低温解烃菌T7-7的基因组学、蛋白组学研究及烷烃单加氧酶的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2005年,诺尔曼氏极小单孢菌(Pusillimonas noertemannii)作为一个新的种属首次被提出。该属的代表株定为BN9T,这株菌作为一株5-氨基水杨酸-降解菌株,分离自一个6-氨基-2-磺酸盐-降解混合细菌培养物中。
     极小单孢菌T7-7(Pusillimonas sp. T7-7)是一株革兰氏阴性的,耐冷的,柴油降解菌株,该菌分离自中国渤海原油污染区域的海底淤泥中。在该采样点,一艘运油船于2002年11月23日发生了泄漏。16SrRNA基因序列分析显示T7-7与菌株Pusillimonas ginsengisoli DCY25T (98.4%序列相似度),Pusillimonas soli MJ07T(97.5%序列相似度)和Pusillimonas noertemannii BN9T(96.7%序列相似度)进化关系最为接近。而菌株T7-7与其它产碱菌科(Alcaligenaceae)已鉴定的菌种直接的16S rRNA基因序列相似度水平均低于95.3%。该结果说明菌株T7-7是极小单孢菌属中的新成员。
     本研究报道了T7-7的全基因组序列,这也是极小单孢菌属中报道的第一个全基因组序列。T7-7的全基因组包括了一个大约3.9M的染色质和一个大约41kb的质粒。染色质和质粒的平均GC含量分别为56.92%和56.01%。染色质共含有3,696个蛋白编码基因,2个rRNA操纵子,47个tRNA基因包括了全部20个氨基酸,以及5个假基因。质粒上共含有77个蛋白编码基因。比较基因组分析揭示了T7-7作为典型的海洋细菌的许多特性,包括缺少完整的糖代谢途径,存在完整的乙醛酸途径和糖异生途径,具有硝酸盐同化以及反硝化能力,以及硫酸盐还原和亚硫酸盐氧化等能力。
     T7-7可以利用柴油(C5到C30链长的烷烃)为唯一碳源和能源进行生长。烷烃通常可以以O2为电子受体进行需氧降解,或者以硝酸盐或磺酸盐为电子受体进行厌氧降解。微生物的烷烃需氧降解途径通常以O2依赖的单加氧酶作为起始,该酶是降解途径中的关键酶,它的功能是将烷烃转化为相应的烷醇。而烷醇又会被醇脱氢酶(ADH)转化为相应的醛,接着被醛脱氢酶(ALDH)转化为相应的酸,进而通过β氧化途径被进一步代谢。目前,已经有许多种类的微生物烷烃氧化酶被鉴定了,其中包括细胞色素P450烷烃单加氧酶,整合膜蛋白的非血红素离子烷烃单加氧酶AlkB以及可溶的细菌荧光素SsuD亚家族的单组份烷烃单加氧酶LadA等。由于在T7-7的基因组中没有发现烷烃降解的关键酶,如alkB,ladA或其他已知编码烷烃羟化酶的同源基因,T7-7降解柴油主要成分烷烃的能力可能涉及了新的基因。
     在本研究中,结合了生物信息学,蛋白组学和实时定量反转录PCR等技术,鉴定了T7-7中烷烃降解相关的基因簇。该烷烃降解系统由一个Rieske家族的单加氧酶,一个铁氧还蛋白和一个NADH依赖的还原酶组成。该单加氧酶包括了一个46.711kDa的大亚基和一个15.355kDa的小亚基,它们的功能通过体外的理化实验和体内的异源功能重组实验等被进一步证实。纯化后的单加氧酶大亚基可以以NADH为辅酶,氧化链长在正戊烷(C5)到正二十四烷(C24)之间的烷烃,在以正十五烷(C15)为底物时获得最大活性。存在铁氧还蛋白及NADH依赖的还原酶时,该活性可以被增强。该单加氧酶大亚基在以包括硝基甲烷,甲磺酸等几种烷烃衍生物为底物时,也表现了一定的活性,而以芳香烃化合物为底物时则无活性。该单加氧酶大亚基的最适反应条件为pH7.5,温度30℃。Fe2+可以明显增强该酶的活性。
     这是首次在细菌中发现了一个属于Rieske非血红素离子氧化还原酶家族的烷烃单加氧酶系统。与其它已鉴定的烷烃氧化酶相比,T7-7中的烷烃单加氧酶系统显示了更加优越的耐低温特性,在接近0℃时仍能保持活性。这种特性使其具有应用在更多低温环境下的催化进程中的潜能。
In2005, the creation of a new genus and species with the name Pusillimonas noertemannii gen. nov., sp. nov. is proposed. The type strain is the Pseudomonas-like strain, designated BN9, which was isolated as a5-aminosalicylate-degrading organism from a6-aminonaphthalene-2-sulphonate-degrading mixed bacterial culture.
     Pusillimonas sp. T7-7is a Gram-negative cold-tolerant diesel oil-degrading bacterium isolated from the seabed mud of a petroleum-contaminated site in Bohai Sea, China. At this location, an oil tanker leaked on23November2002. Partial16S rRNA gene sequence analysis indicated that this strain was related most closely to Pusillimonas ginsengisoli DCY25T (98.4%sequence similarity), Pusillimonas soli MJ07T(97.5%) and Pusillimonas noertemannii BN9T (96.7%). The levels of16S rRNA gene sequence similarity between strain T7-7and other recognized species of the family Alcaligenaceae were below95.3%. This suggested that strain T7-7represented a member of the genus Pusillimonas.
     We present here the complete genome sequence of T7-7. It is the first complete genome sequence of the genus Pusillimonas. The complete genome of T7-7contains a chromosome of about3.9M and a plasmid of about41kb. The average GC content is56.92%for the chromosome and56.01%for the plasmid. The chromosome contains3,696protein-encoding genes,2rRNA operons,47tRNA genes for all20amino acids, and5pseudogenes. The plasmid has77protein-encoding genes. Comparative genome analysis revealed many features of typical marine bacteria, including the absence of intact sugar metabolic pathways, the presence of glyoxylate and gluconeogenesis pathways, and the abilities for nitrate assimilation and denitrification, as well as sulfate reduction and sulfite oxidation.
     Pusillimonas sp. T7-7is able to utilize diesel oils (C5to C30alkanes) as a sole carbon and energy source. Alkanes may be degraded aerobically with O2or anaerobically using nitrate or sulfate as the electron acceptor. Microbial aerobic alkane biodegradation is usually initiated by O2-dependent monooxygenases, the key enzyme of the degradation pathway and this converts alkanes to corresponding alkylalcohols. The alkylalcohol is converted to alkylaldehyde by alcohol dehydrogenase (ADH), and then to fatty acids by aldehyde dehydrogenase (ALDH) to be further degraded via the β-oxidation pathway. Several types of microbial alkane oxygenases have been characterized, including cytochrome P450alkane monooxygenases, the integral membrane non-heme iron alkane monooxygenases, such as AlkB, and the soluble bacterial luciferase SsuD subfamily single-component alkane monooxygenase LadA etc. As no homologues of alkB, ladA, or other known genes encoding alkane hydroxylase, the key enzyme of alkane degradation, were found in T7-7, the ability to degrade alkanes, which are the major components of diesel oils, seems to involve novel genes.
     In this present study, using a combination of bioinformatics, proteomics and real-time reverse-transcriptase polymerase chain reaction (RT-PCR) approaches, the alkane degradation gene cluster in Pusillimonas sp. T7-7was identified. This system is composed of a Rieske-type monooxygenase, a ferredoxin and a NADH-dependent reductase. The function of the monooxygenase, which consists of one large (46.711kDa) and one small (15.355kDa) subunit, was further studied using in vitro biochemical analysis and in vivo heterologous functional complementation tests. The purified large subunit of the monooxygenase was able to oxidize alkanes ranging from pentane (C5) to tetracosane (C24) using NADH as a cofactor, with greatest activity on the C15substrate. The activity can be enhanced by the presence of ferredoxin and the NADH-dependent reductase. The large subunit also showed activity on several alkane derivatives, including nitromethane and methane sulfonic acid, but it did not act on any aromatic hydrocarbons. The optima reaction condition of the large subunit is pH7.5at30℃. Fe2+can enhance the activity of the enzyme evidently.
     This is the first time that an alkane monooxygenase system belonging to the Rieske non-heme iron oxygenase family has been identified in a bacterium. Compared to other characterized alkane oxygenases, the Pusillimonas sp. T7-7 alkane monooxygenase system shows better cold-tolerance, with activity retained at temperatures as low as0℃. This property makes it an excellent candidate to be used in various catalytic processes where low temperature conditions are encountered.
引文
[1]Sanseverino, J.,B.M. Applegate,J.M. King, et al. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene[J]. Appl Environ Microbiol,1993,59(6):1931-1937.
    [2]Golyshin, P.N..V.A. Martins Dos Santos.O. Kaiser, et al. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems[J]. J Biotechnol,2003,106(2-3):215-220.
    [3]van Beilen, J.B.,M.M. Marin.T.H. Smits, et al. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis[J]. Environ Microbiol,2004,6(3):264-273.
    [4]Hara, A..S.H. Baik,K. Syutsubo, et al. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2[J]. Environ Microbiol,2004,6(3):191-197.
    [5]Wilkins, M.R.,J.C. Sanchez,A.A. Gooley, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev,1996,13:19-50.
    [6]Blackstock, W.P.,M.P. Weir. Proteomics:quantitative and physical mapping of cellular proteins[J]. Trends Biotechnol,1999,17(3):121-127.
    [7]Munchbach, M.,P. Dainese.W. Staudenmann, et al. Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum[J]. Eur J Biochem,1999,264(1):39-48.
    [8]Guerreiro, N.,M.A. Djordjevic,B.G. Rolfe. Proteome analysis of the model microsymbiont Sinorhizobium meliloti:isolation and characterisation of novel proteins[J]. Electrophoresis,1999, 20(4-5):818-825.
    [9]Deiwick, J.,M. Hensel. Regulation of virulence genes by environmental signals in Salmonella typhimurium[J]. Electrophoresis,1999,20(4-5):813-817.
    [10]Jungblut, P.R.,U.E. Schaible,H.J. Mollenkopf, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens[J]. Mol Microbiol,1999,33(6):1103-1117.
    [11]Pitarch, A.,M. Pardo,A. Jimenez, et al. Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins[J]. Electrophoresis,1999,20(4-5): 1001-1010
    [12]Sanchez-Campillo, M.,L. Bini,M. Comanducci, et al. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera[J]. Electrophoresis,1999,20(11):2269-2279.
    [13]Gygi, S.P.,R. Aebersold. Mass spectrometry and proteomics [J]. Curr Opin Chem Biol,2000, 4(5):489-494.
    [14]Houry, W.A.,D. Frishman,C. Eckerskorn, et al. Identification of in vivo substrates of the chaperonin GroEL[J]. Nature,1999,402(6758):147-154.
    [15]Mogk, A.,T. Tomoyasu,P. Goloubinoff, et al. Identification of thermolabile Escherichia coli proteins:prevention and reversion of aggregation by DnaK and C1pB[J]. EMBO J,1999,18(24): 6934-6949.
    [16]Molloy, M.P.,B.R. Herbert,M.B. Slade, et al. Proteomic analysis of the Escherichia coli outer membrane[J]. Eur J Biochem,2000,267(10):2871-2881.
    [17]De Backer, M.D.,R.A. de Hoogt,G. Froyen, et al. Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature [J]. Microbiology,2000,146 (Pt 2):353-365.
    [18]Guerreiro, N.,V.N. Ksenzenko,M.A. Djordjevic, et al. Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA[J]. J Bacteriol,2000,182(16):4521-4532.
    [19]Antelmann, H.,C. Scharf,M. Hecker. Phosphate starvation-inducible proteins of Bacillus subtilis:proteomics and transcriptional analysis[J]. J Bacteriol,2000,182(16):4478-4490.
    [20]O'Farrell, P.H. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975,250(10):4007-4021.
    [21]Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals[J]. Humangenetik, 1975,26(3):231-243.
    [22]Scheele, G.A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins[J]. J Biol Chem,1975,250(14):5375-5385.
    [23]Patton W, L.M., Shepro D,2-D proteome analysis protocols. Protein detection using reversible metal chelate stains, ed. L.M. Patton W, Shepro D. Vol. Molecular Biology.1999.
    [24]Fenn, J.B.,M. Mann.C.K. Meng, et al. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science,1989,246(4926):64-71.
    [25]Karas, M.,F. Hillenkamp. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons[J]. Anal Chem,1988,60(20):2299-2301.
    [26]Caspi, R.,H. Foerster.C.A. Fulcher, et al. MetaCyc:a multiorganism database of metabolic pathways and enzymes[J]. Nucleic Acids Res,2006,34(Database issue):D511-516.
    [27]Krieger, C.J.,P. Zhang,L.A. Mueller, et al. MetaCyc:a multiorganism database of metabolic pathways and enzymes[J]. Nucleic Acids Res,2004,32(Database issue):D438-442.
    [28]Altschul, S.F.,W. Gish.W. Miller, et al. Basic local alignment search tool[J]. J Mol Biol, 1990,215(3):403-410.
    [29]Henikoff, S.,J.G. Henikoff. Amino acid substitution matrices from protein blocks [J]. Proc Natl Acad Sci U S A,1992,89(22):10915-10919.
    [30]McGinnis, S.,T.L. Madden. BLAST:at the core of a powerful and diverse set of sequence analysis tools[J]. Nucleic Acids Res,2004,32(Web Server issue):W20-25.
    [31]Altschul, S.F.T.L. Madden,A.A. Schaffer, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Res,1997,25(17):3389-3402.
    [32]MacCoss, M.J..C.C. Wu,J.R. Yates,3rd. Probability-based validation of protein identifications using a modified SEQUEST algorithm[J]. Anal Chem,2002,74(21):5593-5599.
    [33]Wilkins, M.R.,E. Gasteiger,A. Bairoch, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol,1999,112:531-552.
    [34]Camphuysen, C.J.,M. Heubeck. Marine oil pollution and beached bird surveys:the development of a sensitive monitoring instrument[J]. Environ Pollut,2001,112(3):443-461.
    [35]Lovley, D.R.J.C. Woodward.F.H. Chapelle. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ⅲ) ligands[J]. Nature,1994,370(6485):128-131.
    [36]Blankenhorn, D.,J. Phillips,J.L. Slonczewski. Acid-and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis[J]. J Bacteriol,1999,181(7):2209-2216.
    [37]Luise Berthe-Corti, T.H., Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. Geo-biological aspects of coastal oil pollution.2005.171-189.
    [38]Margesin, R.,M. Hammerle.D. Tscherko. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil:effects of hydrocarbon concentration, fertilizers, and incubation time[J]. Microb Ecol,2007,53(2):259-269.
    [39]Hinchee, R.E..M. Arthur. Bench scale studies of the soil aeration process for bioremediation of petroleum hydrocarbons[J]. Appl Biochem Biotechnol,1991,28-29:901-906.
    [40]Caldwell, S.L..J.R. Laidler.E.A. Brewer, et al. Anaerobic oxidation of methane:mechanisms, bioenergetics, and the ecology of associated microorganisms [J]. Environ Sci Technol,2008, 42(18):6791-6799.
    [41]Head, I.M.,R.P. Swannell. Bioremediation of petroleum hydrocarbon contaminants in marine habitats[J]. Curr Opin Biotechnol,1999,10(3):234-239.
    [42]Tagger, S.B., A| Julliard, M| Le Petit, J| Roux, B, Marine biology. Vol. Effect of microbial seeding of crude oil in seawater in a model system..1983.13-20.
    [43]Atlas, R.M. Bacteria and bioremediation of marine oil spills[J]. Journal Name:Oceanus; (United States); Journal Volume:36:2:Medium:X; Size:Pages:71-73.
    [44]Oh, Y.S.,D.S. Sim.S.J. Kim. Effects of nutrients on crude oil biodegradation in the upper intertidal zone[J]. Mar Pollut Bull,2001,42(12):1367-1372.
    [45]Bragg, J.R.,R.C. Prince,E.J. Harner, et al. Effectiveness of bioremediation for the Exxon Valdez oil spill[J]. Nature,1994,368(6470):413-418.
    [46]Delille, D.,B. Delille.E. Pelletier. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment:the microbial response[J]. Microb Ecol,2002,44(2):118-126.
    [47]Leahy, J.G.,R.R. Colwell. Microbial degradation of hydrocarbons in the environment[J]. Microbiol Rev,1990,54(3):305-315.
    [48]Van Hamme, J.D.,A. Singh.O.P. Ward. Recent advances in petroleum microbiology[J]. Microbiology and molecular biology reviews:MMBR,2003,67(4):503-549.
    [49]Das, N.,P. Chandran. Microbial degradation of petroleum hydrocarbon contaminants:an overview[J]. Biotechnol Res Int,2011,2011:941810.
    [50]Songen, N.L. Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoff- und Energiequelle fur Mikroben.[J]. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg.,1913(Abt.237): 595-609.
    [51]Ollivier, B.M., M., Petroleum Microbiology.2005:American Society for Microbiology Press.317-336.
    [52]Stroud, J.L.,G.I. Paton,K.T. Semple. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation[J]. J Appl Microbiol,2007,102(5): 1239-1253.
    [53]Chaillan, F.,A. Le Fleche,E. Bury, et al. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms[J]. Res Microbiol,2004,155(7): 587-595.
    [54]Wang, L.,Y. Tang,S. Wang, et al. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes[J]. Extremophiles,2006,10(4):347-356.
    [55]Zhao, L.X.,P.K. Gao,M.N. Cao, et al. [Research on population structure and distribution characteristic of indigenous microorganism in post-polymer-flooding oil reservoir] [J]. Huan Jing Ke Xue,2012,33(2):625-632.
    [56]Gojgic-Cvijovic, GD.,J.S. Milic,T.M. Solevic, et al. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium:a laboratory study[J]. Biodegradation, 2012,23(1):1-14.
    [57]Rahman, K.S..TJ. Rahman,Y. Kourkoutas, et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients[J]. Bioresour Technol,2003,90(2):159-168.
    [58]Wongsa, P.,M. Tanaka,A. Ueno, et al. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil[J]. Curr Microbiol,2004,49(6):4165-422.
    [59]Kim, S.K.,S.R. Kim,M.S. Choi, et al. Soybean oil-degrading bacterial cultures as a potential for control of green peach aphids (Myzus persicae)[J]. J Microbiol Biotechnol,2007,17(10): 1700-1703.
    [60]Zviagintseva, I.S.,E.G Surovtseva,M.N. Poglazova, et al. [Degradation of machine oil by nocardiform bacteria][J]. Mikrobiologiia,2001,70(3):321-328.
    [61]Koma, D.,Y. Sakashita,K. Kubota, et al. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A[J]. Biosci Biotechnol Biochem,2003,67(7): 1590-1593.
    [62]Rooney-Varga, J.N.,R.T. Anderson,J.L. Fraga, et al. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer[J]. Appl Environ Microbiol, 1999,65(7):3056-3063.
    [63]Magot, M.,B.Ollivier,B.K. Patel. Microbiology of petroleum reservoirs[J]. Antonie Van Leeuwenhoek,2000,77(2):103-116.
    [64]Kodama, Y.,K. Watanabe. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions[J]. Appl Environ Microbiol, 2003,69(1):107-112.
    [65]Bonch-Osmolovskaya, E.A..M.L. Miroshnichenko,A.V. Lebedinsky, et al. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir[J]. Appl Environ Microbiol,2003,69(10): 6143-6151.
    [66]Ratajczak, A.,W. Geissdorfer,W. Hillen. Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Appl Environ Microbiol,1998,64(4):1175-1179.
    [67]Geissdorfer, W.,R.G. Kok,A. Ratajczak, et al. The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR[J]. J Bacteriol,1999,181(14):4292-4298.
    [68]Maeng, J.H.,Y. Sakai.Y. Tani, et al. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1 [J]. J Bacteriol,1996, 178(13):3695-3700.
    [69]Whyte, L.G.,T.H. Smits.D. Labbe, et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531[J], Appl Environ Microbiol,2002,68(12):5933-5942.
    [70]Andreoni, V.,S. Bernasconi.M. Colombo, et al. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN[J]. Environ Microbiol,2000,2(5): 572-577.
    [71]Stolz, A.,S. Burger,A. Kuhm, et al. Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates[J]. Int J Syst Evol Microbiol,2005,55(Pt 3):1077-1081.
    [72]Lee, M.,S.G. Woo,M. Chae, et al. Pusillimonas soli sp. nov., isolated from farm soil[J]. Int J Syst Evol Microbiol,2010,60(Pt 10):2326-2330.
    [73]Srinivasan, S..M.K. Kim.G. Sathiyaraj, et al. Pusillimonas ginsengisoli sp. nov., isolated from soil of a ginseng field[J]. Int J Syst Evol Microbiol,2010,60(Pt 8):1783-1787.
    [74]Ooyama, J..J.W. Foster. Bacterial Oxidation of Cycloparaffinic Hydrocarbons [J]. Antonie Van Leeuwenhoek,1965,31:45-65.
    [75]Leahy, J.G,Z.M. Khalid.E.J. Quintero, et al. The concentrations of hexadecane and inorganic nutrients modulate the production of extracellular membrane-bound vesicles, soluble protein, and bioemulsifier by Acinetobacter venetianus RAG-1 and Acinetobacter sp. strain HO1-N[J]. Can J Microbiol,2003,49(9):569-575.
    [76]Vaneechoutte, M.,I. Tjernberg,F. Baldi, et al. Oil-degrading Acinetobacter strain RAG-1 and strains described as 'Acinetobacter venetianus sp. nov.' belong to the same genomic species[J]. Res Microbiol,1999,150(1):69-73.
    [77]Ehrenreich, P.,A. Behrends,J. Harder, et al. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria[J]. Arch Microbiol,2000,173(1):58-64.
    [78]Davidova, I.A.J.M. Suflita. Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria[J]. Methods Enzymol,2005,397:17-34.
    [79]Spormann, A.M.,F. Widdel. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria[J]. Biodegradation,2000,11(2-3):85-105.
    [80]Callaghan, A.V.,M. Tierney,C.D. Phelps, et al. Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium[J]. Appl Environ Microbiol,2009,75(5):1339-1344.
    [81]Aeckersberg, F.,F.A. Rainey.F. Widdel. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions[J]. Arch Microbiol,1998,170(5):361-369.
    [82]So, C.M.,L.Y. Young. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J]. Appl Environ Microbiol,1999,65(7):2969-2976.
    [83]Cravo-Laureau, C.,R. Matheron,J.L. Cayol, et al. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane-and n-alkene-degrading, sulfate-reducing bacterium[J]. Int J Syst Evol Microbiol,2004,54(Pt 1):77-83.
    [84]Davidova, I.A.,K.E. Duncan,O.K. Choi, et al. Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium[J]. Int J Syst Evol Microbiol,2006, 56(Pt 12):2737-2742.
    [85]Kniemeyer, O.,F. Musat,S.M. Sievert, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature,2007,449(7164):898-901.
    [86]Higashioka, Y.,H. Kojima,T. Nakagawa, et al. A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium[J]. Biodegradation,2009, 20(3):383-390.
    [87]Smits, T.H.,S.B. Balada,B. Witholt, et al. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria[J]. J Bacteriol,2002,184(6):1733-1742.
    [88]Feng, L.,W. Wang,J. Cheng, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir [J]. Proc Natl Acad Sci U S A,2007,104(13):5602-5607.
    [89]Morikawa, M.Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds:current state and variants[J]. Appl Microbiol Biotechnol,2010,87(5): 1595-1603.
    [90]Kester, A.S.,J.W. Foster. Diterminal Oxidation of Long-Chain Alkanes by Bacteria[J]. J Bacteriol,1963,85:859-869.
    [91]Finnerty, W.R. Assay methods for long-chain alkane oxidation in Acinetobacter [J]. Methods Enzymol,1990,188:10-14.
    [92]McDonald, I.R.,C.B. Miguez,G. Rogge, et al. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments[J]. FEMS Microbiol Lett,2006,255(2):225-232.
    [93]van Beilen, J.B.,M. Neuenschwander.T.H. Smits, et al. Rubredoxins involved in alkane oxidation[J]. J Bacteriol,2002,184(6):1722-1732.
    [94]Iida, T.,T. Sumita,A. Ohta, et al. The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica:cloning and characterization of genes coding for new CYP52 family members[J]. Yeast,2000,16(12):1077-1087.
    [95]van Beilen, J.B.,E.G. Funhoff,A. van Loon, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases [J]. Appl Environ Microbiol,2006,72(1):59-65.
    [96]Hamamura, N.,C.M. Yeager,D.J. Arp. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8[J]. Appl Environ Microbiol,2001,67(11):4992-4998.
    [97]Murrell, J.C.,B. Gilbert,I.R. McDonald. Molecular biology and regulation of methane monooxygenase[J]. Arch Microbiol,2000,173(5-6):325-332.
    [98]Sluis, M.K..L.A. Sayavedra-Soto,D.J. Arp. Molecular analysis of the soluble butane monooxygenase from'Pseudomonas butanovora'[J]. Microbiology,2002,148(Pt 11):3617-3629.
    [99]Heringa, J.W..R. Huybregtse,L.A. van der. n-Alkane oxidation by a Pseudomonas. Formation and beta-oxidation of intermediate fatty acids[J]. Antonie Van Leeuwenhoek,1961,27: 51-58.
    [100]Yadav, J.S.,J.C. Loper. Multiple p450alk (cytochrome P450 alkane hydroxylase) genes from the halotolerant yeast Debaryomyces hansenii[J]. Gene,1999,226(2):139-146.
    [101]Ohkuma, M.,T. Zimmer,T. Iida, et al. Isozyme function of n-alkane-inducible cytochromes P450 in Candida maltosa revealed by sequential gene disruption[J]. J Biol Chem,1998,273(7): 3948-3953.
    [102]Schmitz, C.,I. Goebel,S. Wagner, et al. Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms[J]. Appl Microbiol Biotechnol,2000, 54(1):126-132.
    [103]Cardini, G.,P. Jurtshuk. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C[J]. J Biol Chem,1970,245(11):2789-2796.
    [104]Muller, R.,O. Asperger,H.P. Kleber. Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus[J]. Biomed Biochim Acta,1989,48(4): 243-254
    [105]Maier, T.,H.H. Forster,O. Asperger, et al. Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB 104[J]. Biochem Biophys Res Commun,2001,286(3): 652-658.
    [106]Babu, J.P..L.R. Brown. New type of oxygenase involved in the metabolism of propane and isobutane[J]. Appl Environ Microbiol,1984,48(2):260-264.
    [107]Li, L.,X. Liu,W. Yang, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN:unveiling the long-chain alkane hydroxylase[J]. J Mol Biol, 2008,376(2):453-465.
    [108]Baptist, J.N.,R.K. Gholson,M.J. Coon. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation[J]. Biochim Biophys Acta,1963,69:40-47.
    [109]van Beilen, J.B.,M.G. Wubbolts,B. Witholt. Genetics of alkane oxidation by Pseudomonas oleovorans[J]. Biodegradation,1994,5(3-4):161-174.
    [110]van Beilen, J.B.,S. Panke.S. Lucchini, et al. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences:evolution and regulation of the alk genes[J]. Microbiology,2001,147(Pt6):1621-1630.
    [111]Kok, M.,R. Oldenhuis,M.P. van der Linden, et al. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression[J]. J Biol Chem,1989,264(10):5435-5441.
    [112]van Beilen, J.B.,D. Penninga,B. Witholt. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans[J]. J Biol Chem,1992,267(13):9194-9201.
    [113]McKenna, E.J.,M.J. Coon. Enzymatic omega-oxidation.Ⅳ. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans [J]. J Biol Chem,1970,245(15):3882-3889.
    [114]Kok, M.,R. Oldenhuis,M.P. van der Linden, et al. The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase[J]. J Biol Chem,1989,264(10):5442-5451.
    [115]Peterson, J.A.,M.J. Coon. Enzymatic omega-oxidation.3. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans [J]. J Biol Chem,1968,243(2):329-334.
    [116]Eggink, G.,H. Engel,G. Vriend, et al. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints[J]. J Mol Biol,1990,212(1):135-142.
    [117]Ueda, T.,M.J. Coon. Enzymatic oxidation. Ⅶ. Reduced diphosphopyridine nucleotide-rubredoxin reductase:properties and function as an electron carrier in hydroxylation[J]. J Biol Chem,1972,247(16):5010-5016.
    [118]Chakrabarty, A.M.,G. Chou,I.C. Gunsalus. Genetic regulation of octane dissimilation plasmid in Pseudomonas[J]. Proc Natl Acad Sci U S A,1973,70(4):1137-1140.
    [119]Fennewald, M.,S. Benson,M. Oppici, et al. Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon[J]. J Bacteriol,1979,139(3):940-952.
    [120]Benson, S.,M. Oppici,J. Shapiro, et al. Regulation of membrane peptides by the Pseudomonas plasmid alk regulon[J]. J Bacteriol,1979,140(3):754-762.
    [121]Owen, D.J.,G. Eggink,B. Hauer, et al. Physical structure, genetic content and expression of the alkBAC operon[J]. Mol Gen Genet,1984,197(3):373-383.
    [122]Fennewald, M.,W. Prevatt,R. Meyer, et al. Isolation of inc P-2 plasmid DNA from Pseudomonas aeruginosa[J]. Plasmid,1978,1(2):164-173.
    [123]Gholson, R.K.J.N. Baptist,M.J. Coon. Hydrocarbon Oxidation by a Bacterial Enzyme System. Ii. Cofactor Requirements for Octanol Formation from Octane[J]. Biochemistry,1963,2: 1155-1159.
    [124]Peterson, J.A.,D. Basu,M.J. Coon. Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation[J]. J Biol Chem,1966,241(21):5162-5164.
    [125]Peterson, J.A.,M. Kusunose,E. Kusunose, et al. Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation[J]. J Biol Chem,1967,242(19): 4334-4340.
    [126]van Beilen, J.B..T.H. Smits.F.F. Roos, et al. Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases[J]. J Bacteriol,2005, 187(1):85-91.
    [127]Smits, T.H..M. Rothlisberger.B. Witholt, et al. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains[J]. Environ Microbiol,1999,1(4):307-317.
    [128]Marin, M.M.,T.H. Smits.J.B. van Beilen, et al. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control[J]. J Bacteriol,2001,183(14): 4202-4209.
    [129]Tani, A.,T. Ishige,Y. Sakai, et al. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1[J]. J Bacteriol,2001,183(5):1819-1823.
    [130]Fewson, C.A. The growth and metabolic versatility of the gram-negative Bacterium NCIB 8250 ("Vibrio 01")[J]. J Gen Microbiol,1967,46(2):255-266.
    [131]Yakimov, M.M..P.N. Golyshin,S. Lang, et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium[J]. Int J Syst Bacteriol, 1998,48 Pt 2:339-348.
    [132]PALLERONI, N.,R. KUNISAWA.R. CONTOPOULOU, et al. Nucleic Acid Homologies in the Genus Pseudomonas[J]. Int J Syst Bacteriol,1973:333-339.
    [133]Golyshin, P.N..T.N. Chernikova.W.R. Abraham, et al. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons[J]. Int J Syst Evol Microbiol,2002,52(Pt 3):901-911.
    [134]Vomberg, A.,U. Klinner. Distribution of alkB genes within n-alkane-degrading bacteria[J]. J Appl Microbiol,2000,89(2):339-348.
    [135]Panicker, G.,N. Mojib,J. Aislabie, et al. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR[J]. Antonie Van Leeuwenhoek, 2010,97(3):275-287.
    [136]Schwartz, R.D.,C.J. McCoy. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements[J]. Appl Microbiol,1973,26(2):217-218.
    [137]STUTZ, E.,G DEFAGO,H. KERN. Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco[J]. Phytopathology,1986,76(2):181-185.
    [138]Holloway, B.W. Genetics of Pseudomonas[J]. Bacteriol Rev,1969,33(3):419-443.
    [139]Guerra-Santos, L.H.,O. Kappeli,A. Fiechter. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors[J]. Appl Microbiol Biotechnol,1986,24(6):443-448.
    [140]Thijsse, G.J. A. Van der Linden. n-Alkane oxidation by aPseudomonas[J]. Antonie Van Leeuwenhoek,1958,24(1):298-308.
    [141]Fuhs, G.W. Der mikrobielle Abbau von Kohlenwasserstoffen[J]. Arch Microbiol,1961, 39(4):374-422.
    [142]Lukins, H.B.,J.W. Foster. Utilization of hydrocarbons and hydrogen by mycobacteria[J]. Z Allg Mikrobiol,1963,3(4):251-264.
    [143]Cole, S.T.,R. Brosch,J. Parkhill, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature,1998,393(6685):537-544.
    [144]Hou, C.,M. Jackson,M. Bagby, et al. Microbial oxidation of cumene by octane-grown cells[J]. Appl Microbiol Biotechnol,1994,41(2):178-182.
    [145]Whyte, L.G.,J. Hawari,E. Zhou, et al. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp[J]. Appl Environ Microbiol,1998,64(7): 2578-2584.
    [146]van Beilen, J.B.,T.H. Smits,L.G Whyte, et al. Alkane hydroxylase homologues in Gram-positive strains[J]. Environ Microbiol,2002,4(11):676-682.
    [147]Smits, T.H.,B. Witholt,J.B. van Beilen. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa[J]. Antonie Van Leeuwenhoek,2003,84(3): 193-200.
    [148]Smits, T.H.,M.A. Seeger,B. Witholt, et al. New alkane-responsive expression vectors for Escherichia coli and pseudomonas[J]. Plasmid,2001,46(1):16-24.
    [149]Sakai, Y.,H.H. MAENQY. Tani, et al. Use of long-chain n-alkanes (C13-C44) by an isolate, Acinetobacter sp. M-1[J]. Biosci Biotechnol Biochem,1994,58(11):2128-2130.
    [150]Aeckersberg, F.,F. Bak,F. Widdel. Anaerobic oxidation of saturated hydrocarbons to CO 2 by a new type of sulfate-reducing bacterium[J]. Arch Microbiol,1991,156(1):5-14.
    [151]Rueter, P.,R. Rabus,H. Wilkes, et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J]. Nature,1994,372(6505):455-458.
    [152]So, C.M.,L.Y. Young. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01[J]. Appl Environ Microbiol,1999,65(12):5532-5540.
    [153]So, C.M.,C.D. Phelps,L.Y. Young. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3[J]. Appl Environ Microbiol,2003,69(7):3892-3900.
    [154]Zengler, K.,H.H. Richnow,R. Rossello-Mora, et al. Methane formation from long-chain alkanes by anaerobic microorganisms [J]. Nature,1999,401(6750):266-269.
    [155]Alain, K.,T. Holler.F. Musat, et al. Microbiological investigation of methane-and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania[J]. Environ Microbiol,2006,8(4):574-590.
    [156]Bonin, P.,C. Cravo-Laureau.V. Michotey, et al. The anaerobic hydrocarbon biodegrading bacteria:an overview[J]. Ophelia,2004,58(3):243-254.
    [157]Callaghan, A.V..L.M. Gieg,K.G. Kropp, et al. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium[J]. Appl Environ Microbiol,2006,72(6):4274-4282.
    [158]Cravo-Laureau, C.,V. Grossi.D. Raphel, et al. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T[J]. Appl Environ Microbiol,2005,71(7):3458-3467.
    [159]Kropp, K.G.,I.A. Davidova,J.M. Suflita. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture [J]. Appl Environ Microbiol,2000, 66(12):5393-5398.
    [160]Davidova, I.A..L.M. Gieg,M. Nanny, et al. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture[J]. Appl Environ Microbiol,2005,71(12): 8174-8182.
    [161]Rabus, R.,H. Wilkes,A. Behrends, et al. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium:evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism[J]. J Bacteriol,2001,183(5): 1707-1715.
    [162]Wilkes, H.,R. Rabus.T. Fischer, et al. Anaerobic degradation of n-hexane in a denitrifying bacterium:further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement[J]. Arch Microbiol,2002,177(3):235-243.
    [163]Colwell, R.R. Polyphasic taxonomy of the genus vibrio:numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species[J]. J Bacteriol,1970,104(1): 410-433.
    [164]Vandamme, P.,B. Pot.M. Gillis, et al. Polyphasic taxonomy, a consensus approach to bacterial systematics[J]. Microbiol Rev,1996,60(2):407-438.
    [165]李丹.海洋低温解烃菌的解烃特性及所产乳化剂的理化性能研究[J].南开大学,2008.
    [166]Hammes, W.,C. Hertel,M. Dworkin, et al. The prokaryotes:an evolving electronic resource for the microbiological community[J]. The Prokaryotes, an evolving electronic resource for the microbiological community,2003.
    [167]Wayne, L.,D. Brenner,R. Colwell, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics[J]. Int J Syst Bacteriol,1987,37(4):463-464.
    [168]Fleischmann, R.D.,M.D. Adams,O. White, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd[J]. Science,1995,269(5223):496-512.
    [169]Gordon, D.,C. Abajian.P. Green. Consed:a graphical tool for sequence finishing[J]. Genome Res,1998,8(3):195-202.
    [170]Delcher, A.L..D. Harmon.S. Kasif, et al. Improved microbial gene identification with GLIMMER[J]. Nucleic Acids Res,1999,27(23):4636-4641.
    [171]Delcher, A.L.,K.A. Bratke,E.C. Powers, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics,2007,23(6):673-679.
    [172]Lowe, T.M.,S.R. Eddy. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Res,1997,25(5):955-964.
    [173]Tatusov, R.L.,E.V. Koonin,D.J. Lipman. A genomic perspective on protein families[J]. Science,1997,278(5338):631-637.
    [174]Tatusov, R.L..N.D. Fedorova,J.D. Jackson, et al. The COG database:an updated version includes eukaryotes[J]. BMC Bioinformatics,2003,4:41.
    [175]Marchler-Bauer, A.,J.B. Anderson,M.K. Derbyshire, et al. CDD:a conserved domain database for interactive domain family analysis[J]. Nucleic Acids Res,2007,35(Database issue): D237-240.
    [176]von Mering, C.,L.J. Jensen,M. Kuhn, et al. STRING 7-recent developments in the integration and prediction of protein interactions[J]. Nucleic Acids Res,2007,35(Database issue): D358-362.
    [177]Hirsh, A.E.,H.B. Fraser. Protein dispensability and rate of evolution[J]. Nature,2001, 411(6841):1046-1049.
    [178]Berriman, M.,K. Rutherford. Viewing and annotating sequence data with Artemis[J]. Brief Bioinform,2003,4(2):124-132.
    [179]Kanehisa, M.,S. Goto.S. Kawashima, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Res,2004,32(Database issue):D277-280.
    [180]Caspi, R.,H. Foerster,C.A. Fulcher, et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases[J]. Nucleic Acids Res, 2008,36(Database issue):D623-631.
    [181]Lerat, E.,H. Ochman. Psi-Phi:exploring the outer limits of bacterial pseudogenes[J]. Genome Res,2004,14(11):2273-2278.
    [182]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [183]Rosen, R.,A. Sacher,N. Shechter, et al. Two-dimensional reference map of Agrobacterium tumefaciens proteins[J]. Proteomics,2004,4(4):1061-1073.
    [184]Candiano, G,M. Bruschi,L. Musante, et al. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis,2004,25(9):1327-1333.
    [185]Yu, K.H.,A.K. Rustgi,I.A. Blair. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry[J]. J Proteome Res, 2005,4(5):1742-1751
    [186]Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophageT4[J]. Nature,1970,227(5259):680-685.
    [187]Tulchin, N.,L. Ornstein,B.J. Davis. A microgel system for disc electrophoresis[J]. Anal Biochem,1976,72:485-490.
    [188]Gross, R.,C.A. Guzman,M. Sebaihia, et al. The missing link:Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae[J]. BMC Genomics,2008,9:449.
    [189]Lechner, M.,K. Schmitt.S. Bauer, et al. Genomic island excisions in Bordetella petrii[J]. BMC Microbiol,2009,9:141.
    [190]Chen, Y.,H. Korkeala,J. Linden, et al. Quantitative real-time reverse transcription-PCR analysis reveals stable and prolonged neurotoxin cluster gene activity in a Clostridium botulinum type E strain at refrigeration temperature[J]. Appl Environ Microbiol,2008,74(19):6132-6137.
    [191]Reva, O.N.,B. Tummler. Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns[J]. BMC Bioinformatics,2004, 5:90.
    [192]Bohlin, J. Genomic signatures in microbes -- properties and applications[J]. ScientificWorldJournal,2011,11:715-725.
    [193]Bohlin, J.,E. Skjerve. Examination of genome homogeneity in prokaryotes using genomic signatures[J]. PLoS One,2009,4(12):e8113.
    [194]Yergeau, D.A.,C.M. Kelley.H. Zhu, et al. Transposon transgenesis in Xenopus[J]. Methods, 2010,51(1):92-100.
    [195]Kweon, O.,S.J. Kim,S. Baek, et al. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases[J]. BMC Biochem,2008,9:11.
    [196]Priefert, H.,J. Rabenhorst,A. Steinbuchel. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate[J]. J Bacteriol,1997,179(8):2595-2607.
    [197]Yu, B.,P. Xu,S. Zhu, et al. Selective biodegradation of S and N heterocycles by a recombinant Rhodococcus erythropolis strain containing carbazole dioxygenase[J]. Appl Environ Microbiol,2006,72(3):2235-2238.
    [198]Beil, S.,J.R. Mason,K.N. Timmis, et al. Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene[J]. J Bacteriol,1998, 180(21):5520-5528.
    [199]Parales, J.V.,R.E. Parales.S.M. Resnick, et al. Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the alpha subunit of the oxygenase component[J], J Bacteriol,1998,180(5):1194-1199.
    [200]Parales, R.E.,M.D. Emig.N.A. Lynch, et al. Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems[J]. J Bacteriol,1998,180(9):2337-2344.
    [201]Tan, H.M..C.M. Cheong. Substitution of the ISP alpha subunit of biphenyl dioxygenase from Pseudomonas results in a modification of the enzyme activity[J]. Biochem Biophys Res Commun,1994,204(2):912-917.
    [202]Kauppi, B.,K. Lee,E. Carredano, et al. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase[J]. Structure,1998,6(5):571-586.
    [203]Marchler-Bauer, A.,S. Lu,J.B. Anderson, et al. CDD:a Conserved Domain Database for the functional annotation of proteins [J]. Nucleic Acids Res,2011,39(Database issue):D225-229.
    [204]Stingley, R.L..A.A. Khan,C.E. Cerniglia. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1 [J]. Biochem Biophys Res Commun, 2004,322(1):133-146.
    [205]Stingley, R.L.,B. Brezna,A.A. Khan, et al. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1[J]. Microbiology,2004,150(Pt 11): 3749-3761.
    [206]Gibson, D.T.,S.M. Resnick,K. Lee, et al. Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4[J]. J Bacteriol,1995,177(10):2615-2621.
    [207]Chang, H.K.,G.J. Zylstra. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1[J]. J Bacteriol,1998,180(24):6529-6537.
    [208]Armengaud, J.,B. Happe,K.N. Timmis. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. Strain RW1:catabolic genes dispersed on the genome[J]. J Bacteriol,1998, 180(15):3954-3966.
    [209]Werlen, C.,H.P. Kohler J.R. van der Meer. The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation[J]. J Biol Chem,1996,271(8): 4009-4016.
    [210]Treadway, S.L.,K.S. Yanagimachi,E. Lankenau, et al. Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24[J]. Appl Microbiol Biotechnol,1999, 51(6):786-793.
    [211]Nojiri, H.,M. Kamakura,M. Urata, et al. Dioxin catabolic genes are dispersed on the Terrabacter sp. DBF63 genome[J]. Biochem Biophys Res Commun,2002,296(2):233-240.
    [212]Eaton, R.W. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B[J]. J Bacteriol,2001,183(12):3689-3703.
    [213]Kitagawa, W.,A. Suzuki,T. Hoaki, et al. Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1 demonstrated by denaturing gradient gel electrophoresis[J]. Biosci Biotechnol Biochem,2001,65(8):1907-1911.
    [214]Romine, M.F.,L.C. Still well,K.K. Wong, et al. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199[J]. J Bacteriol,1999,181(5): 1585-1602.
    [215]Jones, R.M.,B. Britt-Compton,P.A. Williams. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator[J]. J Bacteriol,2003,185(19):5847-5853.
    [216]Demaneche, S.,C. Meyer,J. Micoud, et al. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons [J]. Appl Environ Microbiol,2004,70(11):6714-6725.
    [217]Kasai, Y.,K. Shindo,S. Harayama, et al. Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5[J]. Appl Environ Microbiol,2003,69(11):6688-6697.
    [218]Sato, S.I.J.W. Nam,K. Kasuga, et al. Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10[J]. J Bacteriol,1997,179(15): 4850-4858.
    [219]Nakatsu, C.H.,R.C. Wyndham. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60[J]. Appl Environ Microbiol,1993,59(11):3625-3633.
    [220]Dehmel, U..K.H. Engesser,K.N. Timmis, et al. Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310[J]. Arch Microbiol,1995, 163(1):35-41.
    [221]Locher, H.H..T. Leisinger,A.M. Cook.4-Toluene sulfonate methyl-monooxygenase from Comamonas testosteroni T-2:purification and some properties of the oxygenase component[J]. J Bacteriol,1991,173(12):3741-3748.
    [222]Fukumori, F.,C.P. Saint. Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDNl)[J]. J Bacteriol,1997, 179(2):399-408.
    [223]Haak, B.,S. Fetzner.F. Lingens. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS[J]. J Bacteriol,1995,177(3):667-675.
    [224]Bundy, B.M.,A.L. Campbell,E.L. Neidle. Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1[J]. J Bacteriol,1998,180(17):4466-4474.
    [225]Kiyohara, H.,K. Nagao.K. Kouno, et al. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2[J]. Appl Environ Microbiol,1982,43(2):458-461.
    [226]Takizawa, N.,N. Kaida,S. Torigoe, et al. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82[J]. J Bacteriol,1994,176(8): 2444-2449.
    [227]Shepherd, J.M.,G. Lloyd-Jones. Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology[J]. Biochem Biophys Res Commun, 1998,247(1):129-135.
    [228]Masai, E.,A. Yamada,J.M. Healy, et al. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 [J]. Appl Environ Microbiol,1995,61(6):2079-2085.
    [229]Wackett, L.P. Toluene dioxygenase from Pseudomonas putida F1[J]. Methods Enzymol, 1990,188:39-45.
    [230]Ohtsubo, Y.,Y. Nagata,K. Kimbara, et al. Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate,2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid[J]. Gene,2000,256(1-2): 223-228.
    [231]Martin, V.J.,W.W. Mohn. A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid-degrading bacterium Pseudomonas abietaniphila BKME-9[J]. J Bacteriol,1999, 181(9):2675-2682.
    [232]Nomura, Y.,M. Nakagawa,N. Ogawa, et al. Genes in PHT plasmid encoding the initial degradation pathway of phthalate in< i> Pseudomonas putida[J]. Journal of fermentation and bioengineering,1992,74(6):333-344.
    [233]Urata, M.,M. Miyakoshi,S. Kai, et al. Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCARl of Pseudomonas resinovorans strain CA10[J]. J Bacteriol,2004,186(20):6815-6823.
    [234]Takizawa, N.,T. Iida,T. Sawada, et al. Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of pseudomonas aeruginosa PaKl and Pseudomonas putida OUS82[J]. J Biosci Bioeng,1999,87(6):721-731.
    [235]Kosono, S.,M. Maeda,F. Fuji, et al. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation[J]. Appl Environ Microbiol,1997,63(8):3282-3285.
    [236]Li, L.,Q. Li,F. Li, et al. Degradation of carbazole and its derivatives by a Pseudomonas sp[J]. Appl Microbiol Biotechnol,2006,73(4):941-948.
    [237]Habe, H.,K. Kasuga,H. Nojiri, et al. Analysis of cumene (isopropylbenzene) degradation genes from Pseudomonas fluorescens EP01[J]. Appl Environ Microbiol,1996,62(12): 4471-4477.
    [238]Jamshad, M.,P. De Marco.C.C. Pacheco, et al. Identification, mutagenesis, and transcriptional analysis of the methanesulfonate transport operon of Methylosulfonomonas methylovora[J]. Appl Environ Microbiol,2006,72(1):276-283.
    [239]Baxter, NJ.,J. Scanlan,P. De Marco, et al. Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment[J]. Appl Environ Microbiol,2002, 68(1):289-296.
    [240]Kane, S.R.,A.Y. Chakicherla,P.S. Chain, et al. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1 [J]. J Bacteriol, 2007,189(5):1931-1945.
    [241]Kittichotirat, W.,N.M. Good,R. Hall, et al. Genome sequence of Methyloversatilis universalis FAM5T, a methylotrophic representative of the order Rhodocyclales[J]. J Bacteriol, 2011,193(17):4541-4542.
    [242]Oh, H.M.,K.K. Kwon,I. Kang, et al. Complete genome sequence of "Candidatus Puniceispirillum marinum" IMCC1322, a representative of the SARI 16 clade in the Alphaproteobacteria[J]. J Bacteriol,2010,192(12):3240-3241.
    [243]Beharry, Z.M..D.M. Eby.E.D. Coulter, et al. Histidine ligand protonation and redox potential in the rieske dioxygenases:role of a conserved aspartate in anthranilate 1,2-dioxygenase[J]. Biochemistry,2003,42(46):13625-13636.
    [244]Kimura, S.,A. Kikuchi.T. Senda, et al. Tolerance of the Rieske-type [2Fe-2S] cluster in recombinant ferredoxin BphA3 from Pseudomonas sp. KKS102 to histidine ligand mutations[J]. Biochem J,2005,388(Pt 3):869-878.
    [245]Eby, D.M..Z.M. Beharry,E.D. Coulter, et al. Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1[J]. J Bacteriol,2001,183(1):109-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700