金属表面等离激元增强ZnMgO薄膜及ZnO/ZnMgO单量子阱发光
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备高质量的ZnMgO以及ZnO/ZnMgO量子阱材料,提高其发光效率,对于实现ZnO基光电器件的应用有很重要的意义。近年来,表面等离激元作为增强材料发光的可行途径,成为人们研究的热点。本论文正是基于这一思想,以ZnMgO薄膜和ZnO/ZnMgO单量子阱为研究对象,对其光致发光性质和表面等离激元增强机理进行深入探讨。本论文的主要研究工作如下:
     (1)利用脉冲激光沉积方法制备一系列不同阱宽的ZnO/ZnMgO单量子阱,研究了量子约束效应随阱宽的变化规律,并进行了理论计算,发现与实验结果基本吻合;利用金属有机物化学气相沉积方法制备ZnO纳米片结构,对其光致发光性质进行研究,用多能级模型解释激子发射和绿光发射的负温度淬灭效应,并通过分析完成表面缺陷能级的指认,位于导带底以下81meV。
     (2)利用电子束蒸发技术生长金属薄膜,并结合快速热退火工艺,利用反浸润法制备金属Al和金属Pt的纳米颗粒,研究它们的形貌和表面等离激元特性;我们还利用标准光刻工艺制备Al金属阵列。
     (3)利用带边发射和Al表面等离激元的共振耦合增强ZnMgO薄膜紫外发光,研究了金属厚度与退火条件对发光增强的影响,当Al金属厚度为2nm时,实现了带边发光3.5倍的增强;经过退火处理后,金属薄膜转变成纳米颗粒,由于能量匹配与散射效应共同作用,ZnMgO薄膜的带边发光增强了4.7倍。
     (4)通过在ZnO/ZnMgO量子阱表面覆盖Al/Ag双层金属颗粒,利用金属表面等离激元共振耦合增强ZnO/ZnMgO单量子阱发光,通过光致发光对比分析,取得了较好的增强结果,量子阱阱层发光为原来的3倍,垒层发光为原来的6倍。
For realizing the application of ZnO-based optoelectronic devices, it is important to prepare high-quality ZnMgO and ZnO/ZnMgO quantum well and improve the luminescence efficiency. Recently, surface plasmons (SPs) have been utilized to enhance the light emission efficiency of semiconductor materials and devices. In this thesis, we concentrated on studying the photoluminescence properties of ZnMgO films and ZnO/ZnMgO single quantum well (SQW) and enhancing the ultraviolet light emitting by SPs coupling. The primary results are described in the following:
     (1) ZnO/ZnMgO SQW with different well layer thickness was prepared by pulsed laser deposition and the quantum confinement effects were observed. The emission energy dependence of the well layer thickness was calculated by a theoretical model, and the result was agreement with experimental data. Pleated ZnO nanosheets were prepared by metal organic chemical vapor deposition and negative thermal quenching of both the excitonic and green emissions was observed. Based on the model of multi-level transitions, the energy level of surface traps could be extracted, which was 81meV below the conduction band minimum.
     (2) Metal films were prepared by electron beam evaporation. Using the reverse micellar methods, the Al and Pt nanoparticles have been fabricated. The surface morphology and optical absorption properties have been studied. Al micron- patterns have been fabricated by the standard photolithography.
     (3) By capping Al on the surface of ZnMgO films, the enhancement of ultraviolet emission has been observed, which can be interpreted in terms of surface plasmon coupling. The influences of the metal thickness and annealing condition on the enhancement effect have been studied. When the metal thickness was 2nm,3.5 folds band edge emission enhancement has been achieved. After annealing, the metal film transformed to nanoparticles. Due to the energy matching and scattering effects, stronger enhancement effect has been achieved (4.7 folds).
     (4) The Al/Ag bi-layer nanoparticles have been used to enhance the light emission from ZnO/ZnMgO single quantum well. By the surface plasmon coupling, a three folds enhancement of spontaneous emission from well layer and a six folds enhancement of the emission from barrier layer were obtained.
引文
[1]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohitani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials,2005,4(1):42-46.
    [2]D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park. ZnO thin films and light-emitting diodes. Journal of Physics D:Applied Physics,2007,40(22):387-442.
    [3]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G Lu, H. P. He, and S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters,2006,88(17):173506.
    [4]S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, and Z. K. Tang. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Applied Physics Letters,2006,88(3):031911.
    [5]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohomo, H. Koinuma, and Y. Segawa. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters,1998,72(25):3270-3272.
    [6]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Kawasaki, T. Makino, C. H. Chia. Y.Segawa, and H. Koinuma. Emission from the higher-order excitons in ZnO films grown by laser molecular-beam epitaxy. Applied Physics Letters,2004,84(19):3858-3861.
    [7]D. G. Thomas. The Exciton Spectrum of Zinc Oxide. Journal of Physics and Chemistry of Solids,1960,15(1-2):86-96.
    [8]B. S. Li, Y. C. Liu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X, G. Kong, X. W. Fan, and Z. Z. Zhi. Growth of high quality ZnO thin films at low temperature on Si (100) substrates by plasma enhanced chemical Vapor deposition. Journal of Vaccum Science and Technology,2002. 20(1):265-269.
    [9]A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, and M. Kawasaki. Thermal stability of supersaturated MgxZn1-xO alloy films and MgxZn1-xO/ZnO heterointerfaces. Applied Physics Letters,1999,75(26):4088-4090.
    [10]张德恒,张锡健,王卿璞,孙征MgZnO薄膜及其量子阱和超晶格的发光特性.发光学报,2004,25(2):111-116.
    [11]W. L. Barnes. Turning the tables on surface plasmons. Nature Materials,2004,3:588.
    [12]刘恩科,朱秉升,罗晋生等编著.半导体物理学(第6版).北京:电子工业出版社,2007:7-9.
    [13]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc. A comprehensive review of ZnO materials and devices. Journal of Applied Physics,2005,98(4):041301.
    [14]Y. P. Wang, J. G. Lu, X. Bie, L. Gong, X. Li, D. Song, X. Y. Zhao, W. Y. Ye, and Z. Z. Ye. Transparent conductive Al-doped ZnO thin films grown at room temperature. Journal of Vaccum Science and Technology,2011,29(3):031505.
    [15]B. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, J. M. Myoung, J. Y. Hwang, and D. S. Seo. Transparent conductive Al-doped ZnO films for liquid crystal displays. Journal of Applied Physics,2006,99(12):124505.
    [16]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Foster, F. Bertram, J. Christen, A. Hoffmann, M. Strabburg, M. Dworzak, and A. V. Rodia. Bound exciton and donor-acceptor pair recombinations in ZnO. Physica Status Solidi B,2004,241 (2):231-260.
    [17]P. L. Washington, H. C. Ong, J. Y. Dai, and P. R. H. Chang. Determination of the optical constant of zinc oxide thin films by spectroscopic ellipsometry. Journal of Applied Physics 1998,72(25):3261-3263.
    [18]Y. W. Heo, D. P. Norton, and S. J. Pearton. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. Journal of Applied Physics,2005,98(7):073502.
    [19]D. C. Looka, C. Co-skunc, B. Claflin, and G. C. Farlow. Electrical and optical properties of defects and impurities in ZnO. Physica B,2003,340-342:32-38.
    [20]Y. Y. Kim, W. S. Han, and H. K. Cho. Determination of electrical types in the P-doped ZnO thin films by the control of ambient gas flow. Applied Surface Science,2010,256(14): 4438-4441.
    [21]J. J. Lai, Y. J. Lin, Y. H. Chen, H. C. Chang, C. J. Liu, Y. Y. Zou, Y. T. Shih, and M. C. Wang. Determination of electrical types in the P-doped ZnO thin films by the control of ambient gas flow. Journal of Applied Physics,2011,110(1):013704.
    [22]F. Z. Ge, Z. Z. Ye, L. P. Zhu, J. G. Lu, B. H. Zhao, J. Y. Huang, Z. H. Zhang, L. Wang, and Z. G. Ji. Electrical and optical properties of Al-N co-doped p-type zinc oxide films. Journal of Crystal Growth,2004,268(1-2):163-168.
    [23]J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis. Journal of Applied Physics.2004,84(4):251-253.
    [24]Y. Z. Zhang, J. G Lu, Z. Z. Ye, H. P. He, L. P. Zhu, and L. Wang. Effects of growth temperature on Li-N dual-doped p-type ZnO thin films prepared by pulsed laser deposition. Applied Surface Science.2008,254(7):1993-1996.
    [25]A. Ohtomo, M.Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa. MgxZnl-XO as an Ⅱ-Ⅵ widegap semiconductor alloy. Applied Physics Letters,1998,72(19):2466-2468.
    [26]W. Liu, S. L. Gu, S. M. Zhu, J. D. Ye, F. Qin, S. M. Liu, X. Zhou, L. Q. Hu, R. Zhang, Y. Shi, and Y. D. Zheng. The deposition and annealing study of MOCVD ZnMgO. Journal of Crystal Growth,2005,277(1-4):416-421.
    [27]T. Makino, C. H. Chia, Nguen T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo. K. Tamura, and H. Koinuma. Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates. Applied Physics Letters,2000,77(7): 975-977.
    [28]C. H. Chia, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinumae. Well-width dependence of radiative and nonradiative recombination times in ZnO/Mg0.12Zn0.88O multiple quantum wells. Journal of Applied Physics,2001,90(7): 3650-3652.
    [29]H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma. Temperature dependence of excitonic absorption spectra in ZnO/Zn0.88Mg0.12O multiquantum wells grown on lattice-matched substrates. Applied Physics Letters,2001, 78(17):2464.
    [30]T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma. Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Zn1-xMgxO quantum wells. Applied Physics Letters, 2002,81(13):2355-2357.
    [31]C. H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasakj, A. Ohtomo, and H. Koinuma. Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple Quantum wells. Applied Physics Letters,2003,82(12):1848-1850.
    [32]Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag. ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Applied Physics Letters,2004,84(26):5359-5361.
    [33]X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu and W. Jaeger. Room temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111)substrates. Applied Physics Letters,2007,91(2):022103.
    [34]叶志镇,林时胜,何海平,顾修全,陈凌翔,吕建国,黄靖云,朱丽萍,汪雷,张银珠,李先杭.Na掺杂P型ZnO和ZnO/ZnMgO多量子阱结构基LED的制备与室温电注入发射紫蓝光.半导体学报,2008,29(8):1433-1435.
    [35]H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics,1988,111:1-133.
    [36]J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. Theory of surface plasmons and surface-plasmon polaritons. Reports on Rrogress in Physics,2007,70:1-87.
    [37]W. L. Barnes. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. Journal of Lightwave Technology,1999,17(11):2170-2182.
    [38]S. Gianordoli, R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hanke, and L. Korte, Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes. Applied Physics Letters,2000,77(15):2295-2297.
    [39]P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes. Surface plasmon mediated emission from organic light emitting diodes. Advanced Materials,2002,14(19):1393-1396.
    [40]J. Bellessa, C. Bonnand, and J. C. Plenet. Strong coupling between surface plasmons and excitons in an organic semiconductor. Physical Review Letters,2004,93(3):036404.
    [41]S. Wedge and W. L. Barnes. Surface plasmon-polariton mediated light emission through thin metal films. Optics Express,2004,12(16):3673-3685.
    [42]S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, Enhanced emission from Si-based light-emitting diodes using surface plasmons. Applied Physics Letters,2006, 88(16):161102.
    [43]H. Mertens and A. Polman. Plasmon-enhanced erbium luminescence. Appl. Physics Letters. 2006,89(21):211107.
    [44]K. Ray, R. Badugu, and J. R. Lakowicz. Metal-enhanced fluorescence from CdTe nanocrystals:A single-molecule fluorescence study. Journal of the American Chemical Society,2006,128(28):8998-8999.
    [45]N. E. Hecker, R. A. Hopfel, and N. Sawaki. Enhanced light emission from a single quantum well located near a metal coated surface. Physica E,1998.2:98-101.
    [46]N. E. Hecker, R. A. Hopfel, N. Sawaki. T. Maier, and G. Strasser. Surface plasmon-enhanced photoluminescence from a single quantum well. Applied Physics Letters,1999,75(11): 1577-1579.
    [47]A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackuchi and E. Yablonovitch. Ehancement of spontaneous recombination rate in a quantim well by resonant syrface plasmon coupling. Physical Review B.2002,66(15):153305.
    [48]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials,2004, 3(9):601-604.
    [49]K. Okamoto,I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakamim. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Applied Physics Letters,2005,87(7): 071102.
    [50]K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, Y. Kawakamim. and A. Scherer. Surface plasmon enhanced bright light emission from InGaN/GaN. Physica Status Solidi A-Application and Materials Science,2007,204(6):2103-2107.
    [51]S. Link and M. A. EI-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Journal of Physical Chemistry B,1999,103(37):4212-4217.
    [52]C. Langhammer, Z. Yuan, L. Zoric, and B. Kasemo, Plasmonic properties of supported Pt and Pd nanostructures. Nano Letters,2006,6(4):833-838.
    [53]N. C. Bigall, T. Haertling, M. Klase, P. Simon, L. M. Eng, and A. Eychmuller. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100nm:Synthesis and distinct optical properties. Nano Letters,2008,8(12):4588-4592.
    [54]D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well. Nanotechnology,2007,18(26):265402.
    [55]D. M. Yeh, C. Y. Chen, C. Y. Chen, Y. C. Lu, and C. C. Yang. Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology, 2008,19(34):345201
    [56]J. H. Sung, B, S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan. Enhanced luminescence of GaN-based lighting-emitting diode with a localized surface plasmon resonance. Microelectronic Engineering,2009,86(4-6):1120-1123.
    [57]C. W. Lai, J. An, and H. C. Ong. Surface-plasmon-mediated emission from metal-capped ZnO thin films. Applied Physics Letters,2005,86(25):251105.
    [58]D. Y. Lei, J. Li, and H. C. Ong. Tunable surface plasmon mediated emission from semiconductors by using metal alloys. Applied Physics Letters,2007,91(2):021112.
    [59]J. B. You, X. W. Zhang, Y. M. Fan, S. Qu, and N. F. Chen. Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) by magnetron sputtering. Applied Physics Letters,2007,91(23):231907.
    [60]J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen. Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films. Journal of Physics D:Applied Physics,2008,41(20):205101.
    [61]W. F. Yang, R. Chen, B. Liu, G. G. Gurzadyan, L. M. Wong, S. J. Wang, and H. D. Sun. Surface-plasmon enhancement of band gap emission from ZnCdO thin films by gold particles. Applied Physics Letters,2010,97(6):061104.
    [62]P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Applied Physics Letters,2008,92(4):041119.
    [63]P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang. Localized-surface-plasmon enhanced photoluminescence from ZnO films:Extraction direction and emitting layer thickness. Journal of Applied Physics,2009,106(6):063120.
    [64]J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan. Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles. Nanoscale Research Letters,2009,4(10):1121-1125.
    [65]K. W. Wu, Y. F. Lu, H. P. He, J. Y. Huang, B. H. Zhao, and Z. Z. Ye. Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles. Journal of Applied Physics.2011,110(2):023510.
    [66]K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. Huan, Z. X. Shen, L. Wang. F. Y. Jiang, X. W. Sun, and H. D. Sun. Giant enhancement of top emission from ZnOthin films by nanopatterned Pt. Applied Physics Letters,2009,94(15):151102.
    [67]S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao. Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes. Applied Physics Letters,2011,99(18):181116.
    [68]J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology,2006,17(17):4391-4394.
    [69]C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Applied Physics Letters,2010,96(7):071107.
    [70]H. Y. Lin, C. L. Cheng, Y. Y. Chen, L. L. Huang, Y. F. Chen, and K. T. Tsen, Enhancement of band gap emission stimulated by defect loss. Optics express,2006,14(6):2373-2379.
    [71]B. Liu, C. W. Cheng, R. Chen, S. A. Ekahana, W. F. Yang, S. J. Wang, T. C. Sum, Z. X. Shen, H. J. Fan, and H. D. Sun. Surface plasmon induced exciton redistribution in ZnCdO/ZnO coaxial multiquantum-well nanowires. Applied Physics Letters,2010,97(8):081107.
    [72]X. J. Zhang, P. W. Wang, X. Z. Zhang, J. Xu, Y. Y. Zhu, and D. P. Yu. Surface exciton-plasmon polariton enhanced light emission via integration of single semiconductor nanowires with metal nanostructures. Nano Research,2009,2(1):47-53.
    [73]A. P. Abiyasa, S. F. Yu, S. P. Lau, Eunice S. P. Leong, and H. Y. Yang. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Applied Physics Letters,2007,90(23):231106.
    [74]W. Tang, D. L. Huang, L. L. Wu, C. Z. Zhao, L. L. Xu, H. Gao, X. T. Zhang, and W. B. Wang. Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires. CrystEngComm,2011,13(7),2336-2339.
    [75]L. L. Wu, Y. S. Wu, W. Lv, H. Y. Wei, and Y. C. Shi. Morphology development and oriented growth of single crystalline ZnO nanorod. Applied Surface Science,2005,252(5): 1436-1441.
    [76]D. X. Zhao, Y. C. Liu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, and X. W. Fan. Photoluminescence properties of MgxZn1-xO alloy thin films fabricated by the sol-gel deposition method. Journal of Applied Physics,2001,90(11):5561-5563.
    [77]J. J. Zhu, R. Yao, C. H. Liu, I. H. Lee, L. L. Zhu, J. W. Ju, J, H. Baek, B. X. Lin and Z. X. Fu. Effect of total gas velocity on the growth of ZnO films by metal-organic chemical vapor deposition. Thin Solid Films,2006,514(1-2):306-309.
    [78]X. P. Li, R. S. Shen, B. L. Zhang, X. Dong, B. J. Chen, H. Y. Zhong, L. H. Cheng, J. S. Sun, and G. T. Du. Nitrogen doped ZnO thin films prepared by photo-assisted metalorganic chemical vapor deposition. Journal of Nanoscience and Nanothchnology,2011,11(11): 9741-9744.
    [79]Y. Zhu, S. S. Lin, Y. Z. Zhang, Z. Z. Ye, Y. F. Lu, J. G. Lu, and B. H. Zhao. Temperature effect on the electrical, structural and optical properties of N-doped ZnO films by plasma-free metal organic chemical vapor deposition. Applied Surface Science,2009,255(12): 6201-6204.
    [80]L. K. Wang, Z. G. Ju, J. Y. Zhang, J, Zheng, D. Z. Shen. B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, and C. X. Shan. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices. Applied Physics Letters,2009,95(13):131113.
    [81]T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma. Optical properties of ZnO:Al epilayers and of undoped epilayers capped by wider-gap MgZnO grown by laser MBE. Physica Status Solidi B-Basic Solid State Physics,2002, 229(2):853-857.
    [82]P. Ding; X. H. Pan, J. Y. Huang, H. P. He, B. Lu, H. H. Zhang, and Z. Z. Ye. P-type non-polar m-plane ZnO films grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,2011:331(1):15-17.
    [83]Q. P Wang, D. H Zhang, Z. Y. Xue, and X. T. Hao.Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering. Applied Surface Science,2002, 201(1-4):123-128.
    [84]C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim, and J. S. Ha. Sol-gel synthesis of sub-50 nm ZnO nanowires on pulse laser deposited ZnO thin films. Applied Surface Science, 2006,253(4):1758-1761.
    [85]S. H. Bae, S. Y. Lee, B. J.Jin, and S. Im. Pulsed laser deposition of ZnO thin films for applications of light emission. Applied Surface Science,2000,154-155:458-461.
    [86]M. L. Personick, M. R. Langille, J. Zhang, and C. A. Mirkin. Shape Control of Gold Nanoparticles by Silver Underpotential Deposition. Nano Letters,2011,11(8):3394-3398.
    [87]叶志镇,吕建国,吕斌,张银珠等编著.半导体薄膜技术与物理.杭州:浙江大学出版社,2008.
    [88]T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag. ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Applied Physics Letters,2004,84(26):5359-5361.
    [89]G. Coli, K. K. Bajaj. Excitonic transitions in ZnO/MgZnO quantum well heterostructures. Applied Physics Letters,2001,78(19):2861-2863.
    [90]L. Wischmeier, T. Voss, I. Ruckmann, J. Gutowski, A. C. Mofor, A. Bakin, and A. Waag. Dynamics of surface-excitonic emission in ZnO nanowires. Physical Review B,2006,74(19): 195333.
    [91]H. P. He, Q. Yang, C. Liu, L. W. Sun, and Z. Z. Ye. Size-Dependent Surface Effects on the Photoluminescence in ZnO Nanorods. Journal of Physical Chemistry C,2011,115(1):58-64.
    [92]A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo. Green, yellow, and orange defect emission from ZnO nanostructures:Influence of excitation wavelength. Applied Physics Letters,2006,88(10):103107.
    [93]A. Escobedo-Morales and U. Pal. Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping. Applied Physics Letters,2008,93(19): 193120.
    [94]G. Munoz-Hernandez, A. Escobedo-Morales, and U. Pal. Thermolytic Growth of ZnO Nanocrystals:Morphology Control and Optical Properties. Crystal Growth and Desigh,2009, 9(1):297-300.
    [95]B. Q. Cao, W. P. Cai, and H. B. Zeng. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Applied Physics Letters,2006,88(16):161101.
    [96]M. Hauser, A. Hepting, R. Hauschild, H. J. Zhou, J. Fallert, H. Kalt, and C. Klingshirn. Absolute external luminescence quantum efficiency of zinc oxide. Applied Physics Letters, 2008,92(21):211105.
    [97]H. P. He, H. P. Tang, Z. Z. Ye, L. P. Zhu, B. H. Zhao, L. Wang, and X. H. Li. Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods. Applied Physics Letters,2007,90(2):023104.
    [98]J. Krustok, H. Collan, and K. Hjelt. Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy?. Journal of Applied Physics,1997,81(3):1442-1445.
    [99]H. Shibata. Negative thermal quenching curves in photoluminescence of solids. Japanese Journal of Applied Physics.1998,37:550-553.
    [100]M. Watanabe, M. Sakai, H. Shibata, C. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki. K. Maeda, and I. Niikura. Negative thermal quenching of photoluminescence in ZnO. Physica B:Condensed Matter,2007,376-377: 711-714.
    [101]D. C. Reynolds, D. C. Look, and B. Jogai. Fine structure on the green band in ZnO. Journal of Applied Physics,2001,89(11):6189-6191.
    [102]N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell. Role of copper in the green luminescence from ZnO crystals. Applied Physics Letters,2002,81(4): 622-624.
    [103]H. von Wenckstern, S. Weinhold, G. Biehne, R. Pickenhain, H. Schmidt, H. Hochmuth, and M. Grundmann. Donor Levels in ZnO. Advances in Solid State Physics,2005,45:263-274.
    [104]A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. Journal of Physical Chemistry B,2000,104(8):1715-1723.
    [105]Z. M. Liao, Y. Lu, J. Xu, J. M. Zhang, and D. P. Yu. Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires. Applied Physics A-Materials Science and Processing,2009,95(2):363-366.
    [106]L. Y. Wang, J. Wang, S. L. Zhang, Y. Sun, X. N. Zhu, Y. B. Cao, X. H. Wang, H. Q. Zhang, and D. Q. Song. Surface plasmon resonance biosensor based on water-soluble ZnO-Au nanocomposites. Analytica Chimica Acta,2009,653:109-115.
    [107]V. K. Sharma, Anil Kumar, and A. Kapoor. High extinction ratio metal-insulator-semiconductor waveguide surface plasmon polariton polarizer. Optics Communications,2011,284(7):1815-1821.
    [108]M. Fleischmann, P. J. Hendra, and A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters,1974,26(2):163-166.
    [109]F. J. Garcia-Vidal and J. B. Pendry. Collective theory for surface enhanced Raman scattering. Physical Review Letters,1996,77(6):1163-1166.
    [110]S. Kruszewski. Surface enhanced raman scattering phenomenon. Crystal Research and Technology,2006,41(6):562-569.
    [111]J. Li and H. C. Ong, Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films. Applied Physics Letters,2008,92(12):121107.
    [112]I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars.Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Physical Review B,1999,60(16):11564.
    [113]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart. Temperature quenching of photoluminescence intensities in undoped and doped GaN. Journal of Applied Physics,1999,86(7):3721-3728.
    [114]C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. Shen. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. Journal of Applied Physics,2001,90(9):4489.
    [115]S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. Choi, K. J. Ahn,. G. Kim, S. H. Sim, and B. H. Hong. Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films. Physical Review Letters, 2010,105(12):127403.
    [116]A. Liebsch. Surface plasmon disperision of Ag. Physical Review Letters,1993,71(1): 145-148.
    [117]A. Baagchi, C. B. Duke, P. J. Feibelma, and J. O. Porteus. Measurement of surface-plasmon dispersion in aluminum by inelastic low-energy electron diffraction. Physical Review Letters, 1971,27(15):998-1001.
    [118]M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J. L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon. Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry. Physical Review B,2001,64(8):085407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700