破碎废弃印刷电路板的高压静电分选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃电路板中蕴含的金属是天然矿藏品位的几十倍甚至几百倍,具有重要的回收价值。目前国内处理废弃电路板主要采用破碎后利用密度差的气流风选和水选进行金属与非金属的分选,存在效率低和二次污染等问题。电路板是玻璃纤维强化树脂等非金属材料和多种金属的混合物,其中金属和非金属紧密结合,分选难,在电子废弃物中最复杂、最难处理,处理时要求技术含量高。因此,本文采用剪切式旋转破碎机和冲击式旋转磨碎机进行两级破碎,达到金属-非金属充分解离的程度,然后应用辊式电晕-静电复合电场高压电选机,对已破碎的废弃电路板进行金属颗粒与非金属颗粒分选,同时对金属之间的分选进行理论分析和实验研究。系统地分析了高压静电分选过程的影响因素以及优化了工艺流程,并对电场强度分布、分选过程进行模拟,提出了理论模型和理论公式,为开发出废弃电路板无害化处理与资源化技术提供理论基础。
     利用Matlab和Ansys软件对分选空间的电场分布进行模拟,发现了电极位置、电极曲率以及电压强度等对接地电极表面以及空间电场分布有重要的影响,减小高压电极与接地电极间的距离,提高施加电压强度可以提高接地电极表面电场强度以及空间电场强度,增加静电极半径,适当减小静电极的角度,适当增大电晕电极角度,可以改变电场强度分布,改善分选效果,并通过试验对模拟结果进行了论证,得到了电场强度分布和分选效果较理想的分选工艺参数。
     在理论上分析了接地电极转速、物料形状对分选效率和金属、非金属富集品位的影响,建立了“荷电临界转速模型”、“脱辊临界转速模型”和颗粒的“形状感应荷电模型”,进而得到了最佳转速公式,提出了同时提高金属纯度和非金属回收率的方法:1)增加电晕极数量,增大电晕区宽度和电晕电场强度,从提高“荷电临界转速”角度来提高“脱辊临界转速”;2)在避免火花放电的前提下,提高应用电压并减少放电距离,以提高电晕电场强度及颗粒荷电量;3)增大GE(接地电极)的曲率以及调整电晕极位置,以到达在保证最大荷电的前提下减少颗粒在接地电极表面的电荷损失。本文量化了转速和物料形状对分选的影响。得到同一种导的物料的形状易分选难易程度:球状>丝状>片状。
     对利用高压静电分选技术用于不同金属间的分选在理论上进行了探讨,通过待分选物料的受力分析和轨迹模拟,证实该方法在理论上的可行性。
     经过系统的理论分析和大量的实验,作者确定了工艺流程,优化了工艺参数,为高压静电分选方法的研究奠定了理论基础,为该方法的工业应用创造了条件。
Waste Printed Circuit Boards (PCBs) are worthy very much to recycle, because the metallic grade is more hundred times than the nature mineral resources. From now on, in china, air-float separation technology and water- float separation technology mainly are applied for the separation between metal and nonmetal basing on recycling Fragmentized waste PCBs, but there exists low efficiency and second pollution for the tow recycle methods. PCBs is composed by several metals and nonmetals including resin and Fiberglas etc, and metals and nonmetals are combined tightly, so it’s difficult to be liberated and to be separated. In this paper, shearing machine and hammer grinder were combined to pulverize the waste boards, the metal and nonmetal on the PCBs and PWBs can be liberated availably, Then a roll-type corona-electrostatic high-voltage separator are applied to separate the metal and nonmetal, at the same time, A electrostatic separators/sizers (ESSs) is used to separate the mixed metals. A computational algorithm is employed to depict the cylinder-type electrode arrangements applied in some electrostatic processes generating non-uniform electric fields. Several factors influencing the separation process were analyzed system and the processes were optimized, and the electric field distribution and the separation process were simulated, some theoretical models and formulas were presented.
     The electric field distribution were simulated using Matlab software and Ansys software, the simulation showed that the position of the high-voltage electrodes, curvature of electrodes and applied voltage affect the electric field distribution and intensity, minishing the distance between the HVE (high-voltage electrodes) and GE (grounded electrode ),and enhancing theapplied voltage intensity could increase the electric field intensity of GE surface and space, increasing the radius of high-voltage state electrode, and decreasing the angle of state electrode and increasing the angle of corona electrode properly could change the electric field distribution, Laboratory studies and in-field observations showed that a appropriate electric field distribution and intensity and fine separation effect could be gained under the follow process parameters, voltage: 20-30kv, the angle of state electrode: 20°, the angle of corona electrode: 60°, etc.
     This paper analyzed the particle shape factor and rotates speed of GE that affected the efficiency of electrostatic separation, and addressed influence of the particle shape from both a computational and an experimental point of view. The conception of“detachment critical speed”and“saturation critical speed”were presented, the critical curve showed that the critical speed increases dramatically with decrease of particle size. Experiments carried out with the scrap Printed Circuit Boards confirmed the theoretical model, and the experimental results were in good agreement with the theoretical model. A furthest rotate speed formula was attained, and a method which could improve the both of recycles metal purity and reclaims efficiency of nonmetal simultaneity: 1) adding the amount of corona electrode and increasing the corona electric field intensity; 2) increasing the applied voltage intensity and minishing the distance between the HVE and GE; 3) increasing curvature of GE and adjust the position of corona electrode. The study showed that movement behavior of three shape particles was distinguishing: the sphere particles could be projected farther, subsequently cylinder particles, flake could be projected closer, and the experimental results were in good agreement with the theoretical predictions.
     The separation of the mixed metals is studied. A computer program was employed for analyzing the behavior of spherical particles in a two-dimensional electrode arrangement that models the actual electric field configuration of cylinder-type electrostatic separators/sizers. The actual granular mixtures with different specific mass and radius could be separatedtheoretically applying the cylinder-type electrostatic separation method.
     Through the systemic theoretical analyze and a mass of Laboratory experiments, the recycle process flow were confirmed and process parameters were optimized. The study is needed for the development of the electrostatic separation method and industry applications.
引文
[1] 王震,马鸿发.上海市电子废弃物产生量及管理对策初探[J]再生资源研究,2003,(3): 16-18
    [2] 魏金秀,废弃印刷线路板中金回收的试验研究,东华大学,2005
    [3]杨静,翁世钊.废弃电脑污染及其管理措施探讨[J].广州环境科学,2002,17(4):15 - 17
    [4] DIRK Boghe. Electronic Scrap: A Growing Resource[J]. Precious Metals, 2001, (7):21-24
    [5] ONORATO Danielle. Japanese Recycling Law Takes Efect[J]. Waste Age, 200132 (6)25-266
    [6] 祝大同,亚洲印刷电路板业的现状和发展〔J〕电子工业技术,1997,( 9): 175-178
    [7]国家发展改革委《,废弃家电及电子产品回收处理管理条例》(征求意见稿),2004年 9 月 17 日
    [8] 吴 峰. 浅论废弃电路板综合利用的意义. 环境保护,2000,(12):43~44
    [9] 赵肖峰 广东电子垃圾里淘“金”.再生资源研究,2001,1: 46-48
    [10] 顾帼华,戚云峰. 废弃印刷电路板的破碎性能及资源特征. 中国有色金属学报,2004,14(6):1037-1041
    [11] Theo Lehner. Integrated recycling of non-ferrous metals at Boliden Ltd, R?nnsk?r Smelter; IEEE International Symposium on Electronics & the Environment, 1998, P42-47
    [12] 和田安彦.三浦浩之,中野加度子等. 需要考虑手机材料循环利用的生态设计. 都市と废弃物[日],2001,31(30):70-75
    [13] Li Jianzhi, Shrivastava Puneet, Gao Zong, Zhang Hong-Chao. Printed circuit board recycling: A state-of-the-art survey. IEEE Transactions on Electronics Packaging Manufacturing, 2004,27(1):33-42,
    [14]Wang Jingwei, Xu Jinqiu. Environmental implications of PCB manufacturing in China. Proceedings of the 2004 IEEE International Symposium on Electronics and the Environment, 2004. 156-158
    [15] Jens Brobech Legarth. Environmental decision making for recycling options. Resources, Conservation and Recycling, 1997,19:109-135
    [16] 韩 洁,聂永丰,王 晖. 废印刷电路板的回收利用. 城市环境与城市生态,2001,14(6):11~13
    [17]Elaine Y.L.Sum. The recovery of Mentals from Electronic Scrap[J]. JOM, 1991,4:53-60.
    [18] V.N.Bredikhin and A.I.Shevelev. Eddy Current Classification of Nonferrous Metal Scrap. Tsvetn, Met,12(1986),75-79
    [19] Lu M X, Zhou G H. Recover metals from electronic scrap by dry Separation. In: Chen Q R,Tanaka Z, Dry Separation Science and Technology. Xuzhou: China University of Mining and Technology Press,2002, 259- 262
    [20] Cao Y J,Zhao Y M ,Wen X F, et al. The dry separation technology of WEEE. In: Chen Q R, Tanaka Z. Dry Separation Science and Technology. Xuzhou: China University of Mining and Technology Press, 2002.268-277 [21] 胡天觉,曾光明等.从家用电器废物中回收贵金属.中国资源综合利用,2001,000(007):12-15
    [22] Y.Masuda, R.Miyabayashi and H.Yamaguchi. Japan Kokai Tokyo Koho [P].JP 6311627[8811626] (CI.C22B11/02).1988
    [23] Y.Masuda, R.Miyabayashi and H.Yamaguchi. Japan Kokai Tokyo Koho [P].JP 6311627[8811627] (CI.C22B11/02).1988
    [24] H.B.Salibury, L.J.Duchene and J.H .Bilrey. Report of Inestgation, R I8561 [J]. Washington, D C.. U. S.Bureau of Mines. 1981
    [25]J.G.Day, U.S. Patent 4427442 (1984) N.D.Kravchenko, Yu.M .Dubinskii and V.I .Krichevskii, Study of Some Kinetic Factors of Concentration in Magnetohydrostatic Separation Apparatus, Sov.J. Non-Ferrous Met.,24(3),1983,100-105
    [26] T.Shoji, Japan Kokai Tokyo Koho JP 01142038[89142038], CI.C22B11/06) (1989)
    [27] Menad N, Bjorkman Bo, Allain Eric G. Combustion of plastics contained in electronic and electronic scrap. Resources, Conservation and Recycling, 1998, 24(1):65~85}
    [28] H.E. Hilliard, B.W .Dunning. Report of Investigation, RI8940[J].U. S. Bureau of Mines.1981
    [29] Ginn R, Barnce BA.Anal Chem.l986, 66:527-571
    [30] Scott K .,Chen X.,Atkinson J.W, Todd M.,Armstrong R .D. Electrochemicalrecycling of tin, lead and copper from stripping solution in the manufacture of circuit boards. Resources, Conservation and Recycling, 1997, 2 0(1):43 -55,106
    [31] Sokirko A.X, Kharkats Y.I. A possible mechanism for the increase in limiting current of copper electrode position from nitrate solutions. Soviet Electrochemist. 1990,26(1): 36-40
    [32] Madkour L.H. Electrideposition of lead and its dioxide from Egyptial carbonate ore residuum. Bull.Electrchem. 19 96, 12 (2):23 4-236
    [33] Sum, Elaine Y. L.,Recovery of Metals from Electronic Scrap, JOM, 1991, 43 (4):53-61
    [34] GloeK .MuehlP .and Knothe M .,Recovery of Precious Metals from Electronic Scrap, in Particular from Waste Products of the Thick-layer Technique Hydrometalllurgy,1990,(25) : 99 ~110
    [35] 周全法,朱雯.废电脑及其配件中金的回收[J].中国资源综合利用,2003, (7): 315-35
    [36] P Quinet, J Proost, A Van Lierde. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Minerals and Metallurgical Processing, 2005,22(1):17~22}
    [37] Brandl H .,Bosshard R, WegmannM .Computer-munching microbes: metal leaching from electronics crap by bacteria and fungi. Hydrometallurgy, 2 001, 5 9(2-3):31 9- 32 6
    [38] HahnM .S., Willscher S., Stranbe G . Copper leaching from industrial wastes by heterotrophic microorganisms, in: A.E.Torma, J. E.Wey, V.L.Lakshamamam (Eds.), Biohydrometal-lurgical Technology. The Minerals, Metals & Material Society, Warren dale, 1993, 99-108
    [39] Bosecker K .Microbial recycling of mineral waste products. Acta Biotechnol. 1987,7: 487 -497
    [40] 杨显万,陈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社, 2003. Yang X-W, Chen Q-F, Guo Y-X. Microbe hydrometallurgy [M]. Beijing: Metallurgy Industry Press, 2003.
    [41]白庆中,王辉等.世界废弃印刷电路板的机械处理技术现状[J].环境污染治理技术与设备,2001,2(1):84-89
    [42]柴晓兰,曹亦俊,王春彦等.机械处理废弃印刷线路板[J].中国资源综合利用,2003,(2):23-26
    [43]Shunli Zhang, Eric Forssberg. Mechanical separation-oriented characterization of electronic scrap. Resources, conservation and Recycling, 1997, 21: 247-269
    [44] Melchiorre M ,Jakob R .Electronic Scrap Recycling. Microelectronics Journal.IEEE, 1996, (28): 8-10
    [45] Melchionre M ,Jakob R .Nerartiges Verfahren zur Aufbereitung von Elektronikschrott-Ein Beitrag zurwirtschaftlichen Rohstofgewinnung. G alvanotechnik, 1996, 87(12):4136-4140
    [46] Hennie Keldhizen, Bob Sippel.开采废弃电子产品.产业与环境,1995, 17 (3): 7-11
    [47]郭廷 杰译编.日本《家电再生法》实施状况简介[J].再生资源研究,2002,(3):7-9
    [48]Yokoyamas, Jim.Recycling of printed wiring board waste .Proceedings of 1993 IEEE/Tsukuba. Unemotional Work Shop on Advanced Robotics, IEEE, 1 993, 55-58
    [49]Zhang Sh, Forssberg E, Arvidson B, Moss W.Aluminum recovery from electronic scrap by High-ForceR eddy-current separators. Resources, Conservation and Recycling, v 23, n 4, Sep, 1998, p 225-241
    [50] 王文彬.专利《一种印刷电路板回收有价物质的方法》,专利号 98105592.3
    [51] H.R.马诺切赫里等. 电选法应用实践评述(Ⅱ). 国外金属矿选矿,2002,11:4-12
    [52] R.科恩勒彻,M.博茨. 静电分选极其在处理各种再生物料混合物的工业应用. 国外金属矿选矿,1998,9:22-25
    [53] Melchiorre M, Jakob R. Electronic scrap recycling. Microelectronics Journal, IEEE, 1996, 28(8-10): xxii-xxi v
    [54] Zhang Shunli, Forssberg, Eric, Menad Nourredine, Bjorkman Bo. Metals recycling from electronic scrap by air table separation - theory and application. TMS Annual Meeting, EPD Congress, 1998, p 497-515
    [55] Shunli Zhang, Eric Forssberg. Intelligent liberation and classification of electronic scrap. Powder Technology, 1999, 105:295-301
    [56] Iuga, A.; Cuglesan, I.; Samuila, A.; Blajan, M.; Vadan, D.; Dascalescu, L.;Electrostatic separation of muscovite mica from feldspathic pegmatites,Industry Applications, IEEE Transactions on, Volume 40, Issue 2, March-April 2004 Page(s):422 – 429、
    [57] I. I. Inculet, Electrostatic Mineral Separation. New York: John Wiley, 1984.
    [58] Al. Iuga, L. D sc lescu, R. Morar, I. Csorvassy and V. Neamiu. Corona - electrostatic separators for recovery of waste non-ferrous metals. Journal of Electrostatics, Volume 23, April 1989, Pages 235-243,
    [59]Iuga, A.; Morar, R.; Samuila, A.; Dascalescu, L.;Electrostatic separation of metals and plastics from granular industrial wastes, Science, Measurement and Technology, IEE Proceedings-, Volume 148, Issue 2, March 2001 Page(s):47 - 54
    [60] S. Gotoh, “Waste management and recycling trends in Japan,” Resources and Conservation, vol. 14, pp. 15–28, 1987.
    [61]Morar, R.; Munteanu, R.; Simion, E.; Munteanu, I.; Dascalescu, L.;Electrostatic treatment of bean seeds, Industry Applications, IEEE Transactions on, Volume 35, Issue 1, Jan.-Feb. 1999 Page(s):208 – 212
    [62]M. Pauthenier 1960 in La Physique des Forces Electrostatiques et Leurs Applications. Grenoble, France: C.N.R.S, pp. 279–287.
    [63] Dascalescu, L.; Tilmatine, A.; Aman, F.; Mihailescu, M.; Optimization of electrostatic separation Processes using response surface modeling Industry Applications, IEEE Transactions on, Volume 40, Issue 1, Jan.-Feb. 2004 Page(s):53 – 59
    [64] Mihailescu, M.; Samuila, A.; Urs, A.; Morar, R.; Iuga, A.; Dascalescu, L.; Computer-assisted experimental design for the optimization of electrostatic separation processes. Industry Applications, IEEE Transactions on Volume 38, Issue 5, Sept.-Oct. 2002 Page(s):1174 – 1181
    [65]Samuila, A.; Urs, A.; Iuga, A.; Morar, R.; Aman, F.; Dascalescu, L. Optimization of corona electrode position in roll-type electrostatic separators. Industry Applications, IEEE Transactions on. Volume 41, Issue 2, March-April 2005 Page(s):527 – 534
    [66]Aman, F.; Morar, R.; Kohnlechner, R.; Samuila, A.; Dascalescu, L.;High-voltage electrode position: a key factor of electrostatic separation efficiency Industry Applications, IEEE Transactions on , Volume 40, Issue 3, May-June 2004 Page(s):905 – 910,
    [67]Iuga, A.; Neamtu, V.; Suarasan, I.; Morar, R.; Dascalescu, L.;Optimal high-voltage tenderization of corona-electrostatic separators, Industry Applications, IEEE Transactions on, Volume 34, Issue 2, March-April 1998 Page(s):286 – 29
    [68] A. Samuila, Al. Iuga, R. Morar, R. Tobazeon and L. Dascalescu. Factors which affect the corona charging of insulating spheres on plate and roll electrodes. Journal of Electrostatics, Volumes 40-41, June 1997, Pages 377-382
    [69]R. Morar, Al. Iuga, L. Dascalescu and A. Samuila. Factors which influence the insulation-metal electroseparation. Journal of Electrostatics, Volume 30, May 1993, Pages 403-412
    [70]Dascalescu, L.; Samuila, A.; Iuga, A.; Morar, R.; Csorvasy, I.; Influence of material superficial moisture on insulation-metal electroseparation,Industry Applications, IEEE Transactions on Volume 30, Issue 4, July-Aug. 1994 Page(s):844 – 849
    [71] V. Neamtu, Al. Iuga, R. Morar, I. Suarasan and L. Dascalescu. Influence of high-voltage polarity on insulation-metal electroseparation. Journal of Electrostatics, Volume 30, May 1993, Pages 423-432
    [72]Dascalescu, L.; Samuila, A.; Rafiroiu, D.; Iuga, A.; Morar, R.; Multiple-needle corona electrodes for electrostatic processes application, Industry Applications, IEEETransactions on,Volume 35, Issue 3, May-June 1999 Page(s):543 – 548
    [73]R. Morar, I. Suarasan, S. Budu, I. Ghizdavu, Monica Porca and L. Dascalescu. Corona discharge effects on some parasitical insects of cultured plants. Journal of Electrostatics, Volumes 40-41, June 1997, Pages 669-673
    [74] Dascalescu, L.; Urs, A.; Dumitran, L.M.; Samuila, A.;Charging of one or several cylindrical particles by monopolar ions in electric fields.Industry Applications, IEEE Transactions on Volume 39, Issue 2, March-April 2003 Page(s):362 – 367
    [75] Dascalescu, L.; Rafiroiu, D.; Samuila, A.; Tobazeon, R.; Charging of insulating spheres on the surface of an electrode affected by monopolar ions, Industry Applications, IEEE Transactions on Volume 34, Issue 1, Jan.-Feb. 1998 Page(s):35 – 42
    [76]Rafiroiu, D.; Suarasan, I.; Morar, R.; Atten, P.; Dascalescu, L.;Inception of corona discharges in typical electrode configurations for electrostatic processes applications, Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, Volume 1, 3-7 Oct. 1999 Page(s):387 - 392 vol.1
    [77]Rafiroiu, D.; Suarasan, I.; Morar, R.; Atten, P.; Dascalescu, L.;Corona inception in typical electrode configurations for electrostatic processes applications. Industry Applications, IEEE Transactions on Volume 37, Issue 3, May-June 2001 Page(s):766 - 771
    [78] Dumitran, L.M. Dascalescu, L. Atten, P. Notingher, P.V. Computational and Experimental Study of Ionic Space Charge Generated by Combined Corona–Electrostatic Electrode Systems. Industry Applications, IEEE Transactions on, Volume 42, Issue 2, March-April 2006 Page(s):378 – 384
    [79]Al. Iuga, Michaela Mihailescu, A. Cocis and L. Dascalescu Particle charge neutralization in roll-type electroseparators. Journal of Electrostatics, Volumes 40-41, June 1997, Pages 639-644
    [80] M. Sugihara, L. Dascalescu, G. Touchard, H. Romat, P. O. Grimaud and S. Watanabe. Charge generated by impact of balls on a metallic wall. Journal of Electrostatics, Volume 35, Issue 1, July 1995, Pages 125-132
    [81]Urs, A.; Samuila, A.; Mihalcioiu, A.; Dascalescu, L.;Charging and discharging of insulating particles on the surface of a grounded electrodeIndustry Applications, IEEE Transactions on, Volume 40, Issue 2, March-April 2004 Page(s):437 – 441
    [82]Y. Wu, G. S. P. Castle, I. I. Inculet, S. Petigny, and G. Swei, “Induction charge on freely levitating particles,” Powder Technol., vol. 135–136, pp. 59–64, 2003.
    [83]Yishui Wu, G. S. Peter Castle, and Ion I. Inculet, “Induction Charging of Granular Materials in an Electric Field”, Transactions On Industry Applications, Vol. 41, NO. 5, September/October 2005.
    [84] R. Morar, L. Dáscálescu and Al. Iuga. Modelling of high-intensity electric fields - a method to improve the design of corona-electrostatic separators. Journal of Electrostatics, Volume 23, April 1989, Pages 445-452
    [85] D. Rafiroiu, C. Munteanu, R. Morar, A. Meroth, P. Atten and L. Dascalescu Computation of the electric field in wire electrode arrangements for electrostatic processes applications. Journal of Electrostatics, Volumes 51-52, May 2001, Pages 571-577
    [86] FELICI, N.J.: “Forces et charges de petits objets en contact avcc une electrode affectee d’un champ electrique,” Rev. Gen. Electr., 1966, 75, pp. 1145-1 160.
    [87]Dascalescu, L.; Mizuno, A.; Tobazeon, R.; Atten, P.; Morar, R.; Iuga, A.; Mihailescu, M.; Samuila, A.; Charges and forces on conductive particles in roll-type corona-electrostatic separators, Industry Applications, IEEE Transactions on, Volume 31, Issue 5, Sept.-Oct. 1995 Page(s):947 – 956
    [88]Dascalescu, L.; Tobazeon, R.; Atten, P.; Behaviour of conductive particles in corona-dominated electric fields, Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE 4-9 Oct. 1992 Page(s):1479 - 1486 vol.2
    [89]Rafiroiu, D.; Morar, R.; Atten, P.; Dascalescu, L.;Premises for the mathematical modeling of the combined corona-electrostatic field of roll-type separators, Industry Applications, IEEE Transactions on , Volume 36, Issue 5, Sept.-Oct. 2000 Page(s):1260 – 1266
    [90]L. Dascalescu and Michaela Mihailescu. Mathematical modelling of conductive particle movement in d.c. corona fields. Journal of Electrostatics, Volume 30, May 1993, Pages 297-306
    [91] Vlad, S.; Iuga, A.; Dascalescu, L.;Numerical computation of conducting particle trajectories in plate-type electrostatic separators Industry Applications, IEEE Transactions on, Volume 39, Issue 1, Jan.-Feb. 2003 Page(s):66 – 71
    [92]Younes, M.; Tilmatine, A.; Medles, K.; Rahli, M.; Dascalescu, L.;Numerical modelling of conductive particle trajectories in roll-type electrostatic separators, Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Volume 4, 2-6 Oct. 2005 Page(s):2601 - 2606 Vol. 4
    [93] Dascalescu, L, Samuila, A. Mihalcioiu, A. Bente, S. Tilmatine, A.Robust design of electrostatic separation processes. Industry Applications, IEEE Transactions on. Volume 41, Issue 3, May-June 2005 Page(s):715 – 720
    [94]Iuga, A.; Samuila, A.; Blajan, M.; Beleca, R.; Morar, R.; Dascalescu, L.;Characterization of wire corona electrodes at various discharge gaps in electrostatic separation processes, Industry Applications Conference, 2004. 39th IAS AnnualMeeting. Conference Record of the 2004 IEEE , Volume 3, 3-7 Oct. 2004 Page(s):1967 - 1973 vol.3
    [95]Bendaoud, A.; Tilmatine, A.; Medles, K.; Rahli, M.; Huzau, M.; Dascalescu, L.;Characterisation of dual corona electrodes for electrostatic processes applications, Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE, Volume 3, 3-7 Oct. 2004 Page(s):1552 - 1558 vol.3
    [96]H.R.马诺切赫里等. 电选法应用实践评述(Ⅱ). 国外金属矿选矿,2002,11:4-12
    [97]R.科恩勒彻,M.博茨. 静电分选极其在处理各种再生物料混合物的工业应用. 国外金属矿选矿,1998,9:22-25
    [98] 温雪峰,范英宏,赵跃民. 用静电选的方法从废弃电路板中回收金属富集体研究. 环境工程,2004,22(2):78-81
    [1] 唐敬麟.破碎与筛分机械设计选用手册[M].北京:化学工业出版社,2001.
    [2] 顾国华, 戚云峰.废旧印刷电路板的破碎性能及资源特征 [J].中国有色金属学报.2004, 6, vol.14, No.6, 1037~1041.[4] GU Guo-hua, QI Yun-feng. Crushing performance and resource characteristic of printed circuit board scrap [J]. The Chinese Journal of Nonferrous Metal. 2004, 6, vol.14, No.6, 1037~1041.
    [3] R. Meier-Staude, R. Koehnlechner, Elektrostatische trennung von leiter/nichtleitergemischen in der betrieblichen praxis (electrostatic separation of conductor/non-conductor mixtures in operational practice) [J]. Aufbereitungs-Technik 41 (2000) 118–123.
    [4] Y. Higashiyama, K. Asano, Recent progress in electrostatic separation technology [J]. Particul. Sci. Technol. 16(1998) 77–90.
    [5] Jirang Cui, Eric Forssberg. Mechanical recycling of waste electric and electronic equipment: a review [J].Journal of Hazardous Materials B99 (2003) 243–263.
    [6] Shunli Zhang, Eric Forssberg. Intelligent Liberation and classification of electronic scrap [J]. Powder Technology. 105(1999).295~301. 第四章
    [1] M. Pauthenier 1960 in La Physique des Forces Electrostatiques et Leurs Applications. Grenoble, France: C.N.R.S, pp. 279–287.
    [2] L. Dascalescu, R. Tobazeon, P. Atten 1995 J. Phys. D: Appl. Phys. 281611–1618.
    [3] L. Dascalescu, A. Iuga, R. Morar, V. Neamtu, A. Samuila, I. Suarasan 1994 J. Phys. D: Appl. Phys. 27 ,1242–1251.
    [4] Y. Wu, G. S. P. Castle, I. I. Inculet, S. Petigny, and G. Swei 2003 Powder Technol., vol. 135–136, pp. 59–64
    [5] A. luga, R. Morar, A. Samuila and L. Dascalescu 2001 IEE Proc.-Sci. Meos. Technol., Vol. 148, No. 2, 47-54.
    [6] Vinay Jaiswal1 and M Joy Thomas. Finite element modelling of ionized field quantities around a monopolar HVDC transmission line.J. Phys. D: Appl. Phys. 36 (2003) 3089–3094.
    [7] J.M. Crowley, Fundamentals of Applied Electrostatics, Krieger Publishing, Malabar, FL, 1991, pp. 19– 20.
    [8] Y. Wu, G. S. P. Castle, I. I. Inculet, S. Petigny, and G. Swei, “Induction charge on freely levitating particles,” Powder Technol., vol. 135–136, pp. 59–64, 2003.
    [9] Lucian Dascalescu, Akira Mizuno, Robert TobazCon, Pierre Atten, Roman Morar, Alexandru Iuga, Michaela Mihailescu, and Adrian Samuila, “Charges and Forces on Conductive Particles in Roll-Type Corona-Electrostatic Separators” Transactions On Industry Applications, VOL. 31, NO. 5, September/October 1995.
    [10] Angelov A I, Vereshyagin I P and Yershov V S et al 1983 Physical Basis at Electrostatic Separation (Moscow: Moscow Geology Press) p 160 (in Russian)
    [11] A. Mizuno and M. Fukuma, “Decrease in charge of sharp edge ellipsoidal particles by self-discharge,” IEEE Trans. Ind. Applicat., vol. 21, pp. 52–57, 1985.
    [12] Dascalescu, L. Tobazeon, R. Atten, P. “Behavior of conductive particles in corona-dominated electric fields”, Industry Applications Society Annual Meeting, 1992. 1992 Page(s):1479 - 1486 vol.2.
    [13] I.I. Inculet, Y. Murata, G.S.P. Castle, A new electrostatic separator and sizer for small particles, IEEE Trans. Ind. Appl. 19 (1983) 318-323.
    [14] Arshad Kudrolli, Size separation in vibrated granular matter, Rep. Prog. Phys. 67 (2004) 209–247.
    [15] I.A. Metwally, A.A. A-Rahim, Dynamics of spherical metallic particles in electrostatic separators/sizers, Journal of Electrostatics 51-52 (2001) 252-258.
    [16] Lucian Dascalescu, Simona Vlad, Alexandru Iuga, Peter L Levin, Electrostatics of conductive particles in contact with a plate electrode affected by a non-uniform electric field, J. Phys. D: Appl. Phys. 34 (2001) 60–67.
    [17] Angelov A I, Vereshyagin I P and Yershov V S et al 1983 Physical Basis at Electrostatic Separation (Moscow: Moscow Geology Press) p 160 (in Russian)
    [18] N.N. Lebedev, I.P. Skal'skaya, Forces acting on a conducting sphere in the field of a parallel plane condenser, Sov. Phys. Technol. Phys. 27 (1962) 268-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700