完全可以满足QFN封装工艺的要求。
    得到了优化的除油、粗化和化学镀铜工艺配方。所得到的化学镀铜溶液稳定性较高,可以正常工作至少5个周期,镀液的平均镀速为1.88μm/h。
    改变粗化液的配比对改善镀层与基底间的结合力贡献不大,而提高温度可以迅速提高结合力,缩短粗化时间。优化的粗化工艺可以提高基底表面的粗糙度,改变基底表面形貌,使基底表面呈现典型的主要由SiO_2颗粒构成的“球-隙”承插型结构,这种结构对提高镀层与基底间的结合力起到了很大的作用。结果表明,在85℃下粗化20~30min即可以达到满意的效果。
    使用了α-αˊ联吡啶和亚铁氰化钾作为联合稳定剂,并在镀液中加入了无水乙醇,发现无水乙醇不仅能提高镀液的稳定性,而且在适量时可以提高镀速,但浓度超过20mL/L时,反而降低镀速。根据电化学混合电位理论,用线性伏安法研究表明,α-αˊ联吡啶通过有效地抑制甲醛的阳极氧化来抑制沉铜速率; 而亚铁氰化钾主要通过抑制Cu~(2+)的还原峰电流来阻碍Cu~(2+)的还原析出,但宏观的对化学镀铜镀速的影响不大。而无水乙醇既可以降低甲醛氧化反应速率,在一定浓度范围内又促进Cu~(2+)的还原反应,它对镀速的影响与其浓度有关。
    对化学镀铜过程的混合电位研究表明,诱导时间随α-αˊ联吡啶或亚铁氰化钾浓度的增加而增加,但α-αˊ联吡啶的影响更为明显; 无水乙醇在低浓度时可以缩短诱导时间,而浓度超过20mL/L时,诱导时间反而增加。
    化学镀铜层的表面电阻率随镀层厚度的增加而迅速降低,在厚度大于1μm后,表面电阻基本趋于稳定值。镀铜层与基底间的结合力可以达到5B级,在经过热冲击试验和QFN封装工艺的高速砂轮线切割操作后,结合力都达到5B级。理论计算表明,当镀层厚度大于2μm后,其电磁屏蔽效果可以超过60dB,达到优秀的级别。
The process of electroless copper plating on the epoxy resin used to electronic packaging is studied in this thesis. The results show that the electroless copper plating bath have good stability and long periods, and the Cu deposition have lower surface resistance, good uniformity, better EMI shielding ability and well adhibition to the substrate. It can well fit the QFN packaging process.
    The optimized process of oil removing, coarsing and electroless copper plating bath are get. The electroless copper plating bath can work at lest five periods with the average deposition velocity about 1.88μm/h.
    The mixture ratio of the coarsing solution compounds have very little influence on the bonding force between the Cu deposition and substrate except the coarsing temperature. Longer coarsing time and higher coarsing temperature can enhance the bonding force, increase the surface roughness and change the surface appearance from “V” shape to “symbiotic ball-gap” shape. The surface appearance is much important than the modified surface to increase the bonding force. The best result can be get for coarsing 20~30 minutes under 85℃.
    The stability of electroless copper plating bath can much be increased by using multi stabilizers. The ethanol can not only increase the stability of the bath, but also the deposition velocity when its concentration is less than 20mL/L. According to the electrochemistry mixed potential theory, the linear sweep voltammagram method is used to study the cathod and anode processes of the stabilizers. The results show that α-α’ dipyridyl can decrease the deposition velocity by inhibit the anodic oxidation of formaldehyde, and potassium ferrocyanide can stabilizing the bath by inhibit the deoxidation of Cu~(2+). The ethanol can not only inhibit the anodic oxidation of formaldehyde, but also accelerate the deoxidation of Cu~(2+) in suitable concentration.
    The mixed potential of the electroless copper plating process are also studied. they show that the induction time elongate with the increasing of the concentration of α-α’ dipyridyl or formaldehyde. The ethanol can shorten the induction time in low concentration, reversely with the concentration more than 20mL/L.
    The surface resistance can decrease much with the increase of the Cu deposition thickness. After the thickness reach 1μm, the decrease value become little. The bonding force between the Cu deposition and substrate can reach 5B grade even after
    the thermal shock test and the cut by using high-speed grinding wheel of the QFN process. The theoretical calculation results show that the EMI shielding ability can reach 60dB with the Cu deposition thickness more than 2μm.
引文
[1] 辛中华, 家用电器 EMC 测试环境的研究, 硕士学位论文, 北京工商大学,2002, 01
    [2] 白同云, 吕晓德, 电磁兼容设计, 北京:北京邮电大学出版社, 2001, 1-7
    [3] Morgon David. A handbook for EMC testing and measurement, London: Ptter Peregrinus Ltd on Behalf of the Institute of Electrical Engineers, 1993, 5-20
    [4] 汪荣华, 金属导电层在屏蔽 EMI/RFI 中的应用, 国外导弹与航天运载器,1988,(9):67-74
    [5] 黄福祥,金吉琰, 发泡金属的电磁屏蔽性能研究, 功能材料,1996,27(2): 147-149
    [6] 边蕴静, 电磁波屏蔽涂料, 化工新型材料, 1997, 25(7): 17-19
    [7] 赵福辰, 电磁屏蔽材料的发展现状, 材料开发与应用,2001,16(5): 29-33
    [8] 何益艳, 杜仕国, 施冬梅, 铜系电磁屏蔽涂料的研究, 现代涂料与涂装, 2002, (5): 1-3, 6
    [9] 陈锦宏, 李玮, 电磁屏蔽导电涂料, 广州化学, 2002, 27(1): 44-47
    [10] 吴行, 饶大庆, 谢宁, 多层复合型电磁屏蔽涂料的研究, 功能材料, 2001, 32(4): 365-367
    [11] 毕海峰,张玉梅,王华平, 电磁屏蔽材料的发展, 产业用纺织品,2001,6:7-9
    [12] 万刚,李容德, 电磁屏蔽材料的进展, 屏蔽技术与屏蔽材料,2003,1:40-41, 45
    [13] 何益艳,杜仕国,姜志博, 电磁屏蔽导电塑料的研究进展, 材料导报,2003,17(2):49-51
    [14] 汪荣华, 部嘉谦, 电磁兼容设计中金属屏蔽镀(涂)层的选用, 宇航材料工艺, 1997, 27(6): 11-15
    [15] 姜晓霞,沈伟, 化学镀理论及实践,北京:国防工业出版社,2000
    [16] Mandich N V, Krulik G A, The evolution of process: fifty years of electroless Nickel, Metal Finishing, 1992, (5): 25-27
    [17] Gutzeit G. An outline of the chemistry involved in the process of catalytic nickel deposition from aqueous solution (partⅠ), Plating, 1959, 46(10): 1158-1164; (partⅡ), 1959, 46(11): 1275-1278
    [18] Dechert C A. Electroless copper plating: A Review partⅠ, Plating and Surface Finishing, 1995, (2): 48-55
    [19] Baudrand D, Bengston J, Electroless plating process, Metal Finishing, 1995, 9: 55-57
    [20] Yi Ge, Wang Lingling, Ouyang Yifang, et al., Preparation of iron-tungsten-boron alloy deposit by electroless plating, Metal Finishing, 1996, 11: 31-35
    [21] 周海辉, 呼延鑫, 刘剑锋等, 化学镀镍溶液稳定剂的研究, 电镀与环保,1999,19(1): 22-24
    [22] 绍忠财,田颜文,翟玉春等, ZrO2 微粉表面化学镀镍动力学研究, 无机材料学报,1999,14(3): 397-401
    [23] 蔡积庆, 化学镀 Ni-P-Mo 合金, 电镀与环保, 1999, 19(4): 16-19
    [24] 白拴堂, 化学镀镍合金及在电子工业中的应用, 电镀与环保, 1999, 19(5): 7-9
    [25] Akahoshi H, Kawamoto M, Itabashi T, et al, Fine line circuit manufacturing technology with electroless copper plating, IEEE trans on components, Packing and Mfg Technol part A, 1995, 18(1): 127-135
    [26] Violett J L N, White D R J, Violette M F, Electromagnetic compatibility handbook, Van nostrand reinhold Co., New York, 1987
    [27] Mottahed B D, Manoochehri S, A review of research in materials, modeling and simulation, design factors, testing, and measurements related to electromagnetic interference shielding, Polym Plast Technol Engag, 1995, 34(2): 271-346
    [28] Immel W, Haidu J, Cu/Ni uherzuge fur das EMI-shielding von thermoplasten, Metalloberflache, 1993, 47(4): 180-185
    [29] Lordi G A, Electroless plating for electronic applications, Plating, 1967, (54): 382-384
    [30] 毛尚良, 黄杜森, 现代表面处理新技术, 上海:上海科学技术出版社,1994
    [31] Tomaiuolo, Reduced cycle process for the manufacture of printed circuits, and a composition for carrying out said process, U.S. Patent, 5104687, 1992
    [32] 蔡积庆, 印制板黑孔化电镀工艺, 电子工艺技术,1992,(6): 55-56
    [33] Tomai F,吴水清, 革新的高锰酸盐内蚀去污工艺, 武钢技术,1998, 36(2):54-59
    [34] 吴水清, 印制多层板的高锰酸盐内蚀/去污工艺, 电镀与精饰,1997, 19(5):17-22
    [35] 吴水清, 印刷电路镀前处理技术的最新发展, 电镀与精饰,1989, 11(5):20-24
    [36] 覃奇贤,郭鹤桐, 电镀原理与工艺,天津:天津科学技术出版社,1993
    [37] Okabayashi, Sensitizing activator composition for chemical plating, U.S. Patent, 4933010, 1990
    [38] 森英之,熊谷正志, 金属镀覆的前处理剂和使用该前处理剂的金属镀覆方 法, 中国专利, 1262711A,2000,08
    [39] Osaka T,Takano N,Kurokawa T,et a1, Fabraction of electroless NiReP barrier layer on SiO2 without sputtered seed layer, Electrochemical and Solid-state Letters, 2002, 5(1):7-10
    [40] 徐丽娜,徐鸿飞,周凯常等, 自组装膜吸附钯的化学镀前活化研究, 物理化学学报,2002,18(3):284-288
    [41] 徐丽娜, 周凯常, 刘春平等, 纳米二氧化钛表面快速金属化的研究, 2002, 18(1):92-94
    [42] Zhang Y, Huan A C H, Tan K L, et al, Surface modification of poly(tertafluoroethylene) films by low energy Ar+ ion-activation and UV-induced graft copolymerization, Nuclear Instruments and Methods in Physice Research B, 2000, 168: 29
    [43] Yang G H, Kang E T,Neoh K G, Electroless deposition of copper and nickel on poly(tetrafluoroethylene) films modified by single and double surface graft copolymerization, Applied Surface Science, 2001, 178(1-4): 165-177
    [44] Wang W C, Vora R H, Kang E T, et al, Electroless plating of copper on fluorinated polyimide films modified by surface graft copolymerization with 1-vinylimidazole and 4-vinylpyridine, Polymer Engineering and Science, 2004, 44(2): 362-375
    [45] Yang G H, Kang E T, Neoh K G, Thermal and electroless deposition of copper on poly(tetrafluoroet hylene-co-hexafluoropropylene) films modified by surface graft copolymerization, IEEE Transactions on Advanced Packaging, 2002, 25(3): 365-373
    [46] Wang W C, Kang E T, Neoh K G, Electroless plating of copper on polyimide films modified by plasma graft copolymerization with 4-vinylpyridine, Applied Surface Science, 2002, 199(1-4): 52-56
    [47] Hilmar Esrom, Robert Seebock, Marlene Charbommier, et al, Surface activation of polyimide with dielectric barrier discharge for electroless metal deposition, Surface and Coating Technology, 2000, 125: 19-24
    [48] Kordas K, Leppavuori S, Lusimaki A, et al, Palladium thin film deposition on polyimide by CW Ar+ laser radiation for electroless copper plating, Thin Solid Films, 2001, 384: 185-188
    [49] Kordas K, Bali K, Leppavuori S, et al, Laser direct writing of palladium on polyimide surface from solution, Applied Surface Science, 1999, 152: 149-155
    [50] Shafeev G A, Hoffmann P, Light-enhanced electroless Cu deposition on laser-treated polyimide surface, Applied Surface Science, 1999, 138 (1-4): 455-460
    [51] Kordas K, Nanai L, Bali K, et al, Palladium thin film deposition from liquid precursors on polymers by projected excimer beams, Applied Surface Science, 2000, 168: 66-70
    [52] Bekesi J, Kordas K, Beleznai C, et al, UV-laser-induced etching and metal seeding on polymers; a surface characterization, Applied Surface Science, 1999, 138(1-4): 613-616
    [53] Kolev K, Jadin A, Benbakoura S, Excimer laser-induced modification in PMMA/Ni-acetylacetonate films for selective metallization, Applied Surface Science, 1999, 138(1-4): 434-438
    [54] Hom H, Beil S, Wesner D A, et al, Excimer laser pretreatment and metallization of polymers, Nuclear Instruments and Methods in Phsics Research B, 1999, 151: 279-284
    [55] Schrott A G, Braren B, O'Sullivan E J M, Laser-assisted seeding for electroless plating on polyimide surfaces, Journal of the Electrochemical Society, 1995, 142(3): 944-949
    [56] Macauley D J, Kelly P V, Mongey K F, et al, Atmospheric pressure excimer lamp-assisted photoselective activation process for electroless plating, Applied Surface Science, 1999, 138(1-4): 622-626
    [57] Esrom Hilmar, Fast selective metal deposition on polymers by using IR and excimer VUV photons, Applied Surface Science, 2000, 168(1-4): 1-4
    [58] Kordas K, Bekesi J, Vajtai R, et al, Laser-assisted metal deposition from liquid-phase precursors on polymers, Applied Surface Science, 2001, 172(1-2): 178-189
    [59] F?hler S, Kahl S, Weisheit M, et al, The interface of laser deposited Cu/Ag multilayers: evidence of the ‘subsurface growth mode’ during pulsed laser deposition, Applied Surface Science, 2000, 154-155(2): 419-423
    [60] Zaporojtchenko V, Behnke K, Thran A, et al, Condensation coefficients and initial stages of growth for noble metals deposited onto chemically different polymer surfaces, Applied Surface Science, 1999, 144-145(4): 355-359
    [61] Park B S, Malshe A P, Muyshondt A, et al, The effects of substrate properties on metal coatings from liquid medium by reactive laser deposition, Surface and Coatings Technology, 1999, 155(2-3): 201-207
    [62] 吴隽贤, 激光镀技术, 表面技术, 2000, 29(5): 19-20
    [63] Kordas K, Bali K, Leppavuori S, et al, Laser direct writing of copper on polyimide surfaces from solution, Applied Surface Science, 2000, 154: 399-404
    [64] 黄妙良, 林煜, 林建明, 陶瓷表面激光诱导局域化学镀覆金属镍的研究, 激光杂志, 2000, 21(6): 42-43
    [65] 崔启明, 江志裕, 郁祖湛, p-Si 上激光诱导局部沉积铂, 应用化学, 1998, 15(4): 104-106
    [66] Kordas K, Remes J, Leppavuori S, et al, Laser-assisted selective deposition of nickel patterns on porous silicon substrates, Applied Surface Science, 2001, 178(1-4): 93-97
    [67] Eun Gyeong Han, Eun Ae Kim, Kyung Wha Oh, Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics, Synthetic Metals, 2001, 123(3): 469-476
    [68] Feldstein N, Process using activated electroless plating catalysts, U.S. Patent, 4180600, 1979
    [69] Nuzzi, Catalyzation processes for electroless metal deposition, U.S. Patent, 4160050, 1979
    [70] 高德淑, 苏光耀, 非金属电镀胶体活化液的研究, 表面技术, 1993, 22(2): 63-65, 69
    [71] 董超, 董根岭, 周完贞, 添加剂对化学镀铜的影响, 材料保护, 1997, 30(1): 8-10
    [72] 董超, 董根岭,周完贞, 双络合剂化学镀铜液电化学极化特性的研究, 材料保护, 1996, 29(9): 7-9
    [73] Honama H, Kobayashi, Electroless copper deposition presence using glyoxylic acid as a reducing agent, Electrochem. Soc., 1994, 141(3): 730-733
    [74] Mizumoto S, Nawafune H, Kawasaki M, et al, Mechanical properties of copper deposits from electroless plating baths containing glycine, Plating and Surface Finishing, 1986, 73(12): 48-51
    [75] Sone Michinari, Kobayakawa Koichi, Saitou Makoto, et al, Electroless, copper plating using FeII as a reducing agent, Electrochimica Acta, 2004, 49(2): 233-238
    [76] Kukanskis, et al, Method for continuous metal deposition from a non-autocatalytic electroless plating bath using electric potential, U.S. Patent, 4459184, 1984
    [77] Grunwald, Method for electroless copper deposition using a hypophosphite reducing agent, U.S. Patent, 6524490, 2003
    [78] Hung A. Electroless copper deposition with hypophosphite as a reducing agent. Plating and Surf. Fin., 1988, 75(1): 62-65
    [79] 陈秉彝, 姚士冰, 新型化学镀铜工艺研究, 材料保护, 1991, 24(5): 4-10
    [80] 陈长生, 林敏, 新型酸性化学镀铜溶液的研究, 电镀与精饰, 1992, 14(4): 7-10
    [81] Yoshida, Electroless copper plating bath, electroless copper plating method and electronic part, U.S. Patent, 6660071, 2003
    [82] Mcdermott J, Plating of Plastics with Metals, Noyes Data Corp., New Jersey, 1974
    [83] Vaskelis A, Jagminiene A, The surface layer pH in the electroless copper plating process, Surf. and Coat. Tech., 1987, (31): 45-54
    [84] 于金库, 化学镀铜溶液的稳定性分析, 表面技术,1992,21(6): 288-289
    [85] 靳坚, 高稳定性化学镀铜溶液的研究与应用, 表面技术,1988,17(6): 18-22
    [86] 申顺保, 高稳定性酒石酸盐化学镀铜, 表面技术,1990,19(3): 44-48
    [87] 陈贞坤, PCB 化学镀铜溶液稳定性浅析, 材料保护,1990,23(9): 35-37
    [88] 徐文湘, 对甲苯磺酰胺在化学镀铜中的稳定效果, 电镀与精饰,1988,10(2): 16-18
    [89] 占余英, 直接氧化法化学镀铜溶液的稳定效果, 电镀与环保,1983,(4): 18-20
    [90] 徐盛光, 化学镀铜溶液稳定机理的研究, 电镀与精饰,1987,9(3): 12-15
    [91] 唐春华, 高稳定性的化学镀铜工艺, 表面技术,1988,(2): 15-18
    [92] 庄华民, 快速化学镀铜溶液稳定性的探讨, 电镀与精饰,1983,5(2): 3-9
    [93] 刘兴平, 化学镀铜溶液稳定性的研究, 电镀与精饰,1999,21(1): 13-16
    [94] 安茂忠, 双络合剂化学镀铜溶液的稳定性和沉铜速度研究, 电镀与环保,1990,10(5): 1-3
    [95] Kondo, Electroless copper plating solution and process for electrolessly plating copper, U.S. Patent, 4834796, 1989
    [96] Kondo, Electroless copper plating solution and process for formation of copper film, U.S. Patent, 5039338, 1991
    [97] 王丽丽, 高速化学镀铜工艺, 表面技术,1993,22(6): 260-262
    [98] 蔡积庆, 高速化学镀铜工艺, 电镀与环保,1993,13(5): 10-12
    [99] Akahoshi, Process for electroless copper plating, U.S. Patent, 4632852, 1986
    [100] Akahoshi, Composite article comprising a copper element and a process for producing it, U.S. Patent, 4970107, 1990
    [101] Mayernik, Electroless copper deposition, U.S. Patent, 5258200, 1993
    [102] 王丽丽, 化学镀铜, 电镀与精饰,1996,18(2): 38-41
    [103] Brenner A, Riddell G E, J. Res. Nit. Bur. Standard. 1946, 37: 1
    [104] Gorbunova K M, Ivaov M V, Moiseev V P, Electroless deposition of nickel-boron alloys: mechanism of process, structure, and some properties of deposits, J. Electrochem. Sov. 1973, 120(5): 613-618
    [105] Lukes R M, The chemistry of the autocatalytic of copper by alkaline formaldehyde, Plating, 1964, (51): 1066-1068
    [106] Pinkerton H L, Smith J W, Copper cyanide plating of printed wiring boards, Plating, 1972, (59): 672-676
    [107] Salvago G, Cavallotti P L, Characteristics of the chemical reduction of nickel alloys with hypophosphite, Plating, 1972, (59): 665-671
    [108] Pdunoric M, Electrochemical aspects of electroless deposition of metals, Plating, 1968, 55(11): 1161-1168
    [109] 藤波知之, 化学镀铜的现状与未来, 电子元件质量, 1995, (2): 3-9,10
    [110] J.E.A.M.Van Den Meerakker, On the mechanism of electroless platingⅠ: oxidation of formaldehyde at different electrode surfaces, J. Appl. Electrochem., 1981, (11): 387-393
    [111] Kou S C, Hung A, Effect of buffer on electroless copper deposition Source, Plating & Surface Finishing, 2002, 89(2): 48-52
    [112] Inberg A, Zhu L, Hirschberg G, et al., Characterization of the initial growth stages of electroless Ag(W) films deposited on Si(100), J. Electrochem. Soc., 2001, 148(12): 784-789
    [113] 方景礼, 化学镀镍诱发过程的研究Ⅰ.金属催化活性的鉴别和反应机理, 化学学报, 1983, 41(2): 129-137
    [114] 佟浩, 王春明,硅电极/溶液界面开路电位-时间谱和原子力显微镜在化学镀 Ag 中的应用研究,化学学报,2002,60(11): 1923-1928
    [115] Kou S C, Huang A, In situ measurement of the mixed potential of electroless copper deposition, Plating & Surface Finishing, 2001, 88(5): 119-123
    [116] Yosi S D, Valery D, Mathew A, Electroless copper deposition for ULSI,Thin Solid Films, 1995,262(1-2): 93-103
    [117] Hajdu J B, Electroless plating: the past is prologue, Plating & Surface Finishing, 1996, 83(9): 29-33
    [118] Kondo K, Kojima K, Ishida N, et al, Effects of 2,2'-dipyridyl on electroless copper deposition in the presence of excess triethanolamine, Journal of the Electrochemical Society, 1993, 140(6): 1598-1601
    [119] 王宝珏, 黄子勋,外电场对诱发化学镀镍过程的影响,中国有色金属学报,1996,6(4):33-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700