接头柔度参数化概念车身建模及其改进PSO算法的优化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先根据车身结构接头的特性及提取原则,建立了一种角接弹簧-刚梁简化接头模型,并通过算例验证了此模型的正确性和有效性;其次,以某车型为例建立了车身简化模型,并对模型分别进行静刚度分析和低阶模态分析,通过与HYPERWORKS软件建立的详细模型对比,结果表明本文建立的车身简化模型可以较准确地描述详细车身性能;随后,建立了车身简化模型优化问题的数学模型,直接对单元的力学特性进行优化;此外,提出一种基于正交试验设计和模拟退火思想的改进PSO算法——OPSO算法,并通过测试函数和10杆桁架结构算例验证本文提出OPSO算法的可行性和有效性。
     最后,将本文提出的OPSO算法应用于包含梁单元、板单元和接头单元的概念车身结构中,分别进行静力学和频率优化,优化结果表明:OPSO算法可在有限次迭代中找出满足全部约束条件的优化结果,且与标准PSO算法相比结果精度更好,寻优效率更高,从而证明了OPSO方法对解决工程实际优化问题是着实有效的。
The concept design which is about the car properties, outline and inner decorations, is used to describing the car’s commissioning in the future. It is used to analyzing and optimizing the body structure, choosing the type of the body structure, defining structure parameters, calculating modal response and so on. It’s hard to remedial the design defects in the concept design, so this step is very important in the whole design. The concept design can shorten the period of the whole design, decrease the blindness of the design and improve efficiency. Also, it can determine 70% of the whole cost in the end of this step leading to more reliable results.
     Establishing a simplified model of the body structure correctly is very important in the study and the difference between the simplified models is the joints. As it is used to be the intersection of loading-carrying members, the joints are the key part of the body structure. Since modeling a joint is a complex process, it’s necessary to find an accurate but simple modeling method of joint. If we don’t take it care, it will bring about the reduction of joint stiffness, low NVH properties, the increase of the stress and strain level, as well as the decrease of fatigue life. So it is significant to study the principle of joint design and quick establishment of mathematical model.
     Not only the exact body simplified structure, but also the weight reduction and high stiffness should be considered. Now it has become one of the hotspots. The traditional mathematical model is hard to solve large practical engineering problem with massive elements and variables. Therefore, establish correct mathematical model and find a way to solve large optimization problems are worth to do.
     This paper researches about the concept car body structure with the aim at establishing the simplified joint model quickly and exactly. Also, optimize the concept car body composed of beam elements, plate elements and joint elements, and all of the optimization is based on the software“CAE analysis and optimization of the concept body structure”proposed in our laboratory. Finally realize the process of CAE analysis step by step.
     The paper mainly does the following work:
     1) The method of extracting joints, the principle of establishing joints detailed models, the flexibility and mechanical properties are discussed in this paper. Take Joint C as an example to calculate the errors of simplified models in nine conditions. The terms“characteristic direction”and“characteristic system”are defined and used to deal with the coupling phenomenon between different rotation degrees. Finally, the validity of the simplified model is proved.
     2) According to different processing methods of joints in body structure, this paper establishes simplified body model with detailed joints(Model 1), one with rigid joints(Model 2) and one withΔ-rotational spring and rigid beam joint(Model 3). Finally, compare the results of the three simplified body models under bending and tensional conditions in order to discuss joints’effect on the whole body stiffness.
     3) Body structure optimization aims at weight reduction and high stiffness. The design variables contain the sectional area, the bending inertia moment, the twisting inertia moment of beam elements, sheet thickness of plate elements and joint stiffness. The traditional method is used to transform the mechanical characteristic parameters into geometric parameters. In this method, the variation of the inertia moment has no effect on the objective of weight, and only relates with the strain energy. Therefore, under the action of minimal strain energy, the inertia moments are respectively the upper bound of each restriction interval, and such results do nothing to the optimization. In order to solve this problem, we transform the objective functions into the restrictions and so the mechanical characteristic parameters can be optimized directly.
     4) Because body structure optimization is a multiple objective problem with massive variables, the traditional optimization method can not get the optimal solution. So after comparing the features of several improved PSO methods, this paper proposes an improved PSO method named OPSO method to solve this problem. The main idea of OPSO method is the initialization of particles based on orthogonal experiments, and also combined with the theory of simulated annealing. Some acceptance criteria e can be established in order to accept new solutions whereΔE < e. Larger value of inertia weight is good to avoid local minimum as well as smaller value is good to convergence. The best way to find global minimum is to get high ability of exploration in the primer and high ability of convergence later. The OPSO method adjusts the value of inertia weight adaptively.
     5) As we know, the OPSO method distributes the initial particles by orthogonal experiments. A general orthogonal table can only solve the problems with no more than 20 factors under 2 to 5 levels. However, it only can be found in existing references and not suitable for complex problems. The orthogonal tables proposed in this paper can solve the problems with more than 2000 factors under 2 to 15 levels at least and the amount of experiments in orthogonal experiments is up to 3000. Furthermore, more large orthogonal tables can be constructed if they are required.
     6) According to calculating the text function and 10-bar truss structure, the feasibility and effectiveness of the OPSO method has been proved. Finally, the OPSO method is applied to the concept car body structure composed of beam elements, plate elements and joint elements. Then statics optimization and dynamics optimization has been done. Compared with the optimal solutions respectively solved by the OPSO method and standard PSO method, the results solved by the OPSO method is more optimal and effectively in finite iterations. And they also satisfy the constraint conditions. So the OPSO method has the ability to solve the practical problems well.
引文
[1]张明生.世界汽车工业大格局下的中国汽车工业[J].汽车与零件,2007,51(20).
    [2]戴轶.轿车概念设计CAE关键技术应用研究报告[C].中国科学院技术科学论坛第二十三次学术报告会议(CAE自主创新发展战略)中国科学院技术科学论坛第二十三次学术报告会议论文集,2006年.
    [3]张京明,蒋浩斌.汽车工程概论[M].北京:北京大学出版社,2008.
    [4]黄金陵.汽车车身设计[M].北京:机械工业出版社,2007.
    [5]高尚,杨静宇.群智能算法及其应用[M].中国水利水电出版社,2006,1-17.
    [6]封磊,蔡创,齐春等. PSO和GA的对比及其混合算法的研究进展[J].控制工程,2005,12:89-92.
    [7] Chang D C. Effect of flexible connections on body structure response[J]. SAE paper 740041,1974.
    [8] Chon C T. Sensitvity of Overall Vehicle Stiffness to Local Joint Stiffness. Proceedings of Langley research Symposium[C]. NASACP2457,1986.
    [9] I. Fernández-Bustos,J. Agirrebeitia,G. Ajuria, et al. A new finite element to represent prismatic joint constraints in mechanisms[J]. Finite Elements in Analysis and Design,2006,43:36-50.
    [10] Gangadharan Sathya N,Nikolaidis E,Haftka Raphael T. Probabilistic System Identification of Two Flexible Joint Models[J]. AIAA Journal,1991,29(8):1319-1326.
    [11] Lee K,Nikolaidis E. Identification of Flexible Joints in Vehicle Structures[J]. AIAA Journal,1992,30(2):482-489.
    [12] Lee K,E.Nikolaidis. A Two-dimensional Model for Joints in Vehicle Structures[J]. Computers & Structures,1992,45(4):775-784.
    [13] Nikolaidis E,Lee K. A 3-D joint model for automotive structures[J]. SAE paper 921088,1992.
    [14] Nikolaidis E,Zhu M. Design of Automotive Joints:Using Neural Networks And Optimization to Translate Performance Requirements to Physical Design Parameters[J]. Computers & Structures,1996,60(6):989-1001.
    [15] K. Shimomaki,I. Sugamori,K. Takahashi, et al. Joint stivness of body structures-part I. Its evaluation method[J]. Jap. Soc. Auto. Engrs.,1990,43:138-142.
    [16] Fredricson H,Johansen T,Klarbring A. Topology optimization of frame structures with flexible joints[J]. Structural and Multidisciplinary Optimization,2003,25:199-214.
    [17] Fredricson H. Design Process for Property Based Optimization of Vehicle Body Structures[J]. SAE paper 2003-01-2755,2003.
    [18] Suh M-W,Suhr J,Yang W-H. Condensed joint matrix method for the joint structure of a vehicle body[J]. Journal of Automobile Engineering. Proceedings Part D,2002,216(1):35-41.
    [19] Moon Y.M.,Jee T.H. Development of an automotive joint model using an analytically based formulation[J]. Journal of Sound and Vibration,1999,220(4)625-640.
    [20] Kim Jin Hong,Kim Hyeon Seok,Kim Dae Woon, et al. New accurate efficient modeling techniques for the vibration analysis of T-joint thin-walled box structures[J]. International Journal of Solids and Structures,2002,2002(39):2893-2909.
    [21]蒋光福. EQ140车身接头刚度分析[J].二汽科技,1992,1992(5):4-14.
    [22]沈小原,许海明.车架接头刚度的实验确定[J].试验技术与试验机,1996,36(3):126-128.
    [23]张华明,郭敬编译.汽车车身结构连接的实验设计[J].轻型车技术,1999,5:15-20.
    [24]黄金陵,娄永强,龚礼洲.轿车车身结构概念模型中接头的模拟[J].机械工程学报,2000,36(3):78-81.
    [25]李明.遗传算法的改进及其在优化问题中的应用研究[D].吉林大学硕士学位论文,2004,1-89.
    [26] Holland,J.H. Adaption in Nature and Artificial System[A]. 1991.
    [27] Fogel , D.B. An introduction to simulated evolutionary optimization[A]. IEEE Transaction on Neural Networks,1994,5(1):3-14.
    [28] Hopfield,J.J.,Tank,D.W.‘Neural’computation of decisions in optimization problems[J]. Biological Cyberntics,1985,52:141-152.
    [29]王凌.智能优化算法及其应用[M].北京:清华大学出版社,施普林格出版社,2001,1-60.
    [30]彭喜元,彭宇,戴毓丰.群智能理论及其应用[J].电子学报,2003,31(12):1982-1988.
    [31] J. Kenned,R. Eberhat. Particle swarm optimization[A]. Proceedings of the 4th IEEE Intemational Conference on Neural Network,1995,1942-1948.
    [32] Eberhart R.,SimPson P,Dobbins R.. Computational Intelligence PC Tools[A]. Boston,MA:Academic Press Professional,1996.
    [33] EI-Gallad A,EI-Hawary M,Sallam A,Kalas A. Enhancing the particle swarm optimizer via proper parameters selection[A]. IEEE CCECE02 Proceedings[C]. Piscataway,NJ,Canadiam:IEEE service center,2002,792-797.
    [34] Shi Yuhui,Eberhart R. Fuzzy adaptive particle swarm optimization[A]. Proc IEEE Int Conf on Evolutionary Computation[C]. Seoul,2001,101-106.
    [35] Suganthan P N. Particle swarm optimizer with neighborhood operator[A]. Proc of the Congress on Evolutionary Computation[C]. Washington DC,1999,1958-1962.
    [36] Clerc M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C]. Washington DC,1999,1951-1957.
    [37] Angeline P J. Using selection to improver particle swarm optimization[A]. Proc IEEE IntConf on Evolutionary Computation[C]. Anchorage,1998,84-89.
    [38] Ozcan E,Mohan C. Particle swarm optimization:SurfingThe Waves[A]. Proc IEEE Int Conf on Evolutionary Computation[C]. Washington DC,1999,1939-1944.
    [39] Al-kazemi B,Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[C]. Honolulu,HI USA,2002,489-494.
    [40] Krink T,Vesterstrom J S,RigetJ. Particle swarm optimisation with spatial particle extension[A]. Proceedings of the Fourth Congress on Evolutionary Computation(CEC22002)[C]. Honolulu,HI USA,2002,1474-1479.
    [41] Lvbjerg M,Rasmussen,Krink T. Hybrid particle swarm optimizer with breeding and subpopulat T K ions[A]. Proceedings of the Genetic and Evolutionary Computation Conference[C]. San Francisco,California,2001,469-476.
    [42] Xiaohui Hu,Eberhart. Adaptive particle swarm optimization:detection and response to dynamic systems[A]. Proceedings of the 2002 Congress on Evolutionary Computation[C]. Honolulu,HI USA,2002,1666-1670.
    [43] Fieldsend JE, Sing S. A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence[C]. In:Bullinaria JA, ed. Proc. of the 2002 UK Workshop on Computational Intelligence. Birmingham:University of Birmingham,2002,37?44.
    [44] Eberhart R C,Kennedy J. A New Optimizer Using Particles Swarm Theory[C]. Proc. Sixth International Symposium on Micro Machine and Human Science,1995,30-43.
    [45] Shi Y.H.,Eberhart R C. A Modified Particle Swarm Optimizer[C]. IEEE International Conference on Evolutionary Computation,Anchorage,1998,69-73.
    [46] Jacques Riget,Jakob S.Vesterstrφm. A Diversity-Guided Particle Swarm Optimizer[C]. The ARPSO EVALife Technical Report,2002.
    [47] Morten Lovbjerg,T. Krink. Extending particle swarm opimizers with self-organized criticality[C]. 2002.
    [48] Krink T,Vesterstrom J S,Rigest J. Particle swarm optimization with spatial particle extension[J]. 2002
    [49] Habib, S. J.,S. A. K. Buthainah. Comparative study between the internal behavior of GA and PSO through problem-specific distance functions[C]. Proceedings of the 2005 IEEE Congress on Evolutionary Computation,2005,3:2190-2195.
    [50] Rui Mendes,James Kennedy,JoséNeves. The full informed par-tide swarm:simpler,maybe better[J]. 2004.
    [51]高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104.
    [52]郭明山,刘秉瀚.一种改进的混沌粒子群算法[A].福建电脑,2008.
    [53]曹春红,张永坚,李文辉.杂交粒子群算法在工程几何约束求解中的应用[C].中国仪器仪表学会第六届青年学术会议,2004,397-400.
    [54]王光辉,陈杰,潘峰.多种群协同粒子群优化算法求解动态环境优化问题[C].第27届中国控制会议,2008.
    [55]魏智博,刘艳,顾雪平.基于离散粒子群优化算法的电力系统网络重构[C].中国高等学校电力系统及其自动化专业第二十二届学术年会,2006.
    [56]吴晓军,薛惠锋等. GA-PSO混合规划算法[J].西北大学学报(自然科学版),2005,35(1):39-43.
    [57] XiaoHui Hu,R C Eberhart,Yuhui Shi. Engineering optimization with particle swarm[J]. 2003.
    [58] Kennedy J. The particle swarm: Social adaptation of knowledge[J]. 1997.
    [59]李晓磊,冯少辉,钱积新等.基于人工鱼群算法的鲁棒PID控制器参数整定方法研究[J].信息与控制,2004,33(1):84-87.
    [60]李建勇.粒子群优化算法研究[D].浙江大学硕士学位论文,2004,1-65.
    [61]高尚,杨静宇.背包问题的混合粒子群优化算法[J].中国工程科学,2006.
    [62]高尚,杨静宇.武器-目标分配问题的粒子群优化算法[J].系统工程与电子技术,2005,27(7):1250-1252.
    [63]高尚,杨静宇,吴小俊.求解指派问题的交叉粒子群优化算法[J].计算机工程与应用,2004,40(8):90-91.
    [64]任荣,付进平.流水作业调度算法及其JAVA实现[J].漯河职业技术学院学报,2005.
    [65] Parsopoulos K E,Vrahatis N. Recent approaches to global optimization problems through particles swarm optimization[J]. Natural Computing,2002,1:235-306.
    [66] Kassabalidis I,EI Sharkawi,M A Marks. Adaptive-SDR:Adaptive swarm-based distributed routing[A]. Proceedings of the 2002 International Joint Conference on Neural Networks[C]. Honolulu,HI USA,2002,1:351-354.
    [67] Robinson J,Sinton S,Rahmat-Samiii. Particle swarm,genetic algorithm,and their hybrids:optimization of a profiled corrugated horn antenna[A].2002 IEEE Antennas and Propagation Society International Sym2posium and URSI National Radio Science Meeting[C]. USA:Sun Automo,TX,2002,1:314-317.
    [68] Eberhart R C,Hu X. Human tremor analysis using particle swarm optimization[A]. Proc. Congress on Evolutionary Computation[C]. 1999,1927-1930.
    [69]温淑慧,刘夏.基于正交试验的PSO-Fisher图像分割算法[J].激光与红外,2008,38(11):1168-1172.
    [70]谢晓峰,张文俊,杨之廉.粒子群算法综述[J].控制与决策,2003,18(2):129-133.
    [71]李爱国,覃征,鲍复民等.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3.
    [72]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
    [73]张丽平.粒子群优化算法的理论及实践[D].浙江大学博士学位论文,2005,1-87.
    [74] Plank Gordon R. Analytical Investigation of Driver Thoracic Response to Out of PostionAirbag Deployment[J]. SAE paper 983165,1998.
    [75] Payer Erich. Advanced Simulation Techniques for Optimization of Powertrain NVH and Fatigue Behavior[J]. SAE paper 962396,1996.
    [76] Fogerson Peter E. Introduction of the Finite Element Method into the Thermal Synthesizer System[J]. SAE paper 972447,1997.
    [77] Hussien Hussien A. Finite Element Dynamic Analysis of the Rear Axle System[J]. SAE paper 1999-01-0735,1999.
    [78] Nishigaki Hidekazu,Nishiwaki Shinji,Amago Tatsuyuki, et al. First Order Analysis - New CAE Tools for Automotive Body Designers[J]. SAE Paper 2001-01-0768,2001.
    [79] Tsurumi Yasuaki,Nishigaki Hidekazu,Nakagawa Toshiaki, et al. First Order Analysis for Automotive Body Structure Design-Part 2: Joint Analysis Considering Nonliear Behavior[J]. SAE paper 2004-01-1659,2004.
    [80] Nishigaki Hidekazu,Amago Tatsuyuki,Sugiura Hideki, et al. First Order Analysis for Automotive Body Structure Design -Part 1:Overview and Applications[J]. SAE paper 2004-01-1658,2004.
    [81] Cetin Onur L,Saitou Kazuhiro,Nishigaki Hidekazu, et al. Modular Structural Component Design Using the First Order Analysis and Design Using the First Order Analysis and Decomposition-based Assembly Synthesis Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition[C]. New York,2001.
    [82] Kunishi Daichi,Kikuchi Noboru. Analysis of FEM Results Based upon FOA[J]. SAE paper 2004-01-1729,2004.
    [83] Nicklas Bylund. Simulation Driven Product Development Applied to Car Body Design[D]. Lule? University of TechnologyDepartment of Applied Physics and Mechanical Engineering,2004.
    [84] Bylund Nicklas. Fast and Economic Stiffness Evaluation of Mechanical Joints[J]. SAE paper 2003-01-2751,2003.
    [85] Prater Glen,Shahhosseini Jr and Ali M. Finite Element Concept Models for Vehicle Architecture Assessment and Optimization[J]. SAE 2005-01-1400,2005.
    [86] Kuo E Y,Mehta P R,Prater G, et al. Reliability and Quality of Body Concept CAE Models for Design Derection Studies[J]. SAE paper 2006-01-1617,2006.
    [87] Chiew S.P.,Soh C.K.,Soh A.K. SCF Design Equations for Steel Maltiplanar Tubular XT-Joints[J]. The Structural Engineer,1996.
    [88] Lewis Katy,Spencer Christian,White Michael. Light Truck Frame Joint Stiffness Study[R]. Altair Engineering,A/SP-005-1,USA:Altair corperation,2001.
    [89] Dominguez A., Stiharu, I. and Sedaghati, R. Practical design optimization of truss structures using the genetic algorithms[J]. Research in Engineering Design,2006,17(2):3-84.
    [90] Achtziger W Stolpe M. Global optimization of truss topology with discrete bar areas-Part 1: theory of relaxed problems [J]. Comput Optim Appl,2008,40:247-280.
    [91] Rasmussen MH Stolpe M. Global optimization of discrete truss topology design problems using a parallel cut-and-branch method[J]. Comput Struct, 2008,86:1527-1538.
    [92] YK Sui. Two Optimization Methods for Complicated Structures with Multi-Parameter Elements Based on Generalized Condensation[J]. Structural Optimization,1999,17:226-232.
    [93] Eskandari H. and Geiger, C.D. A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems[J]. Journal of Heuristics,2008,14(3):203-241.
    [94] Colorni A,Dorigo M,Maniezzo V. An investigation of some properties of an ant algorithm[A]. Proc. of the Parallel Problem Solving from Nature Conference[C]. 1992,509-520.
    [95]金欣磊.基于PSO的多目标优化算法研究及应用[D].浙江大学博士学位论文,2006,3-15.
    [96]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安交通大学出版社,2002,1-32.
    [97] Venter.G,Sobieszezanski-Sobieski. Particle swarm optimization[A]. AIAA Journal,2003,41(8):1583-1589.
    [98] Trelea. I.C. The particle swarm optimization algorithm:convergence analysis and parameter selection[A]. Information Processing Letters,2003,85(6): 317-325.
    [99]许宁.对粒子群算法的改进和应用[D].浙江大学硕士学位论文,2006,14-23.
    [100]丁坚勇,陶文伟,张文涛.基于模拟退火PSO的电力系统无功优化[J].武汉大学学报(工学版),2008,41(2):94-98.
    [101]姚俊峰,梅炽,彭小奇.混沌遗传算法及其应用[J].系统工程,2001,19(1):70-74.
    [102]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6.
    [103]高尚,杨静宇.求解聚类问题的混合粒子群优化算法[J].科学技术与工程,2005,5(23):1792-1795.
    [104]高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289.
    [105] Montgomery Douglas C.试验设计与分析(英文版)[M].北京:人民邮电出版社,2007,1-22.
    [106] Hedayat.A.S,J Stufken.,Su.G.. On difference scheme and orthogonal arrays of strength[J]. Journal of Statistical Planning and Inference,1996,56:307-324.
    [107]刘红波,陆刚,边宽江.几种实验设计方法的比较[J].安徽农业科学,2007,35:738-739.
    [108]庞善起.正交表的构造方法及其应用[M].四川:电子科技大学出版社, 2003,1-67.
    [109] Yiu-Wing Leung,Yuping Wang. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization[J]. IEEE Transactions on evolutionary computation,2001,5(1):41-52.
    [110]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008,124-161.
    [111]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001,1-42.
    [112] J.C Mang,C.F.J WU. An approach for the construction of asymmetrical orthogonal arrays[J]. J.Amer.Statist.Assoc,1991,6:450-456.
    [113] C.X. Ma,K.T Fang,D.K.J.A Lin. A new approach in constructing orthogonal and nearly orthogonal arrays[J]. Metrika,2000,50:255-268.
    [114]吴永芬,杨明.基于ACO及PSO的特征选择算法[J].江南大学学报(自然科学版),2007.12,6(6):758-762.
    [115]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004,1-32.
    [116]张罗漫,陈飞,胡琳.综合评价中各指标加权系数确定方法的探讨[J].中国卫生统计,1992,9(3):21-25.
    [117] Lee K.S,Geem Z.W. A new structural optimization method based on the harmony search algorithm[J]. Comput. Struct,2004,82(9-10):781-798.
    [118] M.M凯墨尔,J.A沃尔夫,陈砺志译.现代汽车结构分析[M].人民交通出版社,1987.9,1-34.
    [119]乔淑平,李卓森,黄金陵.在概念设计阶段用FEM进行车身设计的研究[J].汽车技术,2000,4:6-8.
    [120]李秀芬.概念设计阶段基于CAE车身骨架的研究分析[D].武汉理工大学硕士学位论文,2007,5-63.
    [121]于文亮,杜作润,陈康元.综合技术短评和一种新的改进[J].航空学报,1979,3:32-51.
    [122]刘瑞岩.结构振动中模态综合技术[J].国防科技大学学报,1979,2:69-75.
    [123]向树红,邱吉宝,王大钧.模态分析与动态子结构方法新进展[J].力学进展,2004.8,34(3):289-302.
    [124]张成宝,雷雨成,唐国海.轿车车身结构动力学分析[J].设计与计算,1999,1:25-27.
    [125]唐云岚,赵青松,高妍方,陈英武. Pareto最优概念的多目标进化算法综述[J].计算机科学,2008,35(10):52-62.
    [126]雷秀娟,史忠科,高进朝,毕业,等.随机小生境Pareto遗传算法多目标优化[C]. 2005中国控制与决策学术年会论文集,2005,1672-1675.
    [127]赖红松,董品杰,祝国瑞.求解多目标规划问题的Pareto多目标遗传算法[J].系统工程,2003.9,21(5):24-28.
    [128] BIED S,LIXiaodong. Informative performancemetrics for dynamic optimisation problems[C]. Proceedings of the 9thAnnualConference on Genetic and Evolutionary Computation,2007,18-25.
    [129] BLACKWELL T,BRANKE J. Multiswarms, exclusion, and anti-convergence in dynamic environments[J]. IEEE Transactions on EvolutionaryComputation,2006,10(4): 459-472.
    [130]王光辉,陈杰,潘峰.多种群协同粒子群优化算法求解动态环境优化问题[C].第27届中国控制会议,2008,5:43-48.
    [131]陈杰,潘峰,王光辉.粒子群优化方法在动态优化中的研究现状[J].智能系统学报,2009.6,4(3):189-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700