基于边界法向磁通密度逐点测量的无旋磁场重构方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁场是实现电能与机械能转换的重要媒质,准确获取其空间分布是工程科学中一个共性基础课题。本论文提出并研究一种基于边界法向磁通密度逐点测量的无旋磁场重构方法。该方法以标量磁势拉普拉斯方程描述无旋空间内磁场,通过传感器逐点测量空间边界面上的法向磁通密度分布,进而以测量结果为边界条件求解拉普拉斯方程,计算(重构)出整个空间内的磁场分布。作为一种测量与计算相结合的方法,该方法较传统的测量方法具有测量量少、测量简单易实现及可获得完整空间内磁场分布等优点,较传统的计算方法具有无需获知励磁系统信息、精度高、模型简单且计算量小、易得到解析解等优点,是对现有磁场获取方法的一种有益补充,可被广泛应用于各种磁性系统的研究中。
     论文在系统研究空间磁场无旋特性及其基本微分方程、以边界法向磁通密度为边界条件的微分方程求解理论、基于等弦高准则的自适应测量方法以及基于边界磁通迭代优化的二次重构方法等相关理论与方法的基础上,进而通过电磁流量计(管段式、插入式)测量空间内磁场与电磁马达(三自由度球形马达、三相励磁旋转马达)工作空间内磁场的重构实例,对磁场重构方法及其基础理论进行不同励磁源(电磁铁、永磁体)、不同磁场类型(稳态、似稳态)、不同边界条件(黎曼边界条件、混合边界条件)、不同重构空间(规则、非规则几何空间)及不同求解方法(数值、解析、分域解析)下的全面、深入阐述与验证。在此基础上,开展电磁流量计(机械能转电能)与电磁马达(电能转机械能)的电-机械能量转换特性研究,提出并研究基于测量空间内磁场重构的电磁流量计干标定方法及基于转子外围空间磁场重构的三自由度球形电磁马达力矩计算方法:前者以测量空间内磁场重构模型为核心,采用多场耦合(磁场、电场与流场)数值计算判定流量计一次传感器灵敏度系数,实现无需任何实际液体情况下的流量计标定,在不经任何实流标定修正的情况下标定误差小于0.5%,为有效解决大口径电磁流量计标定这一国际性难题提供了新的方案;后者基于转子外围空间磁场的解析重构模型,采用洛伦兹力法建立马达力矩解析计算模型,为马达控制模型参数估计等后续研究奠定基础。
     论文主要研究内容如下:
     1.无旋磁场重构理论的研究。
     从磁场重构基本思想出发,基于空间磁场的无旋特性,以标量磁势拉普拉斯方程作为描述此类磁场的基本微分方程,进而系统研究如何为求解这一微分方程提供适当的边界条件,针对三个关键问题:边界条件确定、测量点优化以及真实边界构造,分别研究以边界法向磁通密度为边界条件的微分方程求解理论、基于等弦高准则的自适应测量方法以及基于边界磁通迭代优化的二次重构方法等相关理论与方法。通过对以上基础理论与方法的系统研究,形成基于边界法向磁通密度逐点测量的无旋磁场重构方法。
     2.电磁流量计测量空间内磁场重构及干标定方法研究。
     管段式电磁流量计:研究通过霍尔探头逐点扫描方式确定电磁流量计测量管内壁法向磁通密度分布的方法与装置,以此为基础重构电磁流量计测量空间内的三维磁场分布,其中包括测量点优化、盲区磁场二次重构等理论的实际应用与验证;研究电磁流量计数学模型,以磁场重构模型结合权重函数数学模型与测量介质的流体动力学模型,提出并研究基于多场耦合数值计算的电磁流量一次传感器灵敏度系数计算方法,实现电磁流量计干标定,并通过与理想流场和非理想流场下的实流标定(湿标定)数据对比对该方法进行实验验证。
     插入式电磁流量计:针对插入式探头外围非规则测量空间内磁场,首先研究其数值重构方法,进而提出并研究一种针对非规则场域内磁场的分域解析重构方法。
     3.电磁马达工作空间内磁场重构及力矩计算方法研究。
     三自由度球形电磁马达:基于已获取的关于该三自由度球形电磁马达的相关数据,研究并验证其转子外围工作空间磁场的数值和解析重构方法;利用现有测量数据噪声较大的特点,就测量噪声对测量点优化算法的影响等问题展开讨论与分析;在此基础上,通过洛伦兹力法建立基于磁场重构解析模型的马达力矩计算模型,并进行与现有实验数据的对比验证。
     三相励磁旋转马达:研究并利用三相励磁旋转磁场随空间分布的周期复现特性,以霍尔传感器阵列实时测量一个特征区域上的边界法向磁通密度分布,并以此对整个边界进行法向磁通密度的数据重构;研究马达工作空间内似稳态无旋磁场的动态重构方法,并进行实验验证。
Magnetic fields play an important role in converting electrical energy to mechanical energy or vise verse. Accurately determining the distribution of the magnetic field in space is fundamental in many engineering applications. A method based on measured boundary conditions for reconstructing the curl-free magnetic field distribution in 3D space is formulated and evaluated in this dissertation. In this method, a magnetic scalar potential obeying Laplace's equation is defined to describe the curl-free magnetic field. Then, the normal magnetic flux density on the boundary surface is measured by sensor to provide the necessary boundary conditions. Thirdly, the field distribution is computated (reconstructed) by solving the Laplace's equation of the magnetic scalar potential with the measured boundary conditions. This approach is essentially a coupled measurement-calculation method requiring less costly measurements compared with conventional measurement methods. Compared with conventional computation methods, it relaxes the assumption of known magnetic structures, has higher precision, requires less and easier computation, and its mathematical model is easy to be analytically solved. This reconstruction method which overcomes several short-comings of the existing methods used to determine magnetic field distribution can be widely used in studies of various magnetic systems.
     The dissertation begins with a detailed presentation of the reconstruction theory, including the followings; the governing partial differential equation of the curl-free magnetic field, solution of the governing equation with the distribution of the normal magnetic flux density on the boundary surface, an adaptive method based on chord-height criteria to determine the locations for taking measurements, and an estimation method based on iterative optimization to determine the boundary magnetic field in measurement-dead-domain etc. The reconstruction method is then evaluated in the context of two practical applications; electromagnetic flowmeters (pipe and inserted styles) and electromagnetic motors (three-freedom spherical motor and three-phase rotating motor). These practical applications also illustrate and validate the reconstruction method with different magnetic exciting units (electromagnet or permanent magnet), different state magnetic fields (static or quasi-static), different type boundary conditions (Neumann or mixed), different reconstruction spaces (regular or irregular geometries) and different solution methods (numerical, analytical or divisionally analytical). Through this reconstruction method, the energy conversion performances of the flowmeters (mechanical to electrical) and motors (electrical to mechanical) are further investigated. A dry calibration method of the electromagnetic flowmeter based on the reconstruction of the magnetic field in the measuring volume, and an analytical calculation method of the three-freedom spherical motor's torque based on the reconstruction of the magnetic field around the rotor, are proposed and studied respectively. The dry calibration method determines the sensitivity of the flowmeter transducer through a numerical multi-physics computation. The relative error of the result is smaller than 0.5% (without any correction) compared with the data obtained by the flow-rig method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement. For the electromagnetic motor, the analytically reconstructed magnetic field around the rotor provides a means to calculate the motor torque in closed-form through Lorentz force method, which presents an advantage for motor controls etc.
     The remainder of the dissertation offers the following:
     1. The theory for reconstructing curl-free magnetic fields
     The basic idea of the magnetic field reconstruction method is introduced firstly. A magnetic scalar potential obeying Laplace's equation is then defined as the governing partial differential equation to describe the curl-free magnetic field. The method to obtain the required boundary conditions for solving the Laplace's equation is investigated, during which three key problems are especially studied including boundary condition determination, selection of the locations for taking measurements and estimation of the boundary magnetic field in the measurement-dead-domain. For these problems, a solution method with the normal magnetic flux density on the boundary surface, an adaptive measurement method based on chord-height criteria, and an estimation method based on iterative optimization are respectively proposed and studied. Upon above theory studies, a method based on measured boundary conditions for reconstructing the curl-free magnetic field distribution in 3D space is provided.
     2. Field reconstruction in the measuring volume of electromagnetic flowmeter and its application in dry calibration.
     Pipe type electromagnetic flowmeter: An automated equipment based on the proposed Hall probe scanning method is developed to measure the normal component of the magnetic flux density on the boundary surface of the measuring pipe. With the measured boundary condition, the magnetic field distribution in the measuring pipe is reconstructed. During this progress, the efficient methods to determine the locations for taking measurements and the estimation method of the measurement-dead-domain field are applied and validated. The mathematical model of the electromagnetic flow measurement is studied. Next, a method numerically solving a coupled set of multi-physic equations with measured boundary conditions for the magnetic, electric and flow fields in the flowmeter is proposed and studied to determine the sensitivity of the flowmeter transducer. The method was experimentally verified by comparing the dry calibrated sensitivity of an actual flowmeter against a standard flow-rig test, and by examining the effects of distorted inflow on the sensitivity.
     Inserted type electromagnetic flowmeter: To realize the magnetic field reconstruction in the irregular geometry space around the flow velocity probe, numerical and divisionally analytical methods are studied respectively.
     3. Field reconstruction in the working space of an electromagnetic motor and its application in torque calculation
     Three-DOF spherical motor: With the experimental data obtained by previous researches, numerical and analytical reconstruction methods of the magnetic field around the rotor are studied and validated. In addition, the effect of measurement noise on the accuracy of the adaptive method has been investigated. With the analytical reconstruction model of the magnetic field around the rotor, an analytical calculation model of the motor torque based on Lorentz force law is obtained and experimentally validated against published data.
     Three-phase rotating motor: The Hall sensor array method is applied to measure the component of the normal magnetic flux density distribution on the boundary region corresponding to one characteristic set of the stator in real time. The field distribution on the whole boundary is estimated from the measured data, based on its periodic feature along the boundary. Then, dynamical reconstruction method of the quasi-static no-curl magnetic field in the working space is studied and validated.
引文
[1]Wikipedia answer to "Magnetic field"[OL], http://en.wikipedia.org/wiki/Magnetic_field.
    [2]章综,李国栋.我们生活在磁的世界里:物质的磁性和应用[M].北京:清华大学出版社,2000.
    [3]Geoff B. Nature News:LHC by the numbers[OL]. Doi:10.1038/news.2008.1085.
    [4]Evans L R, CERN G. LHC Accelerator physics and technology challenges[C]. Proceedings of the 1999 Particle Accelerator Conference, New York,1999.
    [5]AFP. Discovery News: Earth's magnetic field changes climate[OL]. http://dsc.discovery.com/news/2009/01/13/magnetic-field-climate.html.
    [6]Phillips T. Science@Nasa: Earth's Inconstant Magnetic Field[OL]. http://science.nasa.gov/headlines/Y2003/29dec_magneticfield.htm.
    [7]Masahiro S, Hiroaki T, Kunio K, Yasuhiro H. MEGvision Magnetoencephalograph System and Its Applications[J]. Yokogawa Tech. Rep. (English Edition),2004,38:23-27,
    [8]Wakai R. Current and future technologies for biomagnetism[J]. In Proc AIP Conf.,2004, 724:14-19.
    [9]Gieras J F, Piech Z J. Linear synchronous motors:transportation and automation systems[M]. CRC Press,2000.
    [10]Lee K M, Kwan C K. Design concept development of a spherical stepper for robotic applications[J]. IEEE Trans. on Robotics and Automation,1991,7(1):175-180.
    [11]Lee K M, Roth R, Zhou. Dynamic modeling and control of a ball-joint-like VR spherical motor[J]. ASME J. of Dynamic Systems, Measurement and Control,1996,118(1):29-40,.
    [12]Yan L, Chen I M, Yang G, Lee K M. Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator[J]. IEEE/ASME Trans. on Mechatronics,2006, 11(4):409-419.
    [13]Yan L, Chen I M, Lim C K, Yang G, Lin W, Lee K M. Design and analysis of a permanent magnet spherical actuator [J]. IEEE/ASME Trans. on Mechatronics,2008,13(3):239-248.
    [14]Zwyssig C, Kolar J W, Round S D. Megaspeed drive systems:Pushing beyond 1 million r/min[J]. IEEE/ASME Trans. on Mechatronics,2009,14(5):564-574.
    [15]Kageyama A, Sato T. Generation mechanism of a dipole field by a magnetohydrodynamic dynamo[J]. Physical Review E,1997, E 55:4617-4626.
    [16]Jang J, Lee SS. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump[J]. Sensors and Actuators A:Physical,2000,80(1):84-89.
    [17]Maral G, Bousquet M. Satellite communications systems:systems, techniques, and technology[M]. John Wiley and Sons,2002.
    [18]Smith A D, Offodile F. Information management of automatic data capture:an overview of technical developments[J]. Information Management & Computer Security,2002, 10(3):109-118.
    [19]Halem R D. Technological impact of magnetic hard disk drives on storage systems[J]. IBM Systems Journal,2003,42(2):338-346.
    [20]Idogawa A, Tozawa H, Takeuchi S. Control of molten steel flow in continuous casting mold by two static magnetic fields imposed on whole width[C]. International Symposium on Electromagnetic Processing of Materials. Nagoya, ISIJ,1994:378-383.
    [21]ones L A, Eagar T W, Lang J H. Magnetic forces acting on molten drops in gas metal arc welding[J]. Journal of Physics D:Applied Physics,1998,31:93-106.
    [22]Kasardam E F. An overview of active magnetic bearing technology and applications[J]. The Shock and vibration digest,2000,32(2):91-99.
    [23]蔡武昌,马中元,瞿国芳,王松良.电磁流量计[M].北京:中国石化出版社,2004.
    [24]Haacke Mark, Brown Robert, Thompson Michael, Venkatesan Ramesh. Magnetic resonance imaging:physical principles and sequence design[M]. New York:Wiley & Sons Inc,1999.
    [25]Lee Hyung-Woo, Kim Ki-Chan, Lee Ju. Review of maglev train technologies[J]. IEEE Transactions on Magnetics,2006,42(7):1917-1925.
    [26]Le Pichon. Sea-Floor Spreading and Continental Drift[J]. J. Geophys. Res,1968,73(12): 3661-3697.
    [27]Schekochihin A A, Cowley S C, Dorland W Hammett, G W Howes, G G Quataert, E Tatsuno. Kinetic and fluid turbulent cascades in magnetized weakly collisional astrophysical plasmas[J]. The Astrophysical Journal Supplement Series,2009:182-310.
    [28]Greaves R G, Surko C M. Antimatter plasmas and antihydrogen[J]. Phys. Plasmas,1997, 4(5):1528-1543.
    [29]Ahonen A I, Hamalainen M S, Kajola M J, Knuutila J E T, Laine P P, Lounasmaa O V, Parkkonen L T, Simola J T, Tesche C D.122-Channel Squid Instrument for Investigating the Magnetic Signals from the Human Brain[J]. Physica Scripta,1993,49:198-205.
    [30]Aymar R, Chuyanov V A, Huguet M, Shimomura Y. Overview of ITER-Feat-The future international burning plasma experiment[J]. Nuclear Fusion,2001,41(10):1301-1310.
    [31]Walls W A, Weldon W F, Pratap S B, Palmer M Lt, Adams David. Application of Electromagnetic Guns to Future Naval Platforms[J]. IEEE transactions on magnetics, 1999,35:262-267.
    [32]Kwaku Eason, Kok-Meng Lee. Effects of Nonlinear Micromagnetic Coupling on a Weak-Field Magnetoimpedance Sensor[J]. IEEE Transactions On Magnetics,2008,44(8): 2042-2048.
    [33]Ida N, Bastos J P A. Electromagnetics and Calculation of Fields[M]. New York: Springer-Verlag Press,1999.
    [34]陈建元.传感器技术[M].北京:机械工业出版社,2008.
    [35]John G Webster. The Measurement, Instrumentation and Sensors Handbook[M]. Boca Raton:CRC Press,1998.
    [36]James Lenz, Alan S Edelstein. Magnetic Sensors and Their Applications[J]. IEEE Sensors Journal,2006,6(3):631-649.
    [37]Report on NASA Scientists Make Magnetic Fields Visible [OL]. http://gizmodo.com/5012347/nasa-scientists-make-magnetic-fields-visible-beautiful.
    [38]倪光正,杨仕友,钱秀英,邱捷等.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [39]Moshe Carmeli. Classical Fields[M]. Singapore:World Scientific Publishing Co.,2002.
    [40]钟顺时,钮茂德.电磁场理论基础[M].西安:西安电子科技大学出版社,1995.
    [41]Stratton J A. Electromagnetic Theory[M]. New York:McGraw-Hill Inc.,1941.
    [42]Gerald Pollack, Daniel Stump. Electromagnetism[M]. Boston:Addison Wesley Press, 2006.
    [43]John D Kraus, Daniel A Fleisch. Electromagnetics with Applications[M]. New York: McGraw-Hill Inc.,2001.
    [44]王蔷,李国定.电磁场理论基础[M].北京:清华大学出版社,2001.
    [45]马西奎.电磁场理论及应用[M].西安:西安交通大学出版社,2002.
    [46]冯亚伯.电磁场理论[M].成都:电子科技大学出版社,1995.
    [47]郭玉翠.数学物理方法[M].北京:北京邮电大学出版社,2003.
    [48]周希朗.电磁理论中的应用数学基础[M].南京:东南大学出版社,2006.
    [49]Joao Pedro A, Nelson Sadowski, Pedro A. Electromagnetic Modeling by Finite Element Methods[M]. Boca Raton:CRC Press,2003.
    [50]Peter Monk. Finite Element Methods for Maxwell's Equations (Numerical Analysis and Scientific Computation Series)[M]. New York:Oxford University Press,2003.
    [51]Anastasis Polycarpou. Introduction to the Finite Element Method in Electromagnetics (Synthesis Lectures on Computational Electromagnetics) [M]. San Rafael:Morgan & Claypool Publishers,2006.
    [52]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [53]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002.
    [54]宋文绪,杨帆.传感器与检测技术[M].北京:高等教育出版社,2004.
    [55]陈裕泉,葛文勋.现代传感器原理及应用[M].北京:科学出版社,2007.
    [56]Product datasheet of Hall sensor [OL]. http://www.allegromicro.com/en/Products/Part_Numbers/1321/.
    [57]Product datasheet of Hall probes for Gauss meter [OL], http://www.lakeshore.com/mag/hlp/n_accessoriests.html.
    [58]Shercliff J A. The Theory of Electromagnetic Flow-measurement[M]. UK:Cambridge Unviersity Press,1962.
    [59]Faraday M. Experimental researches in electricity (Bakerian lecture)[M]. Phil.Trans,1832.
    [60]Wollaston C. Tidally induced e.m.f.s in cables[J]. J. Soc. Tel. Engrs,1881,10:50.
    [61]Smith C, Slepian G. Electromagnetic ship's log[P]. U.S.Patent 1249 530,1917.
    [62]Thurlemann B. Method of electric speed measurement of fluid[J]. Helv.Phys.Acta,1941, 14:383.
    [63]Kolin A. Principle of electromagnetic flowmeter without external magnet[J]. J. Appl. Phys, 1956,27:965.
    [64]蔡武昌,应启戛编.新型流量检测仪表[M].北京:化学工业出版社,2006.
    [65]ISO 9104-1991. Measurement of fluid flow in closed conduits--Methods of evaluating the performance of electromagnetic flow-meters for liquids[Z].1991.
    [66]EN 29104-1993. Measurement of Fluid Flow in Closed Conduits-Methods of Evaluating the Performance of Electromagnetic Flow-Meters for Liquids[Z].1993.
    [67]GB/T 18659-2002.封闭式管道中导电液体流量的测量——电磁流量计的性能评定方法[Z].2002.
    [68]ISO 8316-1987.封闭管道中液体流量测量——容积法[Z].1987.
    [69]ISO 4185-1980.封闭管道中液体流量测量——称量法[Z].1987.
    [70]JJG 164-1986.静态容积法水流量标准装置检定规程[Z].1986.
    [71]JJG 164-2000.液体流量标准装置[Z].2000.
    [72]JJG 198-1994.速度式流量计检定规程[Z].1994.
    [73]Hemp J. A technique for low cost calibration of large electromagnetic Flowmeters[J]. Flow Measurement and Instrumentation,2001,12:123-134.
    [74]Bevir M K. Theory of induced voltage electromagnetic flowmeter[J]. IEEE Transactions on Magnetics,1970,6(2):315-320.
    [75]Bevir M K, O'Sullivan V T, Wyatt D G. Computation of electromagnetic flowmeter characteristics from magnetic field data[J]. J.Phys. D,1981,14:373-388.
    [76]Wyatt D G. Computation of electromagnetic flowmeter characteristics from magnetic field data:Ⅱ. Errors[J]. J. Phys. D,1983,16:465-478.
    [77]O'Sullivan V T, Wyatt D G. Computation of electromagnetic flowmeter characteristics from magnetic field data:Ⅲ. Rectilinear weight functions[J]. J. Phys. D,1983,16: 1461-1476.
    [78]Al-Rabeh R H, Baker R C. On the ability to dry calibrate an electromagnetic flowmeter[J]. J. Phys. E:Sci. Instrum.,1986,19:203-206.
    [79]Hemp J, Versteeg H K. Prediction of electromagnetic flowmeter characteristic [J]. J. Phys. D:Appl.Phys.,1986,19:1459-1476.
    [80]Vel't I D, Mikhailova Yu V. Simulation modeling of electromagnetic flow meters for complex flow structures[J]. Measurement Techniques,2005,48(7):675-680
    [81]Vel't I D, Mikhailova Yu V. Synthesis of a simulation model for an electromagnetic flowmeter[J]. Measurement Techniques,2006,49(5):472-480
    [82]Fu X, Hu L, Xie H B, Yang H Y. Dry calibration technique of electromagnetic flowmeters[J]. Chinese Journal of Mechanical Engineering,2007,43(6):26-30.
    [83]胡亮,邹俊,谢海波,傅新,杨华勇.包含电极尺寸及位置信息的电磁流量计干标定模型[J].机械工程学报,2009,43(10):1757-1761.
    [84]Hemp J. A technique for low cost calibration of large electromagnetic flowmeters[J]. Flow Measurement and Instrumentation,2001,12(2):123-134.
    [85]Hemp J. Theory of eddy currents in electromagnetic flowmeters[J]. J. Phys. D:Appli. Phys, 1991,24:244-251.
    [86]李斌,盛瑜,施利毅.电解质溶液hall效应的等效原理和实现方法[J].上海大学学报(自然科学版),1998,4(2):180-186.
    [87]李斌.电磁流量计的离子电流法标定方法[P],CN 1169528A,1998.
    [88]李斌.电磁流量计的离子电流法标定装置[P],CN 2291642Y,1998.
    [89]松永羲则.电磁流量计校正装置[P],昭61-210913,1986.
    [90]Zhang X Z, Hemp J. Calculation of the virtual current around an electromagnetic velocity probe using the alternating method of Schwarz[J]. Flow Measurement and Instrumentation, 1994,5(3):146-149.
    [91]Zhang X Z, Hemp J. Measurement of pipe flow by an electromagnetic probe[J]. ISA Transactions,1994,33:181-184.
    [92]Hemp J. Theory of a simple electromagnetic velocity probe with prediction of the effect on sensitivity of a nearby wall[J]. Meas. Sci. Technol,1995,6:376-382.
    [93]Andrzej Michalski. Dry Calibration Procedure of Electromagnetic Flowmeter for Open Channel [J]. IEEE Transactions on Instrumentation and Measurement,2000,49(2): 434-438.
    [94]Yan Liang. Modeling and Design of a Three Degree-of Freedom Permanent Magnet Spherical Actuator[D]. Ph.D. dissertation, Nan Yang Technological University, Singapore, 2005.
    [95]Williams F C, Laithwaite E R, Eastham J. Development and design of spherical induction motors[J]. Proc. Inst. ELect. Eng.,1959:471-484.
    [96]Vachtevanos G J, Davey K, Lee K M. Development of a novel intelligent robotic manipulator[J]. IEEE Control Syst. Mag.,1987,7(3):9-15.
    [97]Lee K M, Roth R, Zhou Z. Dynamic modeling and control of a ball-joint-like variable-reluctance spherical motor[J]. ASME J. Dyn. Syst., Meas., Control,1996,118(1): 29-40.
    [98]Lee K M. Effects of fixture dynamics on back-stepping control of a VR spherical motor[C]// Singapore, Proc.7th Int. Conf. Robot., Autom. Comput. Vision,2002.
    [99]Zhou Z. Real-time control and characterization of a variable reluctance spherical motor[D]. Ph.D. dissertation, Georgia Inst. Technol. Atlanta, GA, May 1995.
    [100]Wang J, Jewell G W, Howe D. Spherical actuators with multiple degrees-of-freedom[J]. IEE Colloq. Limited Motion Electrical Actuation Systems,1998,494:81-86.
    [101]Wang J, Jewell G W, Howe G W. A novel spherical actuator with three degrees-of-freedom[J]. IEEE Trans. Magn.,1998,34(4):2078-2080.
    [102]Chirikjian G S, Stein D. Kinematic design and commutation of a spherical stepper motor[J]. IEEE/ASME Trans. Mechatron.,1999,4(4):342-353.
    [103]Yang C, Baek Y S. Design and control of the 3 degrees of freedom actuator by controlling the electromagnetic force[J]. IEEE Trans. Magn.,1999,35(5):3607-3609.
    [104]Kahlen K, Voss I, Priebe C, Doncker R W De. Torque control of a spherical machine with variable pole pitch[J]. IEEE Trans. Power Electron.,2004,19(6):1628-1634.
    [105]Dehez B, Galary G, Raucent B. Development of a spherical induction motor with two degrees of freedom[J]. IEEE Trans. Magn.,2006,42(8):2077-2088.
    [106]Yan L, Chen I M, Lim C K, Yang G L, Lin W, Lee K M. Torque Modeling of a Spherical Actuator Based on Lorentz Force Law[J]. IEEE International Conference on Robotics and Automation,2005:3646-3651.
    [107]Yan L, Chen I M, Lim C K, Yang G L, Lin W, Lee K M. Experimental investigation on the magnetic field of a permanent magnet spherical actuator[J]. Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., California,2005:347-352.
    [108]Lee K M, Sosseh R A, Wei Z. Effects of the torque model on the control of a VR spherical motor[J]. IFAC Control Eng. Practice,2004,12(11):1437-1449.
    [109]Wang W, Wang J, Jewell G W, Howe D. Design and control of a novel spherical permanent magnet actuator with three degrees of freedom[J]. IEEE/ASME Trans. Mechatronics,2003,8(4):457-468.
    [110]Son H, Lee K M. Distributed multipole models for design and control of PM actuators and sensors[J]. IEEE/ASME Trans. Mechatronics,2008,13(2):228-238.
    [111]Lee K M, Bai K, Lim J. Dipole models for forward/inverse torque computation of a spherical motor[J]. IEEE/ASME Trans. Mechatronics,2009,14(1):46-54.
    [112]Davey K, Vachtsevanos G, Powers R. The analysis of fields and torques in spherical induction motors[J]. IEEETrans.Magn.,1987,23(1):273-282.
    [113]Hu L, Lee K M, Fu X. A Method Based on Measured Boundary Conditions for Reconstructing the Magnetic Field Distribution of an Electromagnetic Mechatronic System[J]. IEEE/ASME Transactions on Mechatronics, DOI: 10.1109/ TMECH.2009.2030795, first published 2009-09-22.
    [114]Spiegel M R. Schaum's outline of theory and problems of complex variables:with an introduction to conformal mapping and its applications[M]. New York:McGraw-Hill Book Company,1964.
    [115]Nikiforov F, Uvarov B. Special Functions of Mathematical Physics:A unified introduction with applications[M]. Basel:Birkhauser,1988.
    [116]Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations[M]. Cambridge:Cambridge University Press,2008.
    [117]Stig Larsson, Vidar Thomee. Partial Differential Equations with Numerical Methods (Texts in Applied Mathematics)[M]. New York:Springer Press,2003.
    [118]John H Mathews, Kurtis D Fink. Numerical Methods Using MATLAB[M]. Upper Saddle River:Prentice Hall Press,2004.
    [119]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2004.
    [120]胡健伟,汤怀民.微分方程数值方法[M].北京:科学出版社,1999.
    [121]COMSOL Corporation 2007 Multiphysics 3.4 User'sGuide[OL]. http://www.comsol.com.
    [122]卢文祥,杜润生.机械工程测试-信息-信号分析[M].武汉:华中科技大学出版社,1999.
    [123]微纳光科运动台产品手册[OL]. http://www.bjwn.cn.
    [124]National Instruments data acquisition product datasheet[OL]. http://www.ni.com.
    [125]Park J H, Park H W. A Mesh-based Disparity Representation Method for View Interpolation and Stereo Image Compression[J]. IEEE Transactions on Image Processing, 2006,15(7):1751-1762.
    [126]Kwok N M, Ha Q P, Liu D, Fang G. Contrast Enhancement and Intensity Preservation for Gray-Level Images Using Multiobjective Particle Swarm Optimization[J]. IEEE Transactions on Automation Science and Engineering,2009,6(1):145-155.
    [127]龚声蓉,刘纯平,王强.数字图像处理与分析[M].北京:清华大学出版社,2006.
    [128]Hwang J W, Lee H S. Adaptive Image Interpolation Based on Local Gradient Features[J]. IEEE Signal Processing Letter,2004,11(3):359-362.
    [129]党向盈,吴锡生,赵勇.基于边缘最大梯度的多方向优化插值算法[J].计算机应用研究,2007,24(9):317-320.
    [130]符祥,郭宝龙.图像插值技术综述[J].计算机工程与设计,2009,30(1):141-144,193.
    [131]Adaptive Mesh Refinement-Theory and Applications [C]//Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept.3-5,2003.
    [132]Ramin Moshfegh, Xiangdong Li, Larsgunnar Nilsson. Gradient-based Refinement Indicators in Adaptive Finite Element Analysis with Special Reference to Sheet Metal Forming[J]. Engineering Computations,2000,17(8):910-932.
    [133]Thomas Apel, Sergei Grosman, Peter K. Jimack, Arnd Meyera. A New Methodology for Anisotropic Mesh Refinement based Upon Error Gradients[J]. Applied Numerical Mathematics,2004,50(3-4):329-341.
    [134]Li Q, Lee K M. An Adaptive Meshless Method for Magnetic Field Computation[J]. IEEE Transactions on Magnetics,2006,42(8):1993-2003.
    [135]Lee K M, Li Q, Sun H. Effects of Numerical Formulation on Magnetic Field Computation Using Meshless Methods[J]. IEEE Transactions on Magnetics,2006,42(9):2164-2171.
    [136]Li Yadong, Gu Peihua. Free-form Surface Inspection Techniques State of the Art Review[J]. Computer Aided Design,2004,36(13):1395-1417.
    [137]Wu Shixiong, Wang Wen, Chen Zichen. Adaptive Measurement Method Based on Changing-Curvature for Unknown Free-form Surface[J]. Chinese Journal of Mechanical Engineering,2004,17(3):385-388.
    [138]Koster M. Curvature Dependent Parameterization of Curves and Surfaces[J]. Computer Aided Design,1991,23(8):569-579.
    [139]Liu Y J, Lai Y K, Hu S. Stritification of Free-Form Surfaces With Global Error Bounds for Developable Approximation[J]. IEEE Transactions on Automation Science and Engineering,2009,6(4):700-709.
    [140]Hu J, Li Y, Wang Y, Cai J. Adaptive Sampling Method for Laser Measuring Free-form Surface[J]. Int. J. Adv. Manuf. Technol.,2004,24(11-12):886~890.
    [141]Ainsworth I, Ristic M, Brujic D. Visual CAD-Based Measurement and Path Planning for Free-Form Shapes[J]. Int. J. Adv. Manuf. Technol.,2000,16(1):23~31.
    [142]Park H. A Solution for NURBS Modelling in Aspheric Lens Manufacture[J]. Int. J. Adv. Manuf. Technol,2004,23(1-2):1-10.
    [143]P. E. Gill, W. Murray, M. A. Saunders, SNOPT:An SQP Algorithm for Large-scale Constrained Optimization[J]. SIAM J. Optim.,2002,12:979-1006.
    [144]Smyth C C. Derivation of Weight Functions for the Circular and Rectangular Channel Magnetic Flowmeters, by Means of Green's Theorem and Conformal Mapping[J]. Journal of Physics E:Scientific Instruments,1971,4:29-34.
    [145]Batchelor G K. An Introduction to Fluid Dynamics (Second Edition)[M]. UK:Cambridge University Press,2002.
    [146]金艳,周泉,傅新.插入式电磁流量计的研制[J].工业仪表与自动化装置,2006,1:63-64.
    [147]Zhang X Z, Hemp J. Measurement of pipe flow by an electromagnetic probe[J]. ISA Transactions.,1994,33:181-184.
    [148]Hemp J. Theory of a simple electromagnetic velocity probe with prediction of the effect on sensitivity of a nearby wall[J]. Measurement Science and Technology,1995,6: 376-382.
    [149]梁昆淼.数学物理方法[M].北京:高等教育出版社,1998.
    [150]徐利治.现代数学手册:经典数学卷[M].武汉:华中科技大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700