瘤胃古菌C簇的分布、分离及氢营养特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷是瘤胃微生物的代谢终产物之一,它的产生不但是反刍动物能量损失,还是温室气体的主要来源,因此对瘤胃甲烷菌的研究成为当前热点。瘤胃古菌C簇(RCc)可能是一个新的瘤胃甲烷菌目,但目前尚未有直接的证据。为证实RCC是甲烷菌,本文尝试采用与厌氧真菌共培养的方法,从瘤胃液中富集培养RCC菌株;通过体外共培养模型研究它们的代谢特点及富集培养条件;利用荧光定量PCR研究它们在瘤胃内的分布以及它们在饲喂不同精粗比日粮的山羊瘤胃中的变化情况。实验共分五个部分:
     1RCC菌株LGM在厌氧真菌培养液中的丰度及其在山羊瘤胃不同部位的分布
     本研究建立了RCC菌株LGM的荧光定量PCR方法,对存在于厌氧真菌富集培养液以及瘤胃不同部位样品中的LGM进行了定量分析。结果显示LGM在每五天传一代的厌氧真菌富集培养液中占总甲烷菌的比例最大(P<0.05),在每三天传一代的厌氧真菌富集培养液中LGM随着传代的进行逐渐消失。对瘤胃上皮粘膜、瘤胃内容物液相和固相样品的检测结果显示LGM在瘤胃内容物液相中占总甲烷菌的比例最高(为1.34%,P<0.05)。结论:对LGM的体外富集培养可采用瘤胃液作为接种物并采用每五天传一代的传代频率。
     2厌氧真菌和甲烷菌共培养物的分离
     利用富集培养方法和厌氧滚管技术从山羊瘤胃液中分离纯化厌氧真菌与甲烷菌共培养物。经过短期传代富集培养和厌氧滚管挑菌,成功分离到了产甲烷的厌氧真菌培养物,PCR检测结果显示没有获得含有LGM的厌氧真菌培养物。形态学观察与细胞核DAPI染色结果显示培养物中的厌氧真菌均属于Piromyces.对培养物中的甲烷菌进行PCR-DGGE和16S rRNA基因序列分析,结果显示每个培养物中仅含有一株甲烷菌,并且这些甲烷菌均属于甲烷短杆菌。下面对培养物F1进行了进一步研究。荧光显微镜和扫描电镜观察结果显示在培养物F1中,甲烷菌附着在厌氧真菌的假根部。利用长期传代富集培养方法和厌氧滚管挑菌技术并结合甲烷短杆菌抑制剂的使用分离得到含有LGM的厌氧真菌培养物,测序结果显示LGM含有甲烷菌合成甲烷的关键酶基因(甲基辅酶M还原酶A)。结论:共培养方法可以分离纯化含有未培养甲烷菌的厌氧真菌培养物。
     3共培养方法研究瘤胃RCC菌株MGC氢营养特性
     本研究利用体外共培养模型研究了鸡源RCC菌株MGC的氢营养特性。首先建立起含有白色瘤胃球菌(R. albus)和甲烷菌(甲烷短杆菌或MGC)的体外共培养模型并对模型进行验证,结果显示甲烷菌的生长未对R. albus的代谢产生显著影响。模型成功建立后,首先对MG-C的底物利用特点进行了研究,发酵结果显示在甲醇和三甲胺同时存在的情况下,MGC首先利用三甲胺。接下来利用模型对MGC的氢气竞争能力进行了研究。在模型中引入一株甲烷短杆菌(M. smithii)与MGC进行氢气竞争,结果显示在模型中MGC的生长延滞期比M. smithii长,M. smithii在MGC的生长延滞期结束之前就几乎将R. albus产生的氢气利用完毕。然而,在低pH模型中,虽然MGC的生长延滞期较长,但它却在发酵过程中获得了绝大部分氢气,暗示MGC比M. smithii更耐受低pH。降低R. albus在发酵前期的氢气产生速度后,MGC获得了比M. smithii更多的氢气(67.8%),暗示MGC在低氢分压下具有较强的氢气竞争能力。为了进一步研究MGC的氢气竞争能力,本研究进行了下列实验。对氢气竞争模型进行连续传代,结果显示随着传代的进行总甲烷产量逐渐升高,然而M.smithii在模型中的菌体数量却在逐渐降低,这暗示MGC在竞争中占据了优势并压制了M. smithii的生长。将MGC接种到从瘤胃液中直接富集的混合细菌和甲烷菌培养物Mix中,发现MGC不但能够在Mix中存活,还能够大量繁殖菌体。结论:在低氢分压和甲基化合物充足的条件下,MGC具有较强的氢气竞争力。此外体外共培养模型为研究瘤胃甲烷菌提供了一条新途径。
     4RCC富集培养条件的研究
     本研究通过在体外共培养模型中添加甲基化合物富集瘤胃液中的RCc菌株。研究结果显示虽然在富集传代过程中产生了大量的甲烷,但培养液中的RCC不但没有富集反而大幅度降低。化合物Lumazine的添加并没有抑制甲烷短杆菌的生长,甲烷短杆菌的数量在培养液中始终维持在较高水平。将富集的产甲烷培养物接种到BJ培养基(无二氧化碳和碳酸氢钠)中,由于没有底物二氧化碳甲烷短杆菌的生长会受到抑制。结果显示用甲胺富集的培养物在BJ培养基中很快就没有甲烷产生,而用甲醇富集的培养物在BJ培养基中甲烷产量逐渐升高并趋于稳定。加入万古霉素处理后,镜检显示培养液中均是球形菌并有F420自发荧光。底物利用实验显示这些球形菌仅利用氢气还原甲醇生成甲烷。挑取克隆测序发现这些球形菌均是甲烷球形菌。结论:仅在体外共培养模型中添加甲基化合物不能富集RCc菌株。
     5不同精粗比日粮对山羊瘤胃内RCC丰度的影响
     本研究利用荧光定量PCR研究了不同精粗比日粮对山羊瘤胃中RCc丰度的影响。研究发现不同精粗比日粮对山羊瘤胃内容物、瘤胃粘膜、盲肠内容物和盲肠粘膜中的总古菌数量没有显著影响(P>0.05)。饲喂高精日粮的山羊瘤胃内容物和盲肠内容物中RCC数量显著低于高粗日粮组(P<0.05)。饲喂高粗日粮山羊的瘤胃内容物中RCC数量占总古菌数量的8.1-28.3%,而高精日粮组为0.6-4.6%。不同精粗比日粮对山羊瘤胃粘膜和盲肠粘膜中的RCC数量没有显著影响(P>0.05),这两部位中的RCC数量占总古菌数量的比例分别为3.4-4.3%和12.0-13.2%。结论:高精日粮显著降低山羊瘤胃内容物中RCC数量。
Methane is one of the end products in the rumen which results in the energy loss for the ruminants as well as greenhouse gas for the environment. Therefore, it is important to understand the mechanism of methanogenesis and the ecology of methanogens in the rumen. Rumen Cluster C archaea (RCC) is possible to be a new order of rumen methanogens, however, for which, to date, there have been no direct evidences. In this study, work has been done to enrich RCC archaea from rumen fluid by the way of co-culturing them with anaerobic fungi. The characteristics of their hydrogenotrophy and enrichment have been investigated by in vitro co-culture model. Their abundance in the rumen of goat fed different diets has been investigated by quantitative PCR. The main results are shown as follows:
     1The abundance of RCC strain LGM in the anaerobic fungal culture and its distribution in the different fractions of rumen
     This study established the specific quantitative PCR method for RCC strain LGM. The16S rRNA gene copy number of LGM and the mcrA gene copy number of total methanogens in the anaerobic fungal cultures with different transfer intervals were analyzed. The results showed that the percentage of LGM in total methanogens in the anaerobic fungal culture with five-day transfer interval was the highest (P<0.05). In contrast, LGM disappeared in the anaerobic fungal culture with three-day transfer interval. The percentage of LGM in total methanogens in the fraction of rumen liquid was the highest in the three rumen fractions (rumen epithelium, rumen solid and rumen liquid)(P<0.05). Conclusively, to enrich LGM in the anaerobic fungal culture, it is better to transfer the culture every five days and take rumen liquid as the inoculation.
     2The isolation of anaerobic fungus with methanogen
     In the study, the method of enrichment and Hungate roll tube technique were combined in the isolation of anaerobic fungus with methanogen. The results showed that anaerobic fungal cultures containing methanogens were successfully isolated by short-time transfer enrichment, but no fungal cultures contained LGM. Morphology observation, nucleus staining, PCR-DGGE and16S rRNA gene sequencing were conducted to identify anaerobic fungi and methanogens in these cultures. The anaerobic fungi were identified as belonging to genera Piromyces based on their morphology and DAPI nuclear staining. PCR-DGGE analysis indicated that only one methanogen strain in each fungal culture, and all the methanogens were identified belonging to Methanobrevibacter sp. based on16S rRNA gene sequence. The fluorescence microscope photos and scan electron microscope photos showed that the lots of methanogens in the fungal culture attached to the fungal rhizoids. A fungal culture containing LGM was isolated by the method combining long-time transfer enrichment, Hungate roll tube technique and inhibitor of Methanobrevibacter sp. PCR and sequencing was performed to identify LGM. And the results showed that LGM contained the methanogen function gene coded methyl coenzyme M reductase subunit A for forming methane, which supported that LGM was a methanogenic species. Conclusively, RCC strain LGM is a methanogenic species, and co-culture is a feasible way to investigate uncultured rumen archaea.
     3Co-culturing strain MGC with hydrogen-producing bacteria provides insight into its hydrogenotrophy
     In this study, the hydrogenotrophy of RCC strain MGC derived from chicken cecum was studied by in vitro co-culture model. The model was established by co-culturing R. albus with methanogens. Test for this model was carried out, and the result showed that methanogens did not affect the metabolism of R. albus, suggesting that R. albus in the model just acted as hydrogen source. When both methanol and trimethylamine were added to the model, strain MGC first consumed trimethylamine. M. smithii was inoculated into the model to compete hydrogen with strain MGC, the results showed that before the growth lag time of strain MGC ceased, most of the hydrogen produced by R. albus had been consumed by M. smithii. In the model with pH sharply decline, strain MGC was more resistant to low pH than M. smithii, and it converted most of the hydrogen to methane. When the hydrogen producing speed of R. albus was slowed down, strain MGC captured more hydrogen than M. smithii (67.8%). To further study the hydrogen competing ability of MGC, the hydrogen competing model was consecutively transferred six times. And the results showed that as the transfers increased, the methane production increased, and the16rRNA gene copy number of M. smithii was decreased in the model, suggesting that the growth of M. smithii was inhibited by strain MGC. Strain MGC was cultured with a mix culture directly enriched from rumen fluid. After120hours incubation, the16rRNA gene copy number of strain MGC increased almost100times, suggesting that strain MGC could survive under complex competing condition. Conclusively, strain MGC had strong ability to compete for hydrogen with other methanogens under low hydrogen partial pressure condition, and the in vitro co-culture model provides a way to study rumen methanogens.
     4The study of the enrichment method for RCC
     In this study, RCC were tried to be enriched by adding methanol or trimethylamine in the in vitro co-culture model. Though a large amount of methane produced during the enrichment,16S rRNA gene copy number of RCC declined greatly in the culture. The growth of Methanobrevibacter sp. did not inhibited by adding Lumazine,16S rRNA gene copy number of Methanobrevibacter sp. maintained in high level. To inhibit the growth of Methanobrevibacter sp., BJ medium without carbon dioxide and sodium bicarbonate was used. The culture enriched by trimethylamine stopped producing methane, when inoculated into BJ medium. In cotrast, the culture enriched by methanol increased produced a large amount of methane after inoculated into BJ medium. After five transfers with treated by antibiotics, the culture was observed under fluorescence microscope. The result showed that all the microorganisms in the culture were globose, and substrate test experiment showed that these microorganisms exclusively reduced methanol by hydrogen to methane. Cloning and sequencing showed that the microorganisms belonged to Methanosphaera. Conclusively, RCC could not be enriched by just addition of methyl group chemicals in the in vitro co-culture model.
     5The effects of different ratio of concentrate in diets on the abundance of RCC in the goat rumen
     In this study, the effects of different ratio of concentrate in diets on the abundance of RCC in the goat rumen were investigated by quantitative PCR. The results showed that the diets did not affect the abundance of rumen archaea in the rumen content, rumen epithelium mucosa, cecum content and cecum epithelium mucosa (P>0.05). The abundance of RCC in the rumen content and cecum content of goats fed high roughage was significantly higher than that of goats fed high concentrate (P<0.05). The percentage of the16S rRNA gene copy number of RCC in the16S rRNA gene copy number of rumen archaea in the rumen content of goats fed high roughage was8.1-28.3%, and the percentage was0.6-4.6%in the high concentrate group. The abundance of RCC in the rumen epithelium mucosa and cecum epithelium mucosa did not affected by diets (P>0.05), the percentages of the16S rRNA gene copy number of RCC in the16S rRNA gene copy number of rumen archaea in the two locations were3.4-4.3%and12.0-13.2%, respectively. Conclusively, high concentrate diet greatly declined the abundance of RCC in the goat rumen.
引文
Balch, W. E., Fox, G E., Magrum, L. J., Woese, C. R., Wolfe, R. S. Methanogens:Reevaluation of a Unique Biological Group [J]. Microbiological Reviews,1979,43:260-296.
    Bauchop, T., Mountfort, D. O. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens [J]. Applied and Environmental Microbiology,1981,42: 1103-1110.
    Biavati, B., Vasta, M., Ferry, J. G Isolation and characterization of "Methanosphaera cuniculi" sp. nov [J]. Applied and Environmental Microbiology,1988,54:768-771.
    Blaut, M., Gottschalk, G Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri [J]. European Journal of Biochemistry,1984,141: 217-222.
    Bonin, A., Boone, D. R. The order Methanobacteriales [M]. In:The Prokaryotes, Springer New York, 2006,3:231-243.
    Boxma, B., Voncken, F., Jannink, S. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E [J]. Molecular Microbiology, 2004,51:1389-1399.
    Bryant, M. P. and Burkey, L. A. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen [J]. Journal of Dairy Science,1953,36:205-217
    Brauer, S.L., Cadillo-Quiroz, H., Ward, R.J., Yavitt, J., and Zinder, S. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog [J]. International Journal of Systematic and Evolutionary Microbiology,2011,61:45-52.
    Buddie, B. M., Denis, M., Attwood. G T., Altermann, E., Janssen, P. H., Ronimus, R. S., Pinares-Patino, C. S., Muetzel, S., Wedlock, D. N. Strategies to reduce methane emissions from farmed ruminants grazing on pasture [J]. Veterinary journal,2011,11-17.
    Cadillo-Quiroz, H., Yavitt, J.B., Zinder, S.H. Methanosphaerula palustris gen. nov., sp nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland [J]. International Journal of Systematic and Evolutionary Microbiology,2009,59:928-935.
    Chalupa, W. Manipulating rumen fermentation [J]. Journal of Animal Science,1977,46:585-599.
    Cheng, Y. F., Mao, S. Y., Liu, J. X., Zhu, W. Y. Molecular diversity analysis of rumen methanogenic Archaea from goat in eastern China by DGGE methods using different primer pairs [J]. Letter of Applied Microbiology,2009,48:585-592.
    Coolen, M. J. L., Hopmans, E. C., Rijpstra, W. I. C., et al. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene:response of methangens and methannotrophs to environmental change [J]. Organic Geochemistry,2004,35:1151-1167
    Cruden, D. L., Markovetz, A. J. Microbial ecology of the cockroach hindgut [J]. Annual Review of Microbiology,1987,41:617-643.
    Davies, D. R., Theodorou, M. K., Lawrence, M. I., et al. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces [J]. Journal of Genetic Microbiology,1993,139:1395-1400
    Dehority, B. A. Microbial ecology of cell wall fermentation [M]. In:Forage Cell Wall Structure and Digestibility, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,1993,425-453.
    Dehority, B. A. Carbon dioxide requirement of various species of rumen bacteria [J]. Journal of Bacteriology,1971,105:70-76.
    Denman, S. E., Tomkins, N. W., McSweeney, C. S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane [J]. FEMS Microbiology Ecology,2007,62:313-322.
    Doerfert, S.N., Reichlen, M., Iyer, P., Wang, M.Y., Ferry, J.G. Methanolobus zinderi sp nov., a methylotrophic methanogen isolated from a deep subsurface coal seam [J]. International Journal of Systematic and Evolutionary Microbiology,2009,59:1064-1069.
    Edwards, J. E., Kingston-Smith, A. H., Jimenez, H. R., Huws, S. A., Skot, K. P., Griffith, G. W., McEwan, N. R., Theodorou, M. K. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen [J]. FEMS Microbiology Ecology,2008,66:537-545.
    Evans, R N., Hinds, L. A., Sly, L. I., McSweeney, C. S., Morrison, M., Wright, A. D. Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii) [J]. Applied and Environmental Microbiology,2009,75:2598-2602.
    Finlay, B. J., Esteban, G., Clarke, K. J., Williams, A. G, Embley, T. M., Hirt, R. P. Some rumen ciliates have endosymbiotic methanogens [J]. FEMS Microbiology Letters,1994,117:157-161.
    Forsberg, C.W., Cheng, K.J., White, B.A. Polysaccharide degradation in the rumen and large intestine [M]. In:Gastrointestinal Microbiology, Chapman and Hall, New York,1997,319-379.
    Franzolin, R., St-Pierre, B., Northwood, K., Wright, A. D.G. Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets [J].Microbial Ecology,2012,64:131-139.
    Frey, J.C., Pell, A.N., Berthiaume, R., Lapierre, H., Lee, S., Ha, J.K. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows [J]. Journal of Applied Microbiology,2009,108:1982-1993.
    Fricke, W. F., Seedorf, H., Henne, A., Kruer, M., Liesegang, H., Hedderich, R., Gottschalk, G., Thauer, R. K. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis [J]. Journal of Bacteriology, 2006,188:642-658.
    Garcia, J. L., Patel, B. K. C., Ollivier, B. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea [J]. Anaerobe,2000,6:205-226.
    Garcia-Lopez, P. M., Kung, L.J., Odom, J. M. I. In vitro inhibition of microbial methane production by 9,10-anthraquinone [J]. Journal of Animal Science,1996,74,2276-2284.
    Hackstein, J. H. P., Stumm, C. K. Methane production in terrestrial arthropods [J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91:5441-5445.
    Hedderich, R., Whitman, W. B. Physiology and biochemistry of the methane-producing archaea [M]. In: The Prokaryotes, Springer, New York,2006,1050-1079.
    Hippe, H., Caspari, D., Fiebig, K., Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane fornation by Methanosarcina barkeri [J]. Proceedings of the National Academy of Sciences of the United States of America,1979,76:494-498.
    Hook, S. E., Steele, M. A., Northwood, K. S., Wright, A. D. G., McBride, B. W. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows [J]. Microbial Ecology,2011,62:94-105.
    Hungate, R. E. The Rumen and its Microbes [M]. New York:Academic Press,1966.
    Hutten, T. J., Bongaerts, H. C. M., van der Drift, C., Vogels, G. D. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri [J]. Antonie van Leeuwenhoek,1980,46:601-610.
    lino, T, Mori, K., Suzuki, K. Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and the emendation of the genus Methanospirillum and Methanospirillum hungatei [J]. International Journal of Systematic and Evolutionary Microbiology,2010,60:2563-2566.
    Janssen, P. H., Kirs, M. Structure of the archaeal community of the rumen [J]. Applied and Environmental Microbiology,2008,74:3619-3625.
    Jarvis, G. N., Strompl, C., Burgess, D. M. Isolation and identification of ruminal methanogens from grazing cattle [J], Current Microbiology,2000,40:327-332.
    Jeyanathan, J., Kirs, M., Ronimus, R. S., Hoskin, S. O., Janssen, P. H. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets [J]. FEMS Microbiology Ecology, 2011,76:311-326.
    Joblin, K. N., Campbell, G. P., Richardson, A. J., Stewart, C. S. Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in coculture with methanogens [J]. Letters in Applied Microbiology,1989,9:195-197.
    Joblin, K. N., Matsui, H., Naylor, G. E., Ushida, K. Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes [J]. Current Microbiology,2002,45:46-53.
    Joblin, K. N., Methanogenic archaea [C]. In:Methods in Gut Microbial Ecology for Ruminants. IAEA, 2005,47-53.
    Joblin, K. N., Naylor, G. E., Williams, A. G. The effect of Methanobrevibacter smithii on the xylanolytic activity of anaerobic rumen fungi [J]. Applied and Environmental Microbiology,1990,56:2287-2295.
    Kamra, D. N. Rumen microbial ecosystem [J]. Current Science,2005,89:124-134.
    Klieve, A. V., O'Leary MN, McMillen, L., Ouwerkerk, D. Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet [J]. Journal of Applied Microbiology,2007,103:2065-2073.
    Kemnitz, D., Kolb, S., Conrad, R. Phenotypic characterization of Rice Cluster Ⅲ archaeawithout prior isolation by applying quantitative polymerase chain reaction to an enrichment culture [J]. Environmental Microbiology,2005,7:553-565.
    Kendall, M. M., Boone, D. R. The Order Methanosarcinales [M]. In:The Prokaryotes, Springer, New York,2006,3:244-256.
    Kim, M., Morrison, M., Yu, Z. Status of the phylogeneticdiversity census of ruminalmicrobiomes [J]. FEMS Microbiology Ecology,2011,76:49-63.
    Krivushin, K. V., Shcherbakova, V. A., Petrovskaya, L. E., Rivkina, E. M. Methanobacterium veterum sp nov., from ancient Siberian permafrost [J]. International Journal of Systematic and Evolutionary Microbiology,2010,60:455-459.
    Kocherginskaya, S. A., Aminov, R. I., White, B. A. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing and statistical ecology approaches [J]. Anaerobe,2001,7:119-134.
    Laloui-Carpentier, W., Li, T., Vigneron, V., Mazeas, L., and Bouchez, T. Methanogenic diversity and activity in municipal solid waste landfill leachates [J]. Antonie Van Leeuwenhoek,2006,89:423-434.
    Lana, R. P., Russell, J. B., Van Amburgh, M. E. The role of pH in regulating ruminal methane and ammonia production [J]. Journal of Animal Science,1998,76:2190-2196.
    Liu, Y., Whitman, W. B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea [J]. Annals of the New York Academy of Sciences,2008,1125:171-189.
    Luton, P. E., Wayne, J. M., Sharp, R. J., Riley, P. W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill [J]. Microbiology 148:3521-3530.
    Mao, S. Y., Cheng, Y. F., Zhu, W. Y. Phylogenetic analysis of methanogens in the pig feces [J]. Current Microbiology,2011,62:1386-1389.
    Marvin-Sikkema, F. D., Richardson, A. J., Stewart, C. S., Gottschal, J. C., Prins, R. A. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi [J]. Applied and Environmental Microbiology,1990,56:3793-3797.
    May, C., Payne, A. L., Stewart, P. L. Edgar, J. A. A delivery system for agents. International Patent Application No. PCT/AU95/00733.1995.
    Mclnerney, M. J., Struchtemeyer, C. G., Sieber, J., Mouttaki, H., Stams, A. J. M., Schink, B., Rohlin, L., Gunsalus, R. P. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism [J]. Annals of the New York Academy of Sciences,2008,1125:58-72.
    McSweeney, C. S., Denman, S. E., Mackie, R. I. Rumen bacteria [M]. In:Methods in GutMicrobial Ecology for Ruminants, Springer, New York,2005,23-38.
    Miller, T. L., Currenti, E., Wolin, M. J. Anaerobic bioconversion of cellulose by Runinococcus albus, Methanobrevibacter smithii, and Methanosarcina barkeri [J]. Applied Microbiology and Biotechnology,2000,54:494-452.
    Miller, T. L., Wolin, M. J. Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen [J]. Applied and Environmental Microbiology,1995,61:3832-3835.
    Miller, T. L., Wolin, M. J. Formation of hydrogen and formate by Ruminococcus albus [J]. Journal of Bacteriology,1973,116:836-846.
    Miller, T. L., Wolin, M. J., Hongxue, Z. Characteristics of methanogens isolated from bovine rumen [J]. Applied and Environmental Microbiology,1986,51:201-202.
    Miller, T. L., Wolin, M. J. Methanosphaera stadtmaniae gen. nov., sp. nov.:a species that forms methane by reducing methanol with hydrogen [J]. Archives of Microbiology,1985,141:116-122.
    Mochimaru, H., Tamaki, H., Hanada, S., Imachi, H., Nakamura, K., Sakata, S., and Kamagata, Y. Methanolobus projundi sp nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field [J]. International Journal of Systematic and Evolutionary Microbiology,2009,59:714-718.
    Mountfort, D. O., Asher, R. A., Bauchop, T. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri [J]. Applied and Environmental Microbiology,1982,44:128-134.
    Muller, V., Blaut, M., Gottschalk, G. Utilization of methanol plus hydrogen by Methanosarcina barkeri for methanogenesis and growth [J]. Applied and Environmental Microbiology,1986,52:269-274.
    Nakashimada, Y., Srinivasan, K., Murakami, M., Nishio, N. Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens [J]. Biotechnology Letters,2000, 22:223-227.
    Nicholson, M. J., Evans, P. N., Joblin, K. N. Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis:identification of uncultured methanogens [J]. Microbial Ecology,2007,54:141-150.
    Ohene-Adjei, S., Teather, R. M., Ivanj, M., Forster, R. J. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen [J]. Applied and Environmental Microbiology,2007,73:4609-4618.
    Ouwerkerk, D., Turner, A. F., Klieve, A. V. Diversity of methanogens in ruminants in Queensland. Australian Journal of Experimental Agriculture [J],2008,48:722-725.
    Ozkose, E., Thomas, B. J., Davies, D. R., et al. Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle [J]. Canadian Journal of Botany,2001, 79:666-673
    Pace, N. R. A molecular view of microbial diversity and the biosphere [J]. Science,1997,276:734-740.
    Painter, M. J. B., Hungate, R. E. Characterization of Methanobacterium mobilis, sp. n. isolated from the bovine rumen [J]. Jouranl of Bactriology,1968,95:1943-1951.
    Patterson, J. A., Hespell, R. B. Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri [J]. Current Microbiology,1979,3:79-83.
    Pavlostathis, S. G, Miller, T. L., Wolin, M. J. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii [J]. Applied Microbiology and Biotechnology, 1990,33:109-116.
    Pavlostathis, S. G., Miller, T. L., Wolin, M. J. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus [J]. Applied and Environmental Microbiology,1988a,54:2655-2659.
    Pavlostathis, S. G, Miller, T. L., Wolin, M. J. Kinetics of insoluble cellulose fermentation by continuous cultures of Ruminococcus albus [J]. Applied and Environmental Microbiology,1988b,54:2660-2663.
    Pei, C. X., Mao, S. Y., Cheng, Y. F., and Zhu, W. Y. Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle [J]. Animal, 2010,4:20-29.
    Rea, S., Bowman, J. P., Popovshi, S., Pimm, C. Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utlize formate for growth [J]. International Journal of Systematic and Environmental Microbiology,2007,57: 450-456.
    Sakai, S., Takaki, Y, Shimamura, S., Sekine, M., Tajima, T., Kosugi, H., Ichikawa, N., Tasumi, E., Hiraki, A. T., Shimizu, A., Kato, Y, Nishiko, R., Mori, K., Fujita, N., Imachi, H., Takai, K. Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales [J]. PLoS One,2011,6:e22898.
    Sakai, S., Conrad, R., Liesack, W., Imachi, H. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen, isolated from Italian rice field soil [J]. International Journal of Systematic and Evolutionary Microbiology,2010,60:2918-2923.
    Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H., Kamagata, Y Isolation of key methanogens for global methane emission from rice paddy fields:a novel isolate affiliated with the clone cluster rice cluster I [J]. Applied and Environmental Microbiology,2007,73:4326-4331.
    Sakai, S., Imachi, H., Sekiguchi, Y, Tseng, I., Ohashi, A., Harada, H., Kamagata, Y. Cultivation of Methanogens under Low-Hydrogen Conditions by Using the Coculture Method [J]. Applied and Environmental Microbiology,2009,75:4892-4896.
    Shcherbakova, V.A., Rivkina, E.M., Pecheritsyna, S., Laurinavichuis, K., Suzina, N.E., Gilichinsky, D. Methanobacterium arcticum sp.nov., methanogenic archaeon from Holocene Arctic permafrost [J]. International Journal of Systematic and Evolutionary Microbiology,2011,61:144-147.
    Shin, E. C., Choi, B. R., Lim, W. J., Hong, S. Y., An, C. L., Cho, K. M., Kim, Y. K., An, J. M., Kang, J. M., Lee, S. S., Kim, H., Yun, H. D. Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence [J]. Anaerobe,2004,10:313-319.
    Smith, P. H., Hungate, R. E. Isolation and characterization of Methanobacterium ruminantium N. sp. [J]. Journal of Bacteriology,1958,75:713-718.
    Sparling, R. Daniels, L. (1987) The specificity of growth inhibition of methanogenic baeteria by bromoethanesulfonate [1987]. Canadian Journal of Microbiology,1987,33:1132-1136.
    Sprenger, W. W., Hackstein, J. H. P., Keltjens, J. T. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics [J]. FEMS Microbiology Letters,2007,60:266-275.
    Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H., Keltjens, J. T. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol-and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana [J]. International Journal of Systematic and Evolutionary Microbiology,2000,50:1989-1999.
    Sprenger, W. W., Hackstein, J. H. P., Keltjens, J. T. The energy metabolism of Methanomicrococcus blatticola:physiological and biochemical aspects [J]. Antonie Leeuwenhoek,2005,87:289-299.
    Stumm, C. K., Gijzen, H. J., and Vogels, G. D. Association of mehtanogenic bacteria with ovine rumen ciliates [J]. British Journal of Nutrition,1982,47:95-99.
    Sundset, M. A., Edwards, J. E., Cheng, Y. F., Senosiain, R. S., Fraile, M. N., Northwood, K. S., Praesteng, K. E., Glad, T., Mathiesen, S. D., Wright, A. D. G Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea [J]. FEMS Microbiology Ecology,2009, 70:553-562.
    Sundset, M. A., Praesteng, K. E., Cann, I. K. O., Mathiesen, S. D., Mackie, R. I. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer [J]. Microbial Ecology,2007,54: 424-438.
    Tajima, K., Aminov, R. I., Nagamine, T., Matsui, H., Nakamura, M., Benno, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR [J]. Applied and Environmental Microbiology,2001,67:2766-2774.
    Tajima, K., Nagamine, T., Matsui, H., Nakamura, M., Aminov, R. I. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens [J]. FEMS Microbiology Letter,2001,67-72.
    Teunissen, M. J., Kets, E. P. W., Op den Camp, H. J. M., Huis in't Veld, J. H. J., Vogels, G D. Effect of co-culture of anaerobic fungi isolated from ruminants and nonruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities [J]. Archives of Microbiology,1992,157:176-182.
    Thauer, R. K., Jungermann, K., Decker, K. Energy conservation in chemotrophic anaerobic bacteria [J]. Bacteriological Reviews,1977,41:100-180.
    Thauer, R. K., Kaster, A., Seedorf, H., Buckel, W., Hedderich, R. Methanogenic archaea:ecologically relevant differences in energy conservation [J]. Nature Reviews Microbiology,2008,6:579-591.
    Tokura, M., Chagan, I., Ushida, K. Phylogenetic study of methanogens associated with rumen ciliates [J]. Current Microbiology,1999,39:123-128.
    Tokura, M., Ushida, K., Miyazaki, K., Kojima, Y. Methanogens associated with rumen ciliates [J]. FEMS Microbiology Ecology,1997,22:137-143.
    Tomkins, N. W., Hunter, P. A. Methane reduction in beef cattle using a novel antimethanogen [J]. Animal Production in Australia,2004,25:329.
    Ungerfeld, E. M., Rust, S. R., Boone, D. R., Liu, Y. Effects of several inhibitors on pure cultures of ruminal methanogens [J]. Journal of Applied Microbiology,2004,97:520-526.
    Ungerfeld, E. M., Rust, S. R., Rurnett, R. Increase in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis [J]. Canadian Journal of Microbiology,2007,53, 496-503.
    Ushida, K., Jouany, J. P. Methane production from ciliated rumen protozoa and its effect on protozoal activity [J]. Letters in Applied Microbiology,1996,23:129-132.
    Ushida, K. Symbiotic Methanogens and Rumen Ciliates [M]. In:Microbiology Monographs 19, Springer-Verlag Berlin Heidelberg,2010.25-34.
    Vogels, G D., Hoppe, W. F., Stumm, C. K. Association of methanogenic bacteria with rumen ciliates [J]. Applied and Environmental Microbiology,1980,40:608-612.
    Weimer, P, J., Zeikus, J. G Acetate metabolism in Methanosarcina barkeri [J]. Archives of Microbiology, 1978,119:175-182.
    Whitford, M. F., Teather, R. M., and Forster, R. J. Phylogenetic analysis of methanogens from the bovine rumen [J]. BMC Microbiology,2001,1:5.
    Whitman, W. B., Bowen, T. L., Boone, D. R. The Methanogenic Bacteria [M]. In:Prokaryotes, Springer, 2006,3:165-207.
    Williams, A. G., Joblin, K. N., Fonty, G. Interactions between the rumen chytrid fungi and other microorganisms [M]. In:Anaerobic fungi:Biology, Ecology and Function, New York, Marcel Dekker, 1994,191-227.
    Wolin, M. J. Metabolic interactions among intestinal microorganisms [J]. American Journal of Clinical Nutrition,1974,27:1320-1328.
    Wolin, M. J., Miller, T. L. Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors [C].2nd International Conference on Greenhouse Gases and Animal Agriculture. Publication Series, Institute of Animal Science ETH Zurich,2005,27:71-77.
    Wolin, M.J., Miller, T. L., Stewart, C. S. Microbe-microbe interactions [M]. In:The Rumen microbial ecosystem, Chapman & Hall, London,1997,467-491.
    Wood, J. M., Kennedy, F. S., Wolfe, R. S. The reaction of multihalogenated Hydrocarbons with free and bound reduced vitamin B12 [J]. Biochemistry,1968,7:1707-1713.
    Wood, J. M., Moura, I., Moura, J. J., Santos, M. H., Xavier, A. V., LeGall, J. and Scandellari, M. Role of vitamin B12 in methyl transfer for methane biosynthesis by Methanosarcina barkeri [J]. Science,1982, 216:303-305.
    Worm, P., Muller, N., Plugge, C. M. Alfons J.M. Stams, and Bernhard Schink. Syntrophy in Methanogenic Degradation [M]. In:Microbiology Monographs 19, Springer-Verlag Berlin Heidelberg, 2010,143-174.
    Wright, A. D. G., Pimm, C. Improved strategy for presumptive identification of methanogens using 16S riboprinting [J]. Journal of Microbiological Methods,2003,55:337-349.
    Wright, A. D.G., Williams, A. J., Winder, B., Christophersen, C. T., Rodgers, S. L., Smith, K. D. Molecular diversity of rumen methanogens from sheep in Western Australia [J]. Applied and Environmental Microbiology,2004,70:1263-1270.
    Wright, A. D., Toovey, A. F., Pimm, C. L. Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea [J]. Anaerobe,2006,12:134-139.
    Wright, A. D. G., Auckland, C. H., Lynn, D. H. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada [J]. Applied and Environ mental Microbiology,2007, 73:4206-4210.
    Wright, A. D. G., Ma, X., and Obispo, N. E. Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela [J]. Microbial Ecology,2008,56,390-394.
    Zoetendal, E. G., Akkermans, A. D. L. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria [J]. Applied and Environmental Microbiology,1998,64:3854-3859
    成艳芬.厌氧真菌与产甲烷菌共培养系统的建立及其代谢与菌群变化的研究[D].南京农业大学,2008.
    成艳芬,朱伟云.ARISA方法研究产甲烷菌共存及去除条件下瘤胃真菌多样性变化[J].微生物学报,2009,49(4):0504-0511.
    郭嫣秋.瘤胃产甲烷菌定量检测与微生物菌群调控研究[D].浙江大学,2008.
    胡伟莲,王佳堃,吕建敏,等.瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定[J].浙江大学学报,2006,32(2):217-221.
    朱伟云.瘤胃微生物[M].见:冯仰廉.反刍动物营养学.北京:科学出版社,2004,1-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700