硅基贵金属膜材料的制备、形貌控制及性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了硅基贵金属膜材料的制备、形貌控制及其在光学、电学及催化等性能的应用研究。应用电化学方法如循环伏安法(CV)、电化学直流极化法及开路电位时间曲线(Ocp-t),以及扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、拉曼光谱等技术来研究所制膜材料的性质和分析金属的沉积机理,实现了由“材料制备”、“材料组成形貌分析”到“材料应用”的交叉、系统性研究。论文的主要内容如下:
     1.应用循环伏安法研究沉积在硅表面的Ag的阳极溶出行为,开展银在0.01mol/L AgNO_3溶液对单晶硅微污染情况的研究。结果表明Ag的沉积速率是相当快的,几乎1s内就能完成。进一步计算沉积1s,10min及1h后硅表面金属银的表面覆盖量(Γ),得出在该溶液硅表面得到的Ag层仅为一个单层。(参见第二章)
     2.电化学直流极化法和开路电位时间曲线(Ocp-t)技术研究了不同HF浓度下Ag在硅表面的无电沉积行为。这两种电化学测试结果及AFM结果都证明了HF浓度的增加促进硅表面能级的下降,进而有利于Ag的3D生长。本文根据混合电位理论推导了开路电位下降斜率(K_(-ΔE(OCP)/t))公式,并应用K_(-ΔE(OCP)/t)的大小来评价金属沉积速率的快慢。K_(-ΔE(OCP)/t)值与ICP-AES结果作了比较,表明沉积速率随HF浓度的增加而增加,但不是线性关系。最后应力(Stress)产生与释放机制用来解释实验结果。(参见第二章)
     3.用金属无电沉积技术在NH_4F-AgNO_3溶液50℃下,既制备有序树枝状Ag纳米晶又同时得到浅层多孔硅纳米层。自组装定位微观电解池模型和极限扩散聚合(diffusion-limited aggregation,DLA)过程解释Ag树枝纳米结构的生成过程,认为Ag树枝纳米结构是由于VW层小的纳米粒子连续不断的聚集生长而得到的。浅层均匀的多孔硅纳米结构显示了室温下可见光发光特性。表面增强拉曼散射光谱(SERS)的研究证明了这种负载在多孔硅表面的树枝状Ag膜是很好的SERS活性基体,具有高的拉曼增强效应。(参见第三章)
     4.枝状分级的Ag纳米树枝通过简单的置换反应制备,即将HF-AgNO_3溶液滴在硅表面即可。实验中观察到树枝结构生长中的形貌多样性;Ocp-t曲线现场记录了硅/溶液的界面开路电位的表面,以揭示结构演变的过程;XRD表征所得沉积物的晶体结构;定位生长方向的选择取决于固/液界面能的理论和取向连接机理用于解释树枝结构生长中存在形貌多样性的现象。最后以罗丹明B(RB)为探针分子研究了这种树枝纳米Ag膜的SERS活性,表明这种简单的置换方法是制备SERS活性基底一种很有效的方法,可用于传感、选择性检测。(参见第三章)
     5.首先在HF-HAuCl_4溶液50℃下用无电沉积技术制备硅基有序树枝状纳米Au膜,然后在其表面自组装2-巯基萘单分子膜。以铁氰化钾为电子转移探针试剂,单分子膜的电化学实验表明2-巯基萘分子并不能完全阻隔电子在Au膜与铁氰化钾间的转移;0.5mol/L NaOH溶液中的电化学脱附实验证明2-巯基萘分子是以形成Au-S键的化学吸附形式自组装在Au膜上。表面增强拉曼散射光谱证明树枝状纳米Au基底的自组装2-巯基萘单分子膜具有很高的表面拉曼增强效应。(参见第三章)
     6.应用无电沉积技术在HF溶液制备了VW结构和树枝结构的W掺杂Ag膜。通过比较与仅含有金属Ag相应结构的膜材料的沉积行为,发现在所得的Ag-W二元组成体系中Ag的沉积生长起主导作用,并不受钨酸根离子大的影响;提出了W元素掺杂的理论模型,即W元素的掺杂是在Ag的沉积过程中通过钨酸根二聚体中的O原子与金属银的化学吸附—形成Ag-O化学键而实现的。CV用于检测Ag与O间的化学键作用力的大小。高温空气中退火实验表明了所得到的Ag-W二元组成物质具有良好的抗氧化能力。(参见第四章)
     7.应用电沉积法导电玻璃(ITO)基体制备Pd/WO_3组成膜材料,电解液为50mmol/L过氧化钨溶液+5wt.%十二烷基硫酸钠(SDS)+5mmol/L PdCl_2。膜材料的形貌和组成由扫描电子显微镜、能量散射能谱、X射线光电子能谱(XPS)和X射线衍射分析和表征。WO_3对电催化氧化肼化合物的增强效应进行了研究,在Pd/WO_3-ITO电极上肼氧化峰电流达10μA,是Pd-ITO电极的1.7倍,后者仅为62μA,主要原因归结于WO_3的添加对Pd纳米粒子起到很好的分散作用。(参见第五章)
     8.循环伏安法用于电沉积硅基体Ag-W膜材料。不同SDS含量下Ag-W的电化学沉积行为及所得沉积物的微观结构分别进行了比较,发现当SDS含量达5wt.%时SDS由于沉淀作用大大地改善了Ag-W膜的微观结构;XPS表明所得沉积物中W元素的含量达3.4%,O/W原子比约为3.0;XPS和XRD结果证明了Ag-W膜在350℃下空气中不会被氧化。最后研究了膜材料的电阻率与沉积循环圈数的关系。(参见第五章)
This thesis describes the preparation of noble metal films on silicon substrates, morphological control and the studies of their properties such as optical,electrical and catalytic properties.The properties of the films and metal deposition mechanism were investigated by using electrochemical methods involving cyclic voltammetry(CV),an electrochemical direct current polarization method and open circuit potential-time (Ocp-t)technique,scanning electron microscopy(SEM),atomic force microscopy (AFM),X-ray photoelectron spectroscopy(XPS),X-ray diffraction measurement (XRD),Raman spectroscopic analysis,etc.Some important results obtained are described as follows:
     1.The microcontamination process of silver onto p-type crystalline silicon(111)in a solution of 0.01 mol/L AgNO_3 at room temperature was investigated by studying the anodic stripping behavior using cyclic voltammetry(CV).This result shows that the rate of Ag deposition is rapid and that deposition is almost fully accomplished within 1 s.Calculating the surface coverage(F)for 1 s,10 min,or 1 h immersion based on the CV curves demonstrated that the silver layer was only a monolayer.(See Chapter 2)
     2.Electroless silver deposition onto p-silicon(111)from 0.005 mol/L AgNO_3 solutions with different HF concentration was investigated by using an electrochemical direct current polarization method and open circuit potential-time (Ocp-t)technique.The fact that three-dimensional(3D)growth of silver onto silicon is favored with increasing the HF concentration was ascribed to the drop of the surface energy and approved by the two electrochemical methods and atomic force microscopy(AFM).The drop slope of open circuit potential,K_(-ΔE(OCP)/t),was educed from the mixed-potential theory.K_(-ΔE(OCP)/t)as well as the deposition rate determined by an inductively coupled plasma atomic emission spectrometry(ICP-AES), increased with the HF concentration,yet was not a linear function.Results were explained by the stress generation and relaxation mechanisms.(See Chapter 2)
     3.Via electroless metal deposition,well-defined silver dendrites and thin porous silicon(por-Si)layers were simultaneously prepared in ammonia fluoride solution containing AgNO_3 at 50℃.A self-assembled localized microscopic electrochemical cell model and a diffusion-limited aggregation mode were used to explain the growth of silver dendrites.The formation of silver dendritic nanostructures derives from the continuous aggregation growth of small particles on a layer of silver nanoparticles or nanoclusters(Volmer-Weber layer).Thin and homogeneous nanostructure por-Si layers displayed visible light-emission properties at room temperature.The investigation of the surface-enhanced Raman scattering(SERS)revealed that the film of silver dendrites on por-Si was an excellent substrate with significant enhancement effect.(See Chapter 3)
     4.Hierarchical silver dendritic nanostructures were prepared at room temperature via a simple replacement reaction by dropping a droplet of HF-AgNO_3 solution on silicon wafers.The morphological diversity of the resulting dendritic structures was observed.Open circuit potential-time(Ocp-t)curve was used to record in situ the variation of the open circuit potentials of silicon/electrolyte,which reflected the structural evolution process.The crystal structures of the deposits were characterized by X-ray diffraction(XRD).Results were interpreted in term of the theory that orientation selection in dendritic evolution is determined by the anisotropy of the solid-liquid interfacial energy and the oriented attachment-based aggregation mechanism.The silver dendrites show significant SERS effect as probed with Rhodamine B(RB).The ease of the approach to prepare SERS-active substrates makes it very promising in sensing and detection oriented applications.(See Chapter 3)
     5.Gold films with well-defined dendritic nanostructure on a silicon substrate were firstly fabricated by using electroless deposition technique from aqueous HF solution containing HAuCI4 at 50℃.And then the gold films were self-assembled with 2-naphthalenethiol.Using potassium ferricyanide as an electron transfer probe,the electrochemical behavior of the resulting monolayers showed that 2-naphthalenethiol self-assembled monolayers(SAMs)failed to block the electron transfer(ET)between the gold film and potassium ferricyanide.Electrochemical desorption of SAMs in 0.5 mol/L NaOH solution revealed that 2-naphthalenethiol molecules were adsorbed on gold films by chemisorption resulting in forming Au-S bonding.Surface enhanced Raman scattering spectroscopic observations confirmed that the SAMs adsorbed on Au dendrites had significant enhancement effect.(See Chapter 3)
     6.Volmer-Weber(VW)film and dendritic nanostructure film of W-doped Ag were prepared by using electroless deposition from hydrofluoride solution.Compared with the deposition of the corresponding structure of only silver,the results show that the growth of silver is leading and can not be changed essentially by tungstate ions in the Ag-W binary system.A doping mode of W element was proposed,i.e.,the doping of W may occur during silver deposition through chemisorption—chemical bonding of oxygen atoms of tungstate dimer with silver.Cyclic voltammetry was employed to determine the chemical bonding energy between silver and oxygen.Annealing at high temperature in air revealed that the Ag-W composites had good anti-corrosion in air. (See Chapter 4)
     7.Pd/WO_3 composite film on indium tin oxide(ITO)glass was prepared by electroplating in a solution of 50 mmol/L tungsten-peroxo complex+5 wt.%SDS with 5 mmol/L PdCl_2.The structure and composition of the synthesized Pd/WO_3 composites were characterized by scanning electron microscopy combined with energy dispersion spectroscopy,X-ray photoelectron spectroscopy and X-ray diffraction.The promotional effect of WO_3 for the electrocatalytic activity for hydrazine oxidation was investigated.The peak current of Pd/WO_3 ITO glass electrode reached up to 106μA,which was 1.7 times as high as that of a Pd-ITO glass electrode(62μA)under the same working conditions.It might be mainly attributed to the good dispersion of palladium nanoparticles on WO_3 supports.(See Chapter 5)
     8.An electrodeposition process using cyclic voltammetry(CV)for preparing Ag-W films on p-type silicon(100)wafers is described.The electrochemical behaviors and microstructural properties of Ag-W deposits were compared in different concentration of sodium dodecylsulfate(SDS).It was found that SDS functioned as precipitation action to silver ions and promoted strongly the microstructure of Ag-W films as its concentration amounted to 5 wt.%.X-ray electronspectroscopy(XPS)investigation demonstrated that the concentration of tungsten was 3.4%and the O/W atom ratio was about 3.0 for Ag-W deposits.XPS and X-ray diffraction(XRD)measurements certified that the silver coating was not corroded at temperatures up to 350℃in air.Finally,the resistivity of the films with the CV cycle number was analyzed.(See Chapter 5)
引文
[1] A. N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, Chem. Phys. Chem. 1 (2000) 18.
    
    [2] C. N. R. Rao, A. K. Cheetham, Science and technology of nanomaterials: current status and future prospects, J. Mater. Chem. 11 (2001) 2887.
    
    [3] C. B. Murray, S. Sun, H. Doyle, T. Betley, Mater. Res. Bull. 26 (2001) 985.
    
    [4] A. C. Templeton, W. P. Wuelfing, R.W. Murray, Monolayer-protected cluster molecules, Acc. Chem. Res. 33 (2000) 27.
    
    [5] L. N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev. 93 (1993) 2693.
    
    [6] M. D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P.Landon, D. I. Enache, A. F.Carley, G. A. Attard, G. J. Hutchings, F.King, E. H. Stitt, P. Johnston, K. Griffin, C. J. Kiely, Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions, Nature 437 (2005) 1132.
    
    [7] W. Yan, S. Brown, Z. Pan, S. M. Mahurin, S. H. Overbury, S. Dai, Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate, Angew. Chem. 118 (2006) 3696.
    
    [8] M. Ware, Chrysotype: Photography in nanoparticle gold, Gold Bull. 39 (2006) 124.
    
    [9] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics - A Route to Nanoscale Optical Devices, Adv. Mater. 13 (2001) 1501.
    
    [10] W. L.Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824.
    
    [11] A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y.Zhang, A. A. Firsov, I. Y. Khrushchev, J. Petrovic, Nanofabricated media with negative permeability at visible frequencies, Nature 438 (2005) 335.
    
    [12] Y. Wu, Y. Li, B. S. Ong, P. Liu, S. Gardner, B. Chiang, High-performance organic thin-film transistors with solution-printed gold contacts, Adv. Mater. 17 (2005)184.
    [13]S.Chen,Y.Yang,Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging,J.Am.Chem.Soc.124(2002)5280.
    [14]T.-H.Lee,J.I.Gonzalez,J.Zheng,R.M.Dickson,Single-molecule optoelectronics,Ace.Chem.Res.38(2005)534.
    [15]B.I.Shapiro,A silver halide recording material with luminescence reading,High Energy Chem.41(2007)43.
    [16]C.R.Yonzon,C.L.Haynes,X.Zhang,J.T.Walsh,Jr.,R.P.Van Duyne,A glucose biosensor based on surface-enhanced raman scattering:improved partition layer,temporal stability,reversibility,and resistance to serum protein interference,Anal.Chem.76(2004)78.
    [17]Y.Kim,R.C.Johnson,J.T.Hupp,Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions,Nano Lett.1(2001)165.
    [18]T.A.Taton,C.A.Mirkin,R.L.Letsinger,Scanometric DNA array detection with nanoparticle probes,Science 289(2000)1757.
    [19]J.Chen,F.Saeki,B.J.Wiley,H.Cang,M.J.Cobb,Z.-Y.Li,L.Au,H.Zhang,M.B.Kimmey,X.Li,Y.Xia,Gold nanocages:Bioconjugation and their potential use as optical imaging contrast agents,Nano Lett.5(2005)473.
    [20]J.L.West,N.J.Halas,Engineered nanomaterialsfor biophotonics applications:Improving sensing,imaging,and therapeutics,Annu.Rev.Biomed.Eng.5(2003)285.
    [21]D.P.O'Neal,L.R.Hirsch,N.J.Halas,J.D.Payne,J.L.West,Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,Cancer Lett.209(2004)171.
    [22]L.Qin,S.Zou,C.Xue,A.Atkinson,G.C.Schatz,C.A.Mirkin,Designing,fabricating,and imaging Raman hot spots,Proc.Natl.Acad.Sci.USA 103(2006)13300.
    [23]J.Zhao,A.Das,X.Zhang,G.C.Schatz,S.G.Sligar,R.P.Van Duyne,Resonance surface plasmon spectroscopy:Low molecular weight substrate binding to cytochrome P450,J.Am.Chem.Soc.128(2006)11004.
    [24]S.Nie,S.R.Emory,Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,Science 275(1997)1102.
    [25]G.Lu,H.Shen,B.Cheng,Z.Chen,C.A.Marquette,L.J.Blum,O.Tillement,S.Roux,G.Ledoux,M.Ou,P.Perriat,How surface-enhanced chemiluminescence depends on the distance from a corrugated metal film,Appl.Phys.Lett.2006,89,223128.
    [26]B.R.Harkness,M.Rudolph,K.Takeuchi,Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer,Chem.Mater.14(2002)1448-1451.
    [27]M.A.EI-Sayed,Some interesting properties of metals confined in time and nanometer space of different shapes,Ace.Chem.Res.34(2001)257.
    [28]M.Hu,J.Chen,Z.-Y.Li,L.Au,G.V.Hartland,X.Li,M.Marquez,Y.Xia,Gold nanostructures:engineering their plasmonic properties for biomedical applications,Chem.Soc.Rev.35(2006)1084.
    [29]C.J.Murphy,N.R.Jana,Controlling the aspect ratio of inorganic nanorods and nanowires,Adv.Mater.14(2002)80.
    [30]J.Chen,B.Wiley,Z.-Y.Li,D.Campbell,F.Saeki,H.Cang,L.Au,J.Lee,X.Li,Y.Xia,Gold nanocages:Engineering their structure for biomedical applications,Adv.Mater.17(2005)2255.
    [31]T.Yang,C.Shen,Z.Li,H.Zhang,C.Xiao,S.Chen,Z.Xu,D.Shi,J.Li,H.Gao,Highly ordered self-assembly with large area of Fe304 nanoparticles and the magnetic properties,J.Phys.Chem.B 109(2005)23233.
    [32]R.S.Muller,T.I.Kamins,Device Electronics for Integrated Circuits,John Wiley & Sons,1977.
    [33]S.K.Ghandhi,VLS1 Fabrication Principles,John Wiley & Sons,New York,1983.
    [34]S.M.Sze,Physics of Semiconductor Devices,John Wiley & Sons,New York,1981. 喜,张大全,徐群杰译,化学工业出版社,2004.
    [36]P.J.Hesketh,C.Ju,S.Gowda,E.Zanoria,S.Danyluk,Surface free energy model of silicon anisotropic etching,J.Electrochem.Soc.140(1993)1080.
    [37]E.D.Palik,O.J.Glembocki,I.Heard,Study of bias-dependent etching of Si in aqueous KOH,J.Electrochem.Soc.134(1987)404.
    [38]C.Messmer,J.C.Bilello,The surface energy ofSi,GaAs,and GaP,J.Appl.Phys.52(1981)4623.
    [39]R.J.Jaccodine,Surface energy of germanium and silicon,J.Electrochem.Soc.110(1963)524.
    [40]X.G.Zhang,Electrochemistry of Silicon and Its Oxide,New York,Kluwer Academic/Plenum Publishers,2001,p.168-170.
    [41]D.Laser,A.Bard,Semiconductor electrodes Ⅳ:Electrochemical behavior of nand p-type silicon electrodes in acetonitrile solutions,J.Phys.Chem.80(1976)459.
    [42]N.S.Lewis,a.b.Bocarsly,Silicon and germanium,in semiconductor Electrodes,H.O.Finklea(ed.),p.241,Amsterdam,Alsevier 1988.
    [43]C.Levy-Clement,A.Lagoubi,R.Tenne,M.Neumann-Spallart,Photoelectrochemical etching of silicon,Electrochim.Acta 37(1992)877.
    [44]J.-N.Chazalviel,Schottky barrier height and reverse current of the n-Sielectrolyte junction,Surf.Sci.88(1979)204,.
    [45]K.Ljungberg,U.Jansson,S.Bengtsson,A.Sodergarg,Modification of silicon surfaces with H_2SO_4:H_2O_2:HF and HNO_3:HF for wafer bonding applications,J.Electrochem.Soc.143(1996)1709.
    [46]V.A.Burrows,Y.J.Chabal,G.S.Higashi,K.Raghavavhari,S.B.Christman,Infrared spectroscopy of Si(111)surfaces after HF treatment." Hydrogen termination and surface morphology,Appl.Phys.Lett.53(1988)998.
    [47]H.Ubara,T.Imura,A.Hiraki,Formation of Si—H bonds on the surface of microcrystalline silicon covered with SiO_x by HF treatment,Solid State Commun.50(1984)673.
    [48]P.Jakob,Y.J.Chabal,Chemical etching of vicinal Si(111):Dependence of the surface structure and the hydrogen termination on the pH of the etching solutions,J. Chem.Phys.95(1991)2897.
    [49]M.Niwano,T.Miura,N.Miyamoto,Hydrogen exchange reaction on hydrogen-terminated(100)Si surface during storage in water,J.Electrochem.Soc.145(1998)659.
    [50]巩雄,张桂兰,汤国庆,纳米晶体材料研究进展,化学进展,9(1997)349-360.
    [51]冯异,赵军武,齐晓霞,高芬,纳米材料及其应用研究进展,工具技术,40(2006)10.
    [52]李俊寿,新材料概论,国防工业出版社,2004.
    [53]Y.Xia,P.Yang,Y.Sun,Y.Wu,B.Mayers,B.Gates,Y.Yin,F.Kim,H.Yan,One-Dimensional Nanostructures:Synthesis,Characterization,and Applications,Adv.Mater.15(2003)353-389.
    [54]李学丹,万英超,姜祥祺,杜元成,真空沉积技术,浙江大学出版社,1994.
    [55]王力衡,薄膜技术,清华大学出版社,1991.
    [56]陈允鸿,姜玉梅,蒸发冷凝法中气体压强和蒸发温度对粒子大小的影响.功能材料,25(1994)25.
    [57]王升高,汪建华,秦勇,微波等离子体化学气相沉积法低温合成纳米碳管,化学学报,60(2002)957.
    [58]K.L.Chou,Prog.Mater.Sci.94-95(1997)60.
    [59]T.Goto,High-speed deposition of zirconia films by laser-induced plasma CVD,Solid State Ion.172(2004)225.
    [60]D.T.Quinto,Technology perspective on CVD and PVD coated metal-cutting tools,Int.J.Refract.Met.Hard Mater.14(1996)7.
    [61]A.Inberg.L.Zhu,G.Hirschberg,A.Gladkikh,N.Croitoru,Characterization of the initial growth stages of electroless Ag(W)films deposited on Si(100),J.Electrochem.Soc.148(2001)C784.
    [62]R.A.W.Dryfe,A.O.Simm,B.Kralj,Electroless deposition of palladium at bare and templated liquid/liquid interfaces,J.Am.Chem.Soc.125(2003)13014.
    [63]A.Hilmi,J.H.T.Luong,Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips,Anal.Chem.72(2000)4677.
    [64]Y.Shacham-Diamand,Y.Sverdlov,Electrochemically deposited thin film alloys for ULSland MEMS applications,Microelectron Eng.50(2000)525.
    [65]W.Ye,Y.Li,B.Yang,C.Wang,Comparative study of electrolessly deposited Pd/Ag films onto p-silicon(lO0)-activated seed layers of Ag and Pd,J.Solid State Electrochem.11(2007)1347.
    [66]H.Tong,L.Zhu,M.Li,C.Wang,Electroless silver deposition on Si(100)substrate based on the seed layer of silver itself,Electrochim.Acta 48(2003)2473.
    [67]W.Ye,C.Ma,W.Shang,Y.Chen,R.Wang,C.Wang,Effect of sodium dodecylsulfate on improving microstructural properties of electroplated silver-oxygen-tungsten thinfilms,Surf.Coat.Technol.201(2007)9456.
    [68]W.Ye,B.Yang,G.Cao,L.Duan,C.Wang,Electrocatalytic oxidation of hydrazine compound on electroplated Pd/WO_3 film,Thin Solid Films 516(2008)2957.
    [69]R.B.Gual,R.T.Potaschke,G.Staikov,Electrodeposition of Pb on n-Si(111),Electrochim.Acta 43(1998)3021.
    [70]S.H.Baeck,K.S.Choi,T.F.Jaramillo,G.D.Stucky,E.W.McFarland,Self-assembly of mesostructured conjugated poly(2,5-thienylene ethynylene)/silica nanocomposites,Adv.Mater.15(2003)1269.
    [71]G.Oskam,P.C.Searson,Electrochemistry of gold deposition on n-Si(100),J.Electrochem.Soc.147(2000)2199.
    [72]G.Oskam,P.C.Searson,Electrochemical nucleation and growth of gold on silicon,Surf.Sci.446(2000)103.
    [73]唐伟忠,薄膜材料制备原理、技术及应用,冶金工业出版社,1998.
    [74]W.Ma,W.X.Pan.C.K.Wu,Preliminary investigations on low-pressure laminar plasma sprayprocessing,Surf.Coat.Technol.191(2005)166.
    [75]A.Kobayashi,T.Kitamura,Effect of heat treatment on high-hardness zirconia coatings formed by gas tunnel type plasma spraying,Vacuum 59(2000)194.
    [76]G.Liu,K.Rozniatowski,K.J.Kurzydlowski,Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying,Mater.Character.46(2001)99.
    [77]X.Liu,B.Xu,S.Ma,Z.Chen,Study of the tribological behavior of a Ni electron brush plating layer on a base of an Arc sprayed coating,Wear 211(1997)151.
    [78]J.Tikkanen,M.Eerola,M.Rajala,Coating glass byflame spraying,J.Non-Cryst.Solids 178(1994)220.
    [79]F.Mizusakoa,H.Tamurab,K.Horiokac,Y.Haradad,Zr-O-B ceramics/Ni-20%Cr alloy graded coating produced by electrothermal explosion spraying,Surf.Coat.Technol.187(2004)257.
    [80]T.Watanabe,X.Wang,E.Pfender,J.Heberlein,Correlations between electrode phenomena and coating properties in wire arc spraying,Thin Solid Films 316(1998)169.
    [81]C.R.Silva,C.Airoldi,Acid and base catalysts in the hybrid silica sol-gel process,J.Colloid Interf.Sci.195(1997)381.
    [82]K.Alhooshani,T.Kim,A.Kabir,A.Malik,Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction(in-tube SPME),J.Chromatogr.A 1062(2005)1.
    [83]J.D.Hayes.,A.Malik,Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis,J.Chromatogr.B 695(1997)3.
    [84]A.Brenner,E.Riddell,J.Res.Natl.Bur.Std.37(1946)31.
    [85]A.Kumara,M.He,Z.Chen,P.S.Teo,Effect ofelectromigration on interfacial reactions between electroless Ni-P and Sn-3.5%Ag solder,Thin Solid Films 462-463(2004)413.
    [86]T.Osaka,N.Takano,T.Yokoshima,Microfabrication of electro-and electroless-deposition and its application in the electronic field,Surf.Coat.Technol.169-170(2003)1-7.
    [87]H.Xie,B.Zhang,J.Mater.Pro.Technol.124(2002)8.
    [88]T.Burchardt,The effect of deposition temperature on the catalytic activity of Ni-P alloys toward the hydrogen reaction,Int.J.Hydrog.Energy 27(2002)323.
    [89]A.K.VasI,E.Norkus,Autocatalytic processes of copper(Ⅱ)and silver(Ⅰ)reduction by cobalt(Ⅱ)complexes,Electrochim.Acta 44(1999)3667.
    [90]Y.Okinaka,M.Hoshino,Some recent topics in gold plating for electronics applications,Gold Bull.31(1998)3.
    [91]L.A.Porter,JR.H.C.Choi,A.E.Ribbe,J.M.Buiak,Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces,Nano Lett.2(2002)1067.
    [92]M.Kato,J.Sato,H.Otani,T.Homma,Y.Okinaka,O.Yoshioka,Substrate (Ni)-catalyzed electroless gold deposition from a noncyanide bath containing thiosulfate and sulfite,J.Electrochem.Soc.149(2002)C 164.
    [93]G.Oskam,J.G.Long,A.Natarajan,P.C.Searson,Electrochemical deposition of metals onto silicon,J.Phys.D:Appl.Phys.31(1998)1927.
    [94]P.Allongue,E.Souteyrand,Semiconductor electrodes modified by electrodeposition of discontinuous metal films:Part 1.Role of the film morphology,J.Electroanal.Chem.269(1989)361.
    [95]张清敏,徐濮,扫描电子显微镜和X射线微区分析,1988.
    [96]黄兰友,刘绪平,电子显微镜与电子光学,1991.
    [97]P.Ball,L.Garwin,Science at the atomic scale,Nature 355(1992)761.
    [98]R.E.Cavicchi,R.H.Silsbee,Coulomb suppression of tunneling rate from small metalparticles,Phys.Rev.Lett.52(1984)1453.
    [99]苏品书,超微粒子材料技术,武汉出版社,1989.
    [100]都有为,倪刚,磁性纳米材料的新进展,物理,27(1998)524.
    [101]张立德,牟季美,纳米材料和纳米结构,北京科学出版社,2001.
    [102]张立德,牟季美,开拓原子和物质的中间领域—纳米微粒与纳米固体,物理,21(1992)167-173.
    [103]D.L.Feldhein,C.D.Keating,Self-assembly of single electron transistors and related devices,Chem.Soc.Rev.27(1998)1.
    [104]V.A.Gritsenko,P.A.Punder,Sov.Phys.Sol.Stat.25(1983)901.
    [105]Y.Shacham-Diamand,A.Inberg,Y.Sverdlov,N.Croitiru,Electroless silver and silver with tungsten thin films for microelectronics and microelectromechanical system applications,J.Electrochem.Sot.,147(2000)3345.
    [106]N.Radio,A.Tonejc,M.Milun,P.Pervan,J.Ivkov,and M.Stubicar,Preparation and structure ofAlW thinfilms,Thin Solid Films 317(1998)96.
    [107]Y.Shacham-Diamand,Y.Sverdlov,Electrochemically deposited thinfilm alloys for ULS1 and MEMS applications,Microelectron.Eng.50(2000)525.
    [108]Y.Wang,T.L.Alford,Formation of aluminum oxynitride diffusion barriers for Ag metallization,Appl.Phys.Lett.74(1999)52.
    [109]Y.Shacham-Diamand,S.Lopatin,Integrated electroless metallizationfor ULSI,Electrochim.Acta,44(1999)3639.
    [110]C.H.Ting,m.Paunovic,P.L.Pai,G.Chiu,Selective electroless metal
    deposition for via hole filling in VLSI multilevel interconnection structures,J.
    Electrochem.Soc.136(1989)462.
    [111]J.S.H.Cho,H.-K.Kang,S.S.Wang,Y.Shacham-Diamand,Electroless Cufor VLS1,MRS Bull.18(1993)31.
    [112]J.Li,Y.Shacham-Diamand,J.W.Mayer,Mater.Sci.Rep.9(1992)1.
    [113]G.M.Wallraff,W.D.Hinberg,Lithographic imaging techniques for the formation of nanoscopic features,Chem.Rev.99(1999)1801.
    [114]曲喜新,杨邦朝,姜节俭,张怀武,电子薄膜材料,科学出版社,1994.
    [115]M.Jeske,J.W.Schultze,H.Munder,Porous silicon:Base material for nanotechnologies,Electrochim.Acta 40(1995)1435.
    [116]H.Morinaga,M.Suyama,T.Ohmi,Mechanism of metallic particle growth and metal-induced pitting on si wafer surface in wet chemical processing,J.Electrochem.Soc.141(1994)2834.
    [117]S.Ye,K.Ichihara,and Uosaki,Spectroscopic studies on electroless deposition of copper on a hydrogen-terminated Si(111)surface in fluoride solutions,J.Electrochem.Soc.148(2001)C421.
    [118]F.A.Harraz,T.Sakka,Y.H.Ogata,Immersion plating of nickel onto a porous silicon layer from fluoride solutions,Phys.Status Solid(a)197(2003)51.[119]F.Kern,M.Itano,I.Kawanabe,M.Miyashita,R.Rosenberg,T.Ohmi,in Ultra Clean society 11th workshop on ULSI Ultraclean Technology,p.23,Tokyo,Japan,June 6,1991.
    [120]W.Ye,Y.Chang,C.Ma,B.Jia,G.Cao,C.Wang,Electrochemical investigation of the surface energy:Effect of the HF concentration on electroless silver deposition ontop-Si(111),Appl.Surf.Sci.253(2007)3419.
    [121]F.Jing,H.Tong,C.Wang,Cyclic voltammetry study of silver seed layers on p-silicon(100)substrates,J.Solid State Electrochem.8(2004)877.
    [122]L.A.Nagahara,T.Ohmori,K.Hashimoto,A.Fujishima,The influence of hydrofluoric acid concentration on electroless copper deposition onto silicon,J.Electroanal.Chem.333(1992)363.
    [123]V.Bertagna,F.Rouelle,G.Revel,M.Chemla,Electrochemical and radiochemical study of copper contamination mechanism from HF solutions onto silicon substrates,J.Electrochem.Soc.144(1997)4175.
    [124]L.Torcheux,A.Mayeux,M.Chemla,Electrochemical coupling effects on the corrosion of silicon samples in HF solutions,J.Eleetrochem.Soe.142(1995)2037.
    [125]D.Hamm,T.Sakka,Y.H.Ogata,Immersion plating of copper onto porous silicon with different thickness,Electrochim.Aeta 49(2004)4949.
    [126]R.Srinivasan,I.Suni,A study of immersion processes of activating polished crystalline silicon for autocatalytic electroless deposition of palladium and other metals,J.Electrochem.Soe.146(1999)570.
    [127]陈扬,景粉宁,叶为春,王春明,gutocatalytic electroless deposition of palladium onto p-silicon(100),物理化学学报,2007,23,1743-1746.
    [128]S.Karmalkar,J.Banejee,A study of immersion processes of activating polished crystalline silicon for autocatalytic electroless deposition of palladium and other metals,J.Electrochem.Soc.146(1999)580.
    [129]S.Yae,Y.Kawamoto,H.Tanaka,N.Fukumuro,H.Matsuda,Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells,Electrochem.Commun.5(2003)632-636.
    [130]S.Yae,N.Nasu,K.Matsumoto,T.Hagihara,N.Fukumuro,H.Matsuda,Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions,Electrochim.Acta 53(2007)35-41.
    [131]J.Sadano,R.Murota,Y.Yamauchi,T.Sakka,Y.H.Ogata,Re-dissolution of copper deposited onto porous silicon in immersion plating,J.Electroanal.Chem.559(2003)125.
    [132]P.Gorostiza,M.A.Kulandainathan,R.Diaz,F.Sanz,P.Allongue,J.R. Morantec,Charge exchange processes during the open-circuit deposition of nickel on silicon from fluoride solutions,J.Electrochem.Soc.147(2000)1026.
    [133]F.A.Harraz,J.Sasano,T.Sakka,Y.H.Ogata,Different behavior in immersion plating of nickel on porous silicon from acidic and alkaline fluoride media,J.Electrochem.Soc.150(2003)C277.
    [134]X.Zhang,Z.Chen,K.N.Tu,Immersion nickel deposition on blank silicon in aqueous solution containing ammonium fluoride,Thin Solid Films 515(2007)4696.
    [135]M.Chemla,T.Homma,V.Bertagna,R.Erre,N.Kubo,Survey of the metal nucleation processes on silicon surfaces in fluoride solutions:from dilute HF to concentrated NH_4F solutions,J.Electroanal.Chem.559(2003)111.
    [136]G.S.Higashi,Y.J.Chabal,G.W.Trucks,K.Raghavachari,Appl.Phys.Lett.56(1990)656.
    [137]H.Matsubara,T.Yonekawa,Y.Ishino,N.Saito,H.Nishiyama,Y.Inoue,The observation of the nucleation and growth of electrolessly plated nickel deposited from different bath pH by TEM and QCM method,Electrochim.Acta 52(2006)402-407.
    [138]Y.Chang,W.Ye,C.Ma,C.Wang,The thermodynamic model of open-circuit potential for electroless deposition of Ni on silicon,J.Electrochem.Soc.153(2006)C677-C682.
    [139]Southampton Electrochemistry Group,Instrumental methods in Electrochemistry(New York:Ellishorwood),1990.
    [140]Y.Okinaka,An electrochemical study of electroless gold-deposition reaction,J.Electrochem.Soc.120(1973)739.
    [141]I.Ohno,Electroless copper plating from an iminodiacetate bath,Surf.Technol.4(1976)515.
    [142]M.Paunovic,Plating 55(1968)1161.
    [143]M.Saito,J.Met.Finish.Soc.Jpn.16(1965)300.
    [144]M.Saito,J.Met.Finish.Soc.Jpn.17(1966)14.
    [145]M.Saito,J.Met.Finish.Soc.Jpn.17(1966)258.
    [146]M.Saito,J.Met.Finish.Soc.Jpn.17(1966)264.
    [1]J.Li,Y.Shacham-Diamand,J.W.Mayer,Mater.Sci.Rep.9(1992)1.
    [2]J.S.H.Cho,H.-K.Kang,S.S.Wang,Y.Shacham-Diamand,MRS Bull.18(1993)31.
    [3]C.H.Ting,M.Paunovic,J.Electrochem.Soc.136(1989)456.
    [4]A.Inberg.L.Zhu,G.Hirschberg,A.Gladkikh,N.Croitoru,J.Electrochem.Soc.148(2001)C784.
    [5]H.Tong,L.Zhu,M.Li,C.Wang,Electrochim.Acta 48(2003)2473.
    [6]A.Hilmi,J.H.T.Luong,Anal.Chem.72(2000)4677.
    [7]R.A.W.Dryfe,A.O.Simm,B.Kralj,J.Am.Chem.Soc.125(2003)13014.
    [8]J.B.Liu,W.Dong,P.Zhan,S.Z.Wang,J.H.Zhang,Z.L.Wang,Langmuir 21(2005)1683.
    [9]S.Ye,T.Ichihara,K.Uosaki,J.Electrochem.Soc.148(2001)C421.
    [10]F.A.Harraz,T.Sakka,Y.H.Ogata,Phys.Status Solidi(a)197(2003)51.
    [11]G.J.Norga,M.Platero,K.A.Black,A.J.Ready,J.Michel,L.C.Kimerling,J.Electrochem.Soc.144(1997)2801.
    [12]S.G.dos Santos Filho,A.A.Pasa,C.M.Hasenack,Microelectron.Eng.33(1997)149.
    [13]X.Cheng,C.Gu,Z.D.Feng,J.Electrochem.Soc.150(2003)G112.
    [14]F.A.Harraz,T.Tsuboi,J.Sasano,T.Sakka,Y.H.Ogata,J.Electrochem.Soc.149(2002)C456.
    [15]N.Sorg,W.Kautek,W.Paatsch,Ber.Bunsenges Phys.Chem.95(1991)501.
    [16]H.Tong,C.Wang,Acta Chim.Sinica(化学学报)60(2002)1923.
    [17]F.Jing,H.Tong,C.Wang,J.Solid.State Electrochem.8(2004)877.
    [18]J.B.Allen,R.F.Larry,Electrochemical methods:fundamentals and applications,Wiley,2001,New York.
    [19]G.Kokkinidis,J.Electroanal.Chem.201(1986)217.
    [20]F.Kern,M.Itano,I.Kawanabe,M.Miyashita,R.Rosenberg,T.Ohmi,In Ultra Clean society 11th workshop on ULSI Ultraclean Technology,Tokyo,Japan,1991,p 23.
    
    [21] S. Ye, T. Ichihara, K. Uosaki, J. Electrochem. Soc. 148 (2001) C421.
    [22] F. A. Harraz, T. Sakka, Y. H. Ogata, Phys. Status Solidi (a) 197 (2003) 51.
    [23] H. Morinaga, M. Suyama, T. Ohmi, J. Electrochem. Soc. 141(1994) 2834.
    [24] J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, J. Appl. Phys. 89 (2001) 4887.
    [25] E. Chason, B. W. Sheldon, L. B. Freund, Phys. Rev. Lett. 88 (2002) 156103.
    [26] C. Friesen, C. V. Thompson, Phys. Rev. Lett. 89 (2002) 126103.
    [27] J. S. Jeon, S. Raghavan, H. G. Parks, J. K. Lowell, I. Ali, J. Electrochem. Soc. 143(1996)2870.
    
    [28] X. Cheng, G. Li, E. A. Kneer, B. Vermeire, H. G. Parks, S. Raghavan, J. S. Jeon, J. Electrochem. Soc. 145 (1998) 352.
    
    [29] V. Bertagna, F. Rouelle, G. Revel, M. Chemla, J. Electrochem. Soc. 144 (1997) 4175.
    
    [30] A. Inberg, L. Zhu, G. Hirschberg, A. Gladkikh, N. Croitoru, Y. Shacham- Diamand, E. Gileadi, J. Electrochem. Soc. 148 (2001) C784.
    [31] H. Tong, C. Wang, Appl. Phys. A 81 (2005) 137.
    
    [32] S. R. Morrison, Electrochemistry at semiconductor and Oxidized metal Electrodes, Plenum Press, New York, 1980.
    
    [33] R. D. Aburano, H. Hong, J. M. Roesler, K. Chung, D.-S. Lin, P. Zschack, H.Chen, T.-C. Chiang, Phys. Rev. B 52 (1995) 1839.
    [34] W. Ye, H. Tong, C. Wang, Microchim. Acta 152 (2005) 85.
    [35] M. Paunovic, Plating 55 (1968) 1161.
    
    [36] G. S. Higashi, Y. J. Chabal, G. W. Trucks, K. Raghavachari. Appl. Phys. Lett. 56 (1990)656.
    
    [37] J. Choi, Z. Chen, R. K. Singh, J. Electrochem. Soc. 150 (2003) C563.
    [38] J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, J. Appl. Phys. 89 (2001) 4887.
    [39] E. Chason, B. W. Sheldon, L. B. Freund, Phys. Rev. Lett. 88 (2002) 156103.
    [40] C. Friesen, C. V. Thompson, Phys. Rev. Lett. 89 (2002) 126103.
    [41] K. Peng, J. Zhu, Electrochim. Acta 49 (2004) 2563.
    [42] K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Mater. 14 (2002) 1164.
    [43]K.Q.Peng,Y.J.Yan,S.P.Gao,J.Zhu,Adv.Funct.Mater.13(2003)127.
    [1] Y. Sun, Y. Xia, Science 298 (2002) 2176.
    
    [2] F. Kim, J. H. Song, P.D. Yang, J. Am. Chem. Soc. 124 (2002) 14316.
    
    [3] T. Teranishi, M. Miyake, Chem. Mater. 10 (1998) 594.
    
    [4] A.M. Michaels, J. Jiang, L. Brus, J. Phys. Chem. B 104 (2000) 11965.
    
    [5] A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102 (2002) 3757-3778.
    
    [6] W. Ye, C. Shen, J. Tian, C. Wang, L. Bao, H. Gao, Electrochem. Commun. 10 (2008) 625-629.
    
    [7] X. Wen, Y. Xie, M. W. C. Mak, K. Y. Cheung, X. Li, R. Renneberg, S. Yang, Langmuir 22 (2006) 4836-4842.
    
    [8] R. C. Jin, C. Y. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature 425 (2003) 487.
    
    [9] T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, S. Chen, Z. Xu, D. Shi, J. Li, H. Gao, J. Phys. Chem. B 109 (2005) 23233.
    
    [10] P. Meakin, Phys. Rev. Lett. 51 (1983) 1119-1122.
    
    [11] Y. Sawada, A. Dougherty, J. Gollub, Phys. Rev. Lett. 56 (1986) 1260-1263.
    [12] Y. Zhou, S. Yu, C. Wang, Adv. Mater. 11 (1999) 850852.
    
    [13] X. Q. Wang, N. Kensuke, I. Hideaki, et al. Chem. Commun. (2002) 1300-1301.
    
    [14] Y. Zhu, H. Zheng, Y. Li, et al. Marer. Res. Bull. 38 (2003)1829-1834.
    
    [15] S. Wang, H. Xin, J. Phys. Chem. B 104 (2000) 5681-5685.
    
    [16] K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Adv. Mater. 14 (2002) 1164.
    
    [17] K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Adv. Funct. Mater. 13 (2003) 127.
    
    [18] T. Qiu, X.L. Wu, Y.F. Mei, P.K. Chu, G.G. Siu, Appl. Phys. A 81 (2005) 669.
    
    [19] T. Qiu, X.L. Wu, X. Yang, G.S. Huang, Z.Y. Zhang, Appl. Phys. Lett. 84 (2004) 3867.
    
    [20] P. Gorostiza, M.A. Kulandainathan, R. Diaz, F. Sanz, P. Allongue, J.R. Morante, J. Electrochem. Soc. 14 (2000) 1026.
    
    [21] Q. Zhou, S. Wang, N. Jia, L. Liu, J. Yang, Z. Jiang, Mater. Lett. 60 (2006) 3789.
    
    [22] L. T. Canham, Appl. Phys. Lett. 57 (1990) 1046.
    [23]A.G.Cullis,L.T.Canham,Nature 353(1991)335.
    [24]B.H.Choi,S.W.Hwong,I.G.Kim,H.C.Shin,Y.Kim,E.K.Kim,Appl.Phys.Lett.73(1998)3129.
    [25]A.G.Cullis,L.T.Canham,P.D.J.Calcott,J.Appl.Phys.82(1997)909.
    [26]L.A.Jones,G.M.Taylor,F.X.Wei,D.F.Thomas.Prog.Surf.Sci.50(1995)283.
    [27]M.Chemla,T.Homma,V.Bertagna,R.Erre,N.Kubo,T.Osaka,J.Electroanal.Chem.559(2003)111.
    [28]T.A.Witten,L.M.Sander,Phys.Rev.Lett.47(1981)1400.
    [29]W.Ye,Y.Chang,C.Ma,B.Jia,G.Cao,C.Wang,Appl.Surf.Sci.253(2007)3419.
    [30]W.Ye,H.Tong,C.Wang,Microchim.Acta 152(2005)85.
    [31]J.S.Judge,J.Electrochem.Soc.118(1971)1772.
    [32]P.D.J.Calcott,K.J.Nash,L.T.Canham,M.J.Kane,D.Brumhead,J.Phys.C 5(1993)L91.
    [33]M.Sakurai,C.Thirstrup,M.Aono,Phys.Rev.B 62(2000)16167.
    [34]F.Jing,H.Tong,C.Wang,J.Solid State Electrochem.8(2004)877.
    [35]F.A.Harraz,T.Tsuboi,J.Sasano,T.Sakka,Y.H.Ogata J.Electrochem.Soc 149(2002)C456
    [36]J.T.Zhang,X.L.Li,X.M.Sun,Y.D.Li,J.Phys.Chem.B 109(2005)12544.
    [37]J.Zhang,X.Li,X.Sun,Y.Li,J.Phys.Chem.B109(2005)12544.
    [38]C.Jing,Y.Fang,J.Colloid Interf.Sci.314(2007)46.
    [39]N.H.Kim,K.Kim,J.Raman Spectrosc.36(2005)623.
    [40]J.Jiang,K.Bosnick,M.Maillard,L.Brus,J.Phys.Chem.B 107(2003)9964.
    [41]S.Z.Wang,H.W.Xin,J.Phys.Chem.104(2000)5681-5685.
    [42]T.Haxhimali,A.Karma,F.Gonzales,M.Rappaz,Nat.Mater.5(2006)660-664.
    [43]L.Lu,A.Kobayashi,Y.Kikkawa,K.Tawa,Y.Ozaki,J.Phys.Chem.B 110(2006)23234-23241.
    [44]J.Fang,H.You,C.Zhu,P.Kong,M.Shi,X.Song,B.Ding,Chem.Phys.Lett 439(2007)204-208.
    [45]J.Fang,X.Ma,H.Cai,X.Song,B.Ding,H.You,Appl.Phys.Lett.89(2006)173104.
    [46]K.Bromann,H.Brune,H.Roder,K.Kern,Phys.Rev.Lett.75(1995)677-680.
    [47]J.H.Kang,X.Y.Zhang,Chem.Mater.18(2006)1318-1323.
    [48]F.A.Moller,O.M.Magnussen,R.J.Behm,Phys.Rev.Lett.77(1996)5249.
    [49]H.Tong,C.Wang,Appl.Phys.A 81(2005)137.
    [50]V.Bertagna,F.Rouelle,G.Revel,M.Chemla,J.Electrochem.Soc.144(1997)4175.
    [51]H.Lin,J.Mock,D.Smith,T.Gao,M.Sailor,J.Phys.Chem.B 108(2004)11654-11659.
    [52]M.Paunovic,Plating 55(1968)1161.
    [53]Z.L.Wang,J.Phys.Chem.B 104(2000)1153-1175.
    [54]Y.Xiong,J.M.McLellan,J.Chen,Y.Yin,Z.Li,Y.Xia,J.Am.Chem.Soc.127(2005)17118-17127.
    [55]M.Maillard,S.Giorgio,M.P.Pileni,Adv.Mater.14(2002)1084-1086.
    [56]V.Fleury,J.H.Kaufman,D.B.Hibbert,Nature 367(1994)435-438.
    [57]C.Sun,M.Wang,J.van Esch,G.Wildburg,W.J.P.Van Enckevort,N.B.Ming,P.Bennema,R.J.M.Nolte,Phys.Lett.A 237(1998)247-252.
    [58]X.Wang,H.Itoh,K.Naka,Y.Chujo,Langmuir 19(2003)6242-6246.
    [59]A.Ulman,Chem.Rev.96(1996)1533.
    [60]P.Diao,M.Guo,R.Tong,J.Electroanal.Chem.495(2001)98.
    [61]X.L.Cui,D.L.Jiang,P.Diao,J.Electroanal.Chem.470(1999)9.
    [62]李春香,李劲,萧浪涛,沈国励,俞汝勤,化学学报,2003,61,790.
    [63]F.Cunha,N.J.Tao,X.W.Wang,Q.Jin,B.Duong,J.D'Agnese,Langmuir 12(1996)6410.
    [64]V.Ganesh,V.Lakshminarayanan,J.Phys.Chem.B 109(2005)16372.
    [65]D.L.Jeanmaire,R.P.Van Duyne,J.Electroanal.Chem.84(1977)1.
    [66]K.Kneipp,Y.Wang,H.Kneipp,Phys.Rev.Lett.78(1997)1667.
    [67]陈海峰,王健,蔡生民,刘忠范,高等学校化学学报,20(1999)620.
    [68] H. F.Yang, Y. L. Liu, Z. M. Liu, Y. Yang, J. H. Jiang, Z. R. Zhang, G. L. Shen, R. Q. Yu, J. Phys. Chem. B 109 (2005) 2739.
    
    [69] H. F. Yang, J. Feng, Z. M. Liu, R. Q. Yu, J. Phys. Chem.B 108 (2004) 17412.
    
    [70] V. Ganesh, V. Lakshminarayanan, J. Phys. Chem. B 109 (2005) 592.
    
    [71] N. Krings, H. H. Strehblow, J. Kohnert, H. D. Martin, Electrochim. Acta 49 (2003)167.
    
    [72] M. A. Rampi, G. M. Whitesides, Chem. Phys. 281 (2002) 373.
    
    [73] Q. Jin, J. A. Rodriguez, C. Z. Li, Y. Darici, N. J. Tao, Surf. Sci. 425 (1999) 101.
    
    [74] C. Retna Raj, T. Ohsaka, J. Electroanal. Chem. 540 (2003) 69.
    
    [75] T. Sawaguchi, F. Mizutani, S. Yoshimoto, I. Taniguchi, Electrochim. Acta 45 (2000)2861.
    
    [76] Y. Yang, S. B. Khoo, Sens. Actuors B 97 (2004) 221.
    
    [77] R. R. Kolega, J. B. Schlenoff, Langmuir 14 (1998) 5469.
    
    [78] C. A. Widrig, C. Chung, M. D. Poter, J. Electroanal. Chem. 310 (1991) 335.
    
    [79] Gregory V. Hartland, J. Chem. Phys. 116 (2002) 8048-8055.
    
    [80] M. J. Feldstein, C. D. Keating, Y. H. Liau, M. J. Natan, N. F. Scherer, J. Am. Chem. Soc. 119 (1997) 6638-6647.
    
    [81] R. S. Emory, S. Nie, J. Phys. Chem. B 102 (1998) 493.
    [1]J.S.H.Cho,H.Kang,S.S.Wong,Y.Shacham-Diamand,MRS.Bull.18(1993)31.
    [2]L.Magagnin,R.Maboudian,C.Carrao,Electrochem.Solid-State Lett.4(2001)C5.
    [3]Y.Shacham-Diamand,J.Micromech.Microeng.1(1991)66..
    [4]P.C.Andricacos,Interface 8(1999)32.
    [5]J.Li,Y.Shacham-Diamand,J.W.Mayer,Mater.Sci.Rep.9(1992)1.
    [6]A.Kohn,M.Eizenberg,Y.Shacham-Diamand,Y.Sverdlov,Mater.Sci.Eng.A302(2001)18.
    [7]M.Hanbrvcken,G.Le Lay,Surf.Sci.168(1986)122.
    [8]S.H.Chou,A.Freeman,S.Grigoras,T.M.Gemtle,B.Delley and E.J.Wimmer,J.Chem.Phys.89(1988)5177.
    [9]M.V.ten Kortenaar,J.J.M.de Goeij,Z.I.Kolar,G.Frens,P.J.Lusse,M.R.Zuiddam,E.Van der Drift,J.Electrochem.Soc.148(2001)C28.
    [10]Y.Borensztein,R.Alameh,Surf.Sci.Lett.274(1992)509.
    [11]A.Samsavar,E.S.Hirschhom,F.M.leibsle,T.C.Chiang,Phys.Rev.Lett.63(1989)2830.
    [12]A.Inberg.L.Zhu,G.Hirschberg,A.Gladkikh,N.Croitoru,J.Electrochem.Soc.148(2001)C784.
    [13]A.Inberg,V.Bogush,N.Croitoru,V.Dubin,Y.Shacham-Diamand,J.Electrochem.Soc.151(2003)C285.
    [14]E.E.Glickman,V.Bogush,A.Inberg,Y.Shacham-Diamand,N.Croitoru,Microelectron.Eng.70(2003)495.
    [15]傅献彩,沈文霞,姚天扬,物理化学(第四版),高等教育出版社,1990,pp.603.
    [16]A.Brenner,Electrodeposition of Alloys;Academic Press,New York,1963,vol.1-2.
    [17]S.Sakai,S.Nakanishi,Y.Nakato,J.Phys.Chem.110(2006)11944.
    [18]M.A.M.Ibrahim,S.S.Abd el Rehim,S.O.Moussa,J.Appl.Electrochem.33(2003)627.
    [19]N.Spanos,J.Phys.Chem.B 103(1999)1890.
    [20]J.Crousier,M.Eyraud,J.-P.Crousier,J.-M.Roman,J.Appl.Electrochem.26(1992)749.
    [21]E.Glickman,A.Inberg,V.Bogush,G.Aviram,R.Popovitz,N.Croitoru,Y.Shacham-Diamand,Microelectron.Eng.82(2005)307.
    [22]E.Glickman,A.Inberg,G.Aviram,R.Popovitz,N.Croitoru,Y.Shacham-Diamand,Microelectron.Eng.83(2006)2359.
    [23]L.A.Jr.Poter,H.C.Choi,A.E.Ribbe,J.M.Buriak,Nano Lett.2(2002)1067.
    [24]L.Torcheux,A.Mayeux,M.Chemla,J.Electrochem.Soc.142(1995)2037.
    [25]S.Karmalkar,J.Banerjee,J.Electrochem.Soc.146(1999)C580.
    [26]W.Ye,Y.Chang,C.Ma,B.Jia,G.Cao,C.Wang,Appl.Surf.Sci.253(2007)3419.
    [27]F.Jing,H.Tong,C.Wang,J.Solid State Electrochem.8(2004)877.
    [28]H.O.Ali,I.R.A.Christie,Gold Bull.17(1984)118.
    [29]J.J.Cruywagen,A.T.Pienaar,Polyhedron 8(1989)71.
    [30]G.S.Higashi,Y.J.Chabal,G.W.Tracks,K.Raghavachar,Appl.Phys.Lett.56(1990)656.
    [31]M.Grundner,H.Jacob,Appl.Phys.A 39(1986)73.
    [32]H.Bender,S.Verhaverbeke,M.M.Heyns,J.Electrochem.Soc.141(1994)3128.
    [33]G.S.Higashi,Y.J.Chabal,G.W.Trucks,K.Raghavachari,Appl.Phys.Lett.56(1990)656.
    [34]F.Jing,H.Tong,L.Kong,C.Wang,Appl.Phys.A 80(2005)597.
    [35]A.Inberg,V.Bogush,N.Croitoru,V.Dubin,Y.Shacham-Diamand,J.Electrochem.Soc.150(2003)C285.
    [36]大连理工大学无机化学教研室编,无机化学(第三版),高等教育出版社,1990,pp.874.
    [37]JCPDS,4-0787.
    [38]Y.Sun,Y.Xia,Science 298(2002)2176.
    [39]J.Rongchao,C.Y.Charles,H.Encai,G.S.Metraux,G.C.Schatz,C.A.Mirkin,Nature 425(2003)487.
    [40]K.Peng,Y.Yan,S.Gao,J.Zhu,Adv.Mater.14(2002)1164.
    [41]K.Peng,Y.Yan,S.Gao,J.Zhu,Adv.Funct.Mater.13(2003)127.
    [42]K.Peng,J.Zhu,J.Electroanal.Chem.558(2003)35.
    [43]K.Peng,J.Zhu,Electroehim.Acta 49(2004)2563.
    [44]T.A.Witten,L.M.Sander,Phys.Rev.Lett.47(1981)1400.
    [45]J.J.Cruywagen,H.F.De Wet,Polyhedron 7(1988)547.
    [46]J.J.Cruywagen,A.T.Pienaar,Polyhedron 8(1989)71.
    [1] W. J. Plieth, In: A. J. Bard (Ed.), Encyclopedia of Electrochemistry of the Elements, vol. VIII, Marcel Dekker, Basel, 1978, p. 420.
    
    [2] S. D. Zelnick, D. R. Mattie, P. C. Stepaniak, Aviat. Space Environ. Med. 74 (2003) 1285.
    
    [3] S. Garrod, M. E. Bollard, A. W. Nicholls, S. C. Conner, J. Connelly, J. K. Nicholson, E. Holmes, Chem. Res. Toxicol. 18 (2005) 115.
    
    [4] E. H. Vernot, J. D. MacEwen, R. H. Bruner, C. C. Haus, E. R. Kinkead, Fund. Appl. Toxicol. 5 (1985) 1050.
    
    [5] M. D. Garcia Azorero, M. L. Marcos, J. Gonzalez Velasco, Electrochim. Acta 39 (1994)1909.
    
    [6] F. Li, B. Zhang, E. Wang, S. Dong, J. Electroanal. Chem. 422 (1997) 27.
    
    [7] D. Guo, H. Li, J. Colloid Interface Sci. 286 (2005) 274.
    
    [8] D. Guo, H. Li, Electrochem. Commun. 6 (2004) 999.
    
    [9] G. Gao, D. Guo, H. Li, Electrochem. Commun. 9 (2007) 1582.
    
    [10] K. I. Ozoemena, T. Nyokong, Talanta 67 (2005) 162.
    
    [11] D. Guo, H. Li, Carbon 43 (2005) 1259.
    
    [12] R. Ganesan, J. S. Lee, J. Power Sources 157 (2006) 217.
    
    [13] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Nature 396 (1998) 152.
    
    [14] W. Cheng, E. Baudrin, B. Dunn, J. I. J. I. Zink, J. Mater. Chem. 11 (2001) 92.
    
    [15] A. Stein, M. Fendorf, T. P. Jarvie, K. T. Mueller, A. J. Benesi, T. E. Mallouk, Chem. Mater. 7 (1995) 304.
    
    [16] B. S. Hobbs, A. C. C. Tseung, J. Electrochem. Soc. 122 (1975) 1174.
    
    [17] R. S. S. Crandall, B. W. Faughnan, Appl. Phys. Lett. 28 (1976) 95.
    
    [18] P. J. Kulesza, L. R. Faulkner, J. Electrochem. Soc. 136 (1989) 707.
    
    [19] L.W. Niedrach, H.I. Ziegler, J. Electrochem. Soc. 116 (1969) 152.
    
    [20] E. J. McLeod, V. I. Birss, Electrochim. Acta 51 (2005) 684.
    
    [21] R. Ganesan, J. S. Lee, J. Power Sources 157 (2006) 217.
    [22] J. L.Solis, A. Hoel, V. Lantto, C. G. Granqvist, J. Appl. Phys. 89 (2001) 2727.
    
    [23] N. M. G. Parreira, N. J. M. Carvalho, A. Cavaleiro, Thin Solid Films 510 (2006) 191.
    
    [24] M. Blo, M. C. Carotta, S. Galliera, S. Gherardi, A. Giberti, V. Guidi, C. Malagu, G. Martinelli, M. Sacerdoti, B. Vendemiati, A. Zanni, Sens. Actuators, B, Chem. 103 (2004)213.
    
    [25] A. Patra, K. Auddy, D. Ganguli, L. Livage, P. K. Biswas, Mater. Lett. 58 (2004) 1059.
    
    [26] P. S. Patil, S. B. Nikam, L. D. Kadam, Mater. Chem. Phys. 69 (2001) 77.
    
    [27] R. Sivakumar, A. Moses Ezhil Raj, B. Subramanian, M. Jayachandran, D. C. Trivedi, C. Sanjeeviraja, Mater. Res. Bull. 39 (2004) 1489.
    
    [28] S. H. Baeck, K. S. Choi, T. F. Jaramillo, G.D. Stucky, E. W. McFarland, Adv. Mater. 15 (2003) 1269.
    
    [29] W. Ye, H. Tong, C. Wang, Microchim. Acta 152 (2005) 85.
    
    [30] A. Inberg, V. Bogush, N. Croitoru, V. Dubin, Y. Shacham-Diamand, J. Electrochem. Soc. 150 (2003) C285.
    
    [31] P. K.Shen, A. C. C. Tseung, J. Electrochem. Soc. 141 (1994) 3082.
    
    [32] P. K. Shen, K. Y. Chen, A. C. C. Tseung, J. Chem. Soc. Faraday Trans. 90 (1994) 3089.
    
    [33] P. K. Shen, K. Y. Chen, A. C. C. Tseung, J. Electrochem. Soc. 142 (1995) L54.
    
    [34] P. T. Philipsen, E. J. Baerends, J. Phys. Chem. B 110 (2006) 12470.
    [1]N.Radic,A.Tonejc,M.Milun,P.Pervan,J.Ivkov,M.Stubicar,Thin Solid Films 37(1998)996.
    [2]Y.Shacham-Diamand,Y.Sverdlov,Microelectron.Eng.50(2000)525.
    [3]Z.Abdel Hamid,Mater.Lett.57(2003)2558.
    [4]E.Slavcheva W.Mokwa,U.Schnakenberg,Electrochim.Acta 50(2005)5573.
    [5]N.Eliaza,T.M.Sridhara,E.Gileadib,Electroehimi.Acta 50(2005)2893.
    [6]A.Inberg.L.Zhu,G.Hirschberg,A.Gladkikh,N.Croitoru,J.Electrochem.Soc.148(2001)C784.
    [7]V.Bogush,A.Inberg,N.Croitoru,V.Dubin,Y.Shacham-Diamand,Microelectron.Eng.70(2003)489.
    [8]A.Inberg,E.Ginsburg,Y.Shacham-Diamand,N.Croitoru,A.Seidman,Microelectron.Eng.65(2003)197.
    [9]W.Ye,C.Ma,Y.Chang,C.Wang,Chinese Journal of Chemistry,2008,Accepted.
    [10]X.Sun,F.Xu,Z.Li W.Zhang,Mater.Phys.Chem.90(2005)69.
    [11]A.C.Pereira,T.L.Ferreira,L.Kosminsky,R.C.Matos,M.Bertotti,M.H.Tabacniks,P.K.Kiyohara,M.C.A.Fantini,Chem.Mater.16(2004)2662.
    [12]W.Ye,H.Tong,C.Wang,Microchim.Acta 152(2005)85.
    [13]M.H.Lietzke,R.W.Stoughton,J.Am.Chem.Soc.78(1956)3023.
    [14]G.S.Higashi,Y.J.Chabal,G.W.Trucks,K.Raghavachari,Appl.Phys.Lett.56(1990)656.
    [15]M.Grundner,H.Jacob,Appl.Phys.A 39(1986)73.
    [16]H.Bender,S.Verhaverbeke,M.M.Heyns,J.Electrochem.Soc.141(1994)3128.
    [17]G.S.Higashi,Y.J.Chabal,G.W.Trucks,K.Raghavachari,Appl.Phys.Lett.56(1990)656.
    [18]E.G6mez,E.Pellicer,M.Duch,J.Esteve,E.Valles,Electrochim.Acta 51(2006)3214.
    [19]A.Inberg,V.Bogush,N.Croitoru,V.Dubin,Y.Shacham-Diamand,J. Electrochem.Soc.150(2003)C285.
    [20]F.Jing,H.Tong,L.Kong,C.Wang,Appl.Phys.A 80(2005)597.
    [21]E.Glickman,A.Inberg,V.Bogush,G.Aviram,R.Popovitz,N.Croitoru,Y.Shacham-Diamand,Microelectron.Eng.82(2005)307.
    [22]E.Glickman,A.Inberg,G.Aviram,R.Popovitz,N.Croitoru,Y.Shacham-Diamand,Microelectron.Eng.83(2006)2359.
    [23]JCPDS,File No.4-0787
    [24]M.Hauder,J.Gstottner,W.Hansch,D.Schmitt-Landsiedel,Appl.Phys.Lett.78(2001)838.
    [25]A.F.Mayadas,M.Shatzkes,Phys.Rev.B1(1970)1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700