超级化学镀微道沟填充的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前超大规模集成电路铜互连线工艺采用大马士革工艺,即先通过物理气相沉积(PVD)法形成防扩散层(如TaN、TiN、WN等)和铜种子层,利用超级电镀铜技术填充道沟或微孔,然后通过化学机械研磨(CMP)去除多余。然而,随着半导体技术的飞速发展,铜互连线的宽度变得越来越窄,超级电镀铜填充存在许多问题,因此人们试图用超级化学镀铜来实现半导体微孔填充。
     本论文在以甲醛作为还原剂的化学镀铜溶液中,研究了添加剂对化学镀铜溶液超级填充行为的影响,实现了超级化学铜填充。并且首次实现了在次磷酸钠作为还原剂的化学镀镍体系的超级化学镍填充。并通过电化学方法研究了各种添加剂对形成超级化学填充的作用机理。
     本论文的研究内容如下:
     首先,研究了在甲醛作为还原剂的化学镀铜溶液中添加2-MBT(2-锍基苯并噻唑)和PE-3650(平均分子量为3650的聚醚)对超级化学镀铜的影响。结果发现,单独添加2-MBT对化学镀铜沉积速率具有加速作用;单独添加PE-3650对化学镀铜沉积速率有微弱的抑制作用。然而,当2-MBT和PE-3650共同加入时急剧地降低了化学镀铜的沉积速率,出现了协同抑制作用。利用2-MBT分子量小,具有较高的扩散系数,能均匀分散在微孔或道沟的内外,而PE-3650具有较大的分子量,较低的扩散系数,从而使PE-3650在微孔或道沟内部形成一定的浓度梯度(从微孔或道沟底部向口部的浓度依次增大),使得2-MBT和PE-3650在微孔或道沟表面和口部出现协同抑制作用,而微孔或道沟底部几乎只有2-MBT的加速作用。本论文利用2-MBT和PE-3650的协同抑制作用,成功地实现了超级化学镀铜的完美填充。另外使用线性扫描伏安法和混合电位理论研究测定2-MBT、PE-3650的添加对铜离子的还原及甲醛的氧化电位的影响,合理的解释了各添加剂在化学镀铜溶液中的作用和实现超级化学铜填充的机理。
     本论文利用超级化学铜微孔填充的这种思路和方法,首次实现了超级化学镍填充。研究了在化学镀镍溶液中添加分子量在3000-5000的PAA(聚丙烯酸)对沉积速率和不同规格微道沟的超级化学镍填充的影响。结果表明,PAA对化学镍沉积有强的抑制作用,在没有添加任何添加剂时的化学镀镍沉积速率是5.51μm/h,当添加2.0mg/L的PAA时,化学镀镍的沉积速率降低至2.06μm/h。随着PAA浓度的进一步增大,虽然化学镀镍的沉积速率有所下降,但其降幅明显减小。因此,本论文选择往化学镀镍溶液中添加2.0mg/L的PAA,研究其对不同宽度微道沟的化学镍填充的影响。由填充道沟断的面图可知,宽度从80到280nm的道沟都实现了完全填充;线性扫描伏安法测定结果证明PAA通过抑制阴极和阳极反应,从而降低化学镀镍的沉积速率。
     最后,在甲醛为还原剂的化学镀铜体系中研究了添加一定量2-MBT对化学镀铜沉积速率、镀层表面形貌、沉积铜膜质量和结构的影响。研究结果表明:化学镀液温度在70℃和40℃加入1.5mg/L的2-MBT可以使化学镀铜沉积速率分别从7.91μm/h提高到10.2μm/h和2.86μm/h提高到5.24μm/h,是甲醛化学镀铜体系中比较良好的加速剂。使用线性扫描伏安法和混合电位理论说明了2-MBT对化学铜沉积的加速机理。通过SEM表明:镀层铜颗粒细小、分布均匀、颗粒间结合紧密。通过能谱和接触角测试分析表明:镀层铜膜纯度高、平整性好。另外通过XRD分析表明:镀层铜膜晶体生长良好。
At present, ultra large-scale integration (ULSI) copper interconnects are fabricated by the "Damascene" process, in which a layer of diffusion barrier (TaN, TiN, WN etc.) and a copper seed layer were deposited on surface of submicrometer trenches the substrates by physical vapor deposition, and then, the submicrometer trenches were filled with electrodeposited copper, last, the planarization was fabricated by the process of chemical mechanical polishing (CMP). However, with the rapid development of the semiconductor technology and the rapid shrinkage in interconnection dimensions, it is difficult to fill the trenches and holes by bottom up electroplating copper, and so, people try to achieve bottom-up copper filling with the electroless copper plating solution.
     In this paper, the effects additives on the bottom-up filling in the electroless plating were investigated, and bottom-up copper filling was achieved using formaldehyde as a reducing agent. And the bottom-up electroless nickel filling was first achieved, using sodium hypophosphite as a reducing agent. The formation mechanism of bottom-up copper or nickel filling in the electroless copper or nickel plating bath included of various additions were investigated by electrochemistry method.
     The content of this thesis is as follows:
     First of all, the effects of the additives of2-MBT and PE-3650on bottom-up copper filling were studied by the cross-sectional SEM observation. The results indicated the electroless copper deposition was accelerated by an addition of2-MBT alone at a low concentration, and the electroless copper deposition could be inhibited by an addition of PE-3650. However, the inhibition of PE-3650for electroless copper deposition became very strongly with an addition of2-MBT. Because of large molecular weight and low diffusion coefficient of PE-3650, the concentration gradient of PE-3650between the bottom and the surface of the trenches could be formed. On the other hand,2-MBT has small molecular weight and high diffusion coefficient, which caused it to distribute evenly between the bottom and the surface of the trench. And so, the deposition rates of electroless copper on the surface and the opening of trenches were synergy inhibited by the high PE-3650concentration combined with the2-MBT. While the deposition rates of electroless copper in the bottom of trenches was accelerated by very low PE-3650concentration combined with the2-MBT. This thesis completed bottom-up filling used the synergy effect of2-MBT and PE-3650on electroless copper deposition. The effects of2-MBT and PE-3650on the polarization behaviors of the electroless copper plating bath were investigated by the linear sweep voltammetry method and mixed potential theory, and the formation mechanism of the bottom-up copper filling in the electroless copper plating were explained reasonably.
     This thesis also achieved bottom-up nickel filling by means of the principle and method of bottom-up copper filling in the electroless copper plating. The deposition rate of the electroless nickel and bottom-up filling behavior for different sub-micrometer trenches were also investigated by electroless deposition solution with an addition of PAA (Mw:3000-5000). The result indicated that PAA had a strong inhibition for the electroless nickel deposition, and when the PAA concentration was increased from0to2.0mg/L, the deposition rate of electroless nickel decreased from5.51to2.06μm/h. With a further increase of the PAA concentration, the deposition rate of electroless nickel decreased slowly. Therefore, when PAA concentration was2.0mg/L in electroless nickel bath, the bottom-up filling behaviors of electroless nickel bath with different trenches were investigated, and the cross-section SEM observation indicated the trenches with different widths ranging from80to280nm were all filled completely by electroless nickel. The inhibitions of PAA for both cathodic and the anodic reaction were demonstrated by linear sweep voltammetry (LSV) method.
     Finally, the effects of2-MBT on deposition rate, surface morphology and the micro structure of deposited copper film were studied in the electroless copper plating solution. The results indicated that electroless copper deposition rate was significantly increased with an addition of1.5mg/L2-MBT, and the deposition rates of electroless copper bath at70℃and40℃were increased from7.91and2.86to10.2and5.24μm/h, respectively, which indicated that2-MBT was used as a good accelerating agent for electroless copper. The acceleration mechanism of2-MBT for electroless copper was studied by a combination of linear sweep voltammetry and mixed potential theory. Meanwhile, the SEM observation indicated the size of depsited copper film became more small and uniform. The Energy Dispersive X-Ray Spectroscopy (EDX) measurement indicated that the purity of the depsited copper was improved with an addition of2-MBT. The surface contact angle measurement indicated that the smooth of the depsited copper film surface was increased with an addition of2-MBT. In addition, the crystallography of depsited copper film in the plating bath containing2-MBT was characterized by X-ray diffraction. The results showed that crystallinity of depsited copper film was increased with an addition of2-MBT.
引文
[1]P. C. Andricacos, C. Uzoh, J.O. Dukovic, et al. Damascene Copper Electroplating for Chip Interconnections [J]. IBM J. Res. Dev.,1998,42(5):567-574.
    [2]M. Datta. Applications of Electrochemical Micro fabrication:An Introduction [J]. IBM J. Res. Dev.,1998,42(5):563-566.
    [3]李志坚.21世纪微电子技术发展展望[J].科技导报,1999,3:11-13.
    [4]陈智涛,李瑞伟.集成电路片内铜互连金属的发展[J].微电子学,2001,31(2):239-241.
    [5]张国海,夏洋,龙世兵,等ULSI中铜互连技术的关键工艺[J].微电子学,2001,31(2):146-149.
    [6]王增林,刘志鹃,新宫原正三,等.化学镀技术在超大规模集成电路互连线制造过程的应用[J].电化学,2006,12(2):125-133.
    [7]J. C. Chang, M. C. Chen. Passivation of Cu by Sputter-Deposited Ta and Reactively Sputter-Deposited Ta-Nitride Layers [J]. J. Electrochem. Soc.,1998, 145:3170.
    [8]X. Chen, G. G. Peterson, C. Goldberg, et al. Displacement Activation of Tanlalum Diffusion Barrier Layer Electroless Coper Deposition [J]. J. Mater. Res.,1999,14: 2043.
    [9]J. C. Chang, M. C. Chen. Properties of Thin Ta-N Films Reactively Sputtered on Cu/SiO/Si Substrates [J]. Thin Solid Films,1998,322:213.
    [10]Z. L. Wang, Z. H. Liu, S. Shingubara, et al. Characterization of Sputtered Tungsten Nitride Film and its Application to Cu Electroless Plating [J]. Microelectron. Eng., 2008,85:395-400.
    [11]Z. L. Wang, O. Yaegashi, S. Shingubara, et al. Suppression of Native Oxide Growth in Sputtered TaN Films and its Application to Cu Electroless Plating [J]. J. Appl. Phys.,2003,94(7):4697-4701.
    [12]C. H. Lee, S. Hwang, J. J. Kim, et al. Cu Electroless Seposition onto Ta Substrates [J]. Electrochem. Solid-State Lett.,2006,9(10):C157-160.
    [13]Z. L. Wang, S. Shingubara, T. Takahagi, et al. Electroless Plating of Copper on Metal-Nitride Diffusion Barriers Initiated by Displacement Plating [J]. Electrochem. Solid-State Lett.,2003,6(3):C38-C41.
    [14]L. G. Wang, T. T. Kee. The Use of Electroless Copper Seed in Electrochemical Deposited Copper Interconnect [J]. Thin Solid Films,2004,462/463:275-278.
    [15]C. H. Lee, S. Hwang, J. J. Kim, et al. Cu Electroless Deposition onto Ta Substrates Application to Create a Seed Layer for Cu Electrodeposition [J]. Electrochem. Solid-State Lett.,2006,9(10):C157-C160.
    [16]S. Gandikota, C. M. Gurik, D. Padhi, et al. Characterization of Electroless Copper as a Seed Layer for Sub 20.1 μm Interconnects [Z]. IEEE International Interconnect Conference,2001,30.
    [17]T. Andryuschenko, J. Reid. Electroess and Electrolytic Seed Repair Effect on Damascene Feature Fill [Z]. IEEE International Interconnect Conference,2001, 30.
    [18]S. K. Cho, S. K. Kim, J. J. Kim. Superconformal Cu Electrodeposition Using DPS a Substitutive Accelerator for Bis-(3-sulfopropyl)-disulfide [J]. J. Electrochem. Soc.,2005,152(5):D330-D333.
    [19]S. K. Cho, J. J. Kim. Leveling with Step Potential in Damascene Cu Electrodeposition [J]. J. Electrochem. Soc.,2006,153(12):C822-C825.
    [20]M. Hasegawa, Y. Negishi, T. Osaka, et al. Effects of Additives on Copper Electrodeposition in Submicrometer Trenches [J]. J. Electrochem. Soc.,2005, 152(4):C221-C228.
    [21]M. Kang, A. A. Gewirth. Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD) Copper Substrates [J]. J. Electrochem. Soc., 2003,150(6):C426-C434.
    [22]J. W. Lee, M. C. Kang, J. J. Kim. Characterization of 5-Aminotetrazole as a Corrosion Inhibitor in Copper Chemical Mechanical Polishing [J]. J. Electrochem. Soc.,2005,152(12):C827-C831.
    [23]Y. Shacham-Diamand, V. Dubin, M. Angyal. Electroless Copper Deposition for ULSI [J]. Thin Solid Films,1995,262:93-103.
    [24]Y. Shacham-Diamand, S. Lopatin. High Aspect Ratio Quarter-Micron Electroless Copper Integrated Technology [J]. Microelectron. Eng.,1997,37/38:77-78.
    [25]M. V. Dubi, Y. Shacham-Diamand. Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration [J]. J. Electrochem. Soc.,1997,144(3): 898-908.
    [26]S. Shingubara, Z. L. Wang, O. Yaegashi, et al. Bottom-Up Fill of Copper in High Aspect Ratio Via Holes by Electroless Plating [C]. Proceedings of IEDM 03,6.3. 1-6.3.4.
    [27]S. Shingubara, Z. L. Wang, O. Yaegashi, et al. Bottom-Up Fill of Copper in Deep Submicrometer Holes by Electroless Plating [J]. Electrochem. Solid-State Lett., 2004,7(6):C78-C80.
    [28]Z. L. Wang, O. Yaegashi, H. Sakaue, et al. Bottom-Up Fill for Submicrometer Copper Via Holes of ULSIs by Electroless Plating [J]. J. Electrochem. Soc.,2004, 151(12):C781-C785.
    [29]S. Shingubara, Z. L. Wang. Formation and Film Characteristics of Dual Damascene Interconnect by Bottom-Up Electroless Cu Plating [J]. AIP. Conference Proceedings.2006,817(1):13-22.
    [30]F. Inoue, Y. Harada, M. Koyanagi, et al. Perfect Conformal Deposition of Electroless Cu for High Aspect Ratio Through-Si Vias [J]. Electrochem. Solid-State Lett.,2009,12(10):H381-H384.
    [31]Z. L. Wang, R. Obata, H. Sakaue, et al. Bottom-Up Copper Fill with Addition of Mercapto Alkyl Carboxylic Acid in Electroless Plating [J]. Electrochim. Acta. 2006,51:2442-2446.
    [32]Z. L. Wang, Z. J. Liu, H. Y. Jiang, et al. Bottom-Up Fill Mechanisms of Electroless Copper Plating with Addition of Mercapto Alkyl Carboxylic Acid [J]. J. Vac. Sci. Technol. B.2006,24(2):803-806.
    [33]M. Hasegawa, Y Okinaka, Y. Shacham-Diamand, et al. Void-Free Trench-Filling by Electroless Copper Deposition Using the Combination of Accelerating and Inhibiting Additives [J]. Electrochem. Solid-State Lett.,2006,9(8):C138-C140.
    [34]M. Hasegawa, N. Yamachika, Y Shacham-Diamand, et al. Evidence for "Superfilling" of Submicrometer Trenches with Electroless Copper Deposit [J]. Appl. Phys. Lett.,2007,90:101916-1-101916-3.
    [35]C. H. Lee, S. C. Lee, J. J. Kim, et al. Bottom-Up Filling in Cu Electroless Deposition Using Bis-(3-sulfopropyl)-disulfide (SPS) [J]. Electrochim. Acta,2005, 50:3563-3568.
    [36]C. H. Lee, S. C. Lee, J. J. Kim, et al. Improvement of Electrolessly Gap-Filled Cu Using 2,2'-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS) [J]. Electrochem. Solid-State Lett,2005,8(8):C110-C113.
    [37]S. K. Cho, S. K. Kim, J. J. Kim, et al. Superconformal Cu Electrodeposition Using DPS a Substitutive Accelerator for Bis-(3-sulfopropyl)-disulfide [J]. J. Electrochem. Soc.,2005,152(5):C330-C333.
    [38]S. K. Kim, S. S. Hwang, S. K. Cho, et al. Leveling of Superfilled Damascene Cu Film Using Two-Step Electrodeposition [J]. Electrochem. Solid-State Lett.,2006, 9(2):C25-C28.
    [39]C. H. Lee, S. K. Cho, J. J. Kim. Electroless Cu Bottom-Up Filling Using 3-N,N-Dimethylaminodithiocarbamoyl-l-Propanesulfonic Acid [J]. Electrochem. Solid-State Lett,2005,8(11):J27-J29.
    [40]C. H. Lee, A. R. Kim, S. K. Kim, et al. Two-Step Filling in Cu Electroless Deposition Using a Concentration-Dependent Effect of 3-N,N-Dimethyl-aminodithiocarbamoyl-1-propanesulfonic Acid [J]. Electrochem. Solid-State Lett., 2008,11(1):D18-D21.
    [41]J. J. Kim, C. H. Lee, A. R. Kim, et al. Electroless Deposition of Cu and Ag for ULSI Interconnection Fabrication [J]. ECS. Trans.,2007,2(6):29-41.
    [42]C. H. Lee, A. R. Kim, H. C. Koo, et al. Effect of 2-Mercapto-5-benzimidazolesulfonic Acid in Superconformal Cu Electroless Deposition [J]. J. Electrochem. Soc.,2009,156(6):D207-D210.
    [43]Z. F. Yang, N. Li, Z. L. Wang, et al. Bottom-Up Filling in Electroless Plating with an Addition of PEG-PPG Triblock Copolymers [J]. Electrochem. Solid-State Lett., 2010,13(7):D47-49.
    [44]J. W. Gallaway, A. C. West. PEG, PPG, and Their Triblock Copolymers as Suppressors in Copper Electroplating [J]. J. Electrochem. Soc.,2008,155(10): D632-D639.
    [45]J. W. Gallaway, M. J. Willey, A. C. West, et al. Acceleration Kinetics of PEG, PPG, and a Triblock Copolymer by SPS During Copper Electroplating [J]. J. Electrochem. Soc.,2009,156(4):D146-D154.
    [46]J. W. Gallaway, M. J. Willey, A. C. West, et al. Copper Filling of 100 nm Trenches Using PEG, PPG, and a Triblock Copolymer as Plating Suppressors [J]. J. Electrochem. Soc.,2009,156(8):D287-D295.
    [47]Z. F. Yang, Z. X. Wang, Z. L. Wang, et al. Comparison of Bottom-Up Filling in Electroless Plating with an Addition of PEG, PPG and EPE [J]. Chin. J. Chem., 2011,29(3):422-426.
    [48]杨志锋,高彦磊,王增林,等.超级化学镀铜填充微道沟的研究[J].化学学报, 2009,67(24):2798-2802.
    [49]X. Wang, Z. F. Yang, Z. L. Wang, et al. Effect of Additive Triblock Copolymer PEP-3100 on Bottom-Up Filling in Electroless Copper Plating [J]. Russ. J. Electrochem.,2012,48(1):108-112.
    [50]Z. F. Yang, X. Wang, Z. L. Wang, et al. Design and Achievement of a Complete Bottom-Up Electroless Copper Filling for Sub-Micrometer Trenches [J]. Electrochim. Acta,2011,56(9):3317-3321.
    [51]X. Wang, Z. F. Yang, Z. L. Wang, et al. First Synergy Effects of SPS and PEG-4000 on the Bottom-Up Filling in Electroless Copper Plating [J]. J. Electrochem. Soc.,2010,157(10):D546-D549.
    [52]X. Wang, Z. F. Yang, Z. L. Wang, et al. Effects of Triethanolamine and K4[Fe(CN)6] Upon Electroless Copper Plating [J]. J. Electrochem. Soc.,2010,157(9): D500-D502.
    [53]庞恩文,林晶,汪荣昌.铜布线工艺中阻挡层钽膜的研究[J].固体电子学研究进展,2002,22(1):78-81.
    [54]X.W. Lin. Copper Met Allization for ULS1 and Beyond [J]. Crit Rev. Solid State Mater Sci.1995,20(2):87-124.
    [55]A. C. West, S. Mayer, J. Reid, et al. A Superfilling Model that Predicts Bump Formation [J]. Electrochem. Solid-State Lett.,2001,7(4):C50-C53.
    [56]T. P. Moffat, J. E. Bonevich, W. H. Huber, et al. Superconformal Electrodeposition of Copper in 500-90 nm Features [J]. J. Electrochem. So.c,2000,147(12): 4524-4535.
    [57]P. Taephaisitphongse, Y. Cao, A. C. West. Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition [J]. J. Electrochem. Soc., 2001,148(7):C492-C497.
    [58]P. Taephaisitphongse, Y. Cao, A. C. West. Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition [J]. J. Electrochem. Soc., 2001,148(7):C492-C497.
    [59]K. Shimada, H. Kato, T. Saito, et al. Precise Measurement of the Self-Diffusion Coefficient for Poly(ethylene glycol) in Aqueous Solution Using Uniform Oligomers [J]. J. Chem. Phys.,2005,22:244914.
    [60]R. A. Waggoner, F. D. Blum, J. C. Lan, et al. Diffusion in Aqueous Solutions of Poly(ethylene glycol) at Low Concentrations [J]. Macromolecules,1995,28(8): 2658-2664.
    [61]A. L. Patterson. The Scherrer Formula for X-ray Particle Size Determination [J]. Phys. Rev.1939,56:978-982.
    [62]L. T. Romankiw. A Path:From Electroplating Through Lithographic Masks in Electronics to LIGA in MEMS [J]. Electrochim. Acta,1997,42:2985-3005.
    [63]T. Osaka. Electrodeposition of Highly Functional Thin Films for Magnetic Recording Devices of the Next Century [J]. Electrochim. Acta,2000,45: 3311-3321.
    [64]T. Okada, H. Kimura, I. Nunokawa, et al. Fabricating Narrow and Trapezoidal Main Poles for Single-Pole-Type Heads [J]. IEEE Trans. Magn.,2004,40: 2329-2331.
    [65]E. I. Cooper, C. Bonhote, J. Heidmann, et al. Recent Developments in High-Moment Electroplated Materials for Recording Heads [J]. IBM J. Res. Dev., 2005,49:103-126.
    [66]M. Baghbanan, U. Erb, G. Palumbo. Towards the Application of Nanocrystalline Metals in MEMS [J]. Phys. Status Solidi A.,2006,203:1259-1264.
    [67]W. Ehrfeld. Electrochemistry and Microsystems [J]. Electrochim. Acta,2003,48: 2857-2868.
    [68]D. Iyer, D. Palaparti, E. J. Podlaha, et al. Thermal Expansion of Electrodeposited Nanoscale Multilayers of Invar with Copper [J]. Electrochem. Solid-State Lett., 2006,9:C88-C91.
    [69]S. K. Kim, J. E. Bonevich, T. P. Moffat, et al. Electrodeposition of Ni in Submicrometer Trenches [J]. J. Electrochem. Soc.,2007,154(9):D443-D451.
    [70]C. H. Lee, J. E. Bonevich, T. P. Moffat, et al. Superconformal Ni Electrodeposition Using 2-Mercaptobenzimidazole [J]. J. Electrochem. Soc.,2011, 158(6):D366-D376.
    [71]M. Yoshino, Y. Nonaka, T. Osaka, et al. All-Wet Fabrication Process for ULSI Interconnect Technologies [J]. Electrochim. Acta,2005,51:916-920.
    [72]T. Shimada, K. Sakata, T. Osaka, et al. Density Functional Theory Study on the Oxidation Mechanisms of Aldehydes as Reductants for Electroless Cu Deposition Process [J]. Electrochim. Acta,2005,51:906-915.
    [73]胡光辉,杨防祖,吴辉煌.添加剂对化学镀铜的影响[J].电镀与涂饰,2002,21(6):24-28.
    [74]Kondo, Koji, Murakawa, et al. Electroless Copper Plating Solution and Process for Electrolessly Plating Copper [P]. U. S. Pat.1989,4834796.
    [75]Kondo, Koji, Amakusa, et al. Electroless Copper Plating Solution and Process for Formation of Copper Film [P]. U. S. Pat.1991,5039338.
    [76]A. Vaskelis, J. Jaciauskiene, E. Norkus, et al. Accelerating Effect of Ammonia on Electroless Copper Deposition in Alkaline Formaldehyde-Containing Solutions [J]. J. Electroanal. Chem.,2007,600:6-12.
    [77]M. Oita, M. Matsuoka, C. Iwakura. Deposition Rate Copper Film and Morphology of Electroless From Solutions Containing 2,2'-Dipyridyl [J]. Electrochim. Acta, 1997,42(9):1435-1440.
    [78]J. Li, H. Hayden, P. A. Kohl. The Influence of 2,2'-Dipyridyl on Non-Formaldehyde Electroless Copper Plating [J]. Electrochim. Acta,2004,49: 1789-1795.
    [79]F. Hanna, Z. A. Hamid, A. A. Aal. Controlling Factors Affecting the Stability and Rate of Electroless Copper Plating [J]. Mater. Lett.,2003,58:104-109.
    [80]Z. F. Yang, Y. He, Z. L. Wang, et al. Adhesion Improvement of ABS Resin to Electroless Copper by H2SO4-MnO? Colloid with Ultrasound-Assisted [J]. J. Adhes. Sci. Technol.,2011,25:1211-1221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700