混合驱动水下机器人控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的水下机器人,混合驱动水下机器人具备螺旋桨驱动与浮力驱动两套驱动系统,兼有水下自航行器(Autonomous Underwater Vehicle,简称AUV)和水下滑翔器(Autonomous Underwater Glider,简称AUG)的优点。在螺旋桨驱动模式下,具有航行速度快、机动性好的优点;当以浮力驱动模式航行时,具有航程大,隐蔽性好的优点。与传统的水下机器人相比,混合驱动水下机器人的运动形式更加复杂。因此,其控制系统节点较多,复杂程度较高,工作环境复杂,对可靠性提出更高的要求。
     本文以自主研发的混合驱动水下机器人PETREL为依托,设计了融合AUV控制和AUG控制的分布式控制系统。本文的主要研究内容及成果如下:
     1.针对复杂水下环境对通讯的不利影响,本文设计了基于串口和CAN总线的水下机器人复合分布式控制系统,该系统避免了串口和水下机器人内部CAN总线的相互干扰,更加适合多传感器及多末端执行机构的水下机器人。
     2.混合驱动水下机器人核心控制单元和单元功能模块设计。本文采用ARM7微控制器LPC2292设计了核心控制单元,使整个系统具有可扩展性和互换性。在此基础上,设计了电源管理系统,螺旋桨推进系统,姿态控制系统,变浮力系统等单元功能模块。
     3.结合模糊PID控制器,对PETREL的航行控制策略进行了研究,包括航行轨迹跟踪策略、姿态保持策略以及意外处理策略。以上策略的应用,大大增强了系统的鲁棒性,改善了动态响应特性,使得PETREL能够有效的完成航行及测量任务。
     4.对核心控制单元及各基础单元模块进行了详细的单元实验研究,验证了系统的功能。一系列的水域实验验证了本文研究的PETREL控制系统的可行性、可靠性。
The hybrid autonomous underwater vehicle is a new type of autonomous underwater vehicle which propelled both by buoyancy and propeller. It has the respective advantages of AUV and AUG. In propeller driven model, it has the advantage of higher maneuverability and velocity. However, in buoyancy-driven model, it has long endurance and low noise. The motion characteristics of hybrid autonomous underwater vehicle are more complex than traditional. Thus, the control system is much more complicated which need of higher reliability.
     Based on independently developed hybrid autonomous underwater vehicle PETREL, this paper designed the distributed control systems of AUV and AUG. The main research and contributions of this thesis are summarized as follows:
     1. The distributed control system based on serial port and CAN bus are designed which can reduce the adverse effects of complex underwater environment. This control system avoids the mutual interference of serial port and CAN bus, so it is appropriate for autonomous underwater vehicle with multiple sensors and executing agencies.
     2. The design of core control unit and function modules. The core control unit with excellent expansibility and interchangeability is designed based on ARM7 LPC2292. Then function modules of power management system, propeller system, attitude control system and variable-buoyancy system are designed.
     3. Based on fuzzy PID controller, the control strategy of PETREL is studied, including trajectory tracking strategy, attitude control strategy and exceptions handling strategy. It is verified that this control system is robust and can effectively complete navigation and measure missions.
     4. A series of unit experiments are carried out to validate the function of control system. The lake trials verified the feasibility and reliability of PETREL’s control system.
引文
[1]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势[J].高技术通讯,1999,13(9):55~59.
    [2]李锡群,王志华.无人水下航行器(UUV)技术综述[J].船电技术,2003,23(6):12~15.
    [3]任福君,张岚,王殿君等.水下机器人的发展现状[J].佳木斯大学学报,2000,18(4):317~320.
    [4] Stephen McPhail.Autosub6000 A Deep Diving Long Range AUV[J].Journal of Bionic Engineering,2009,6(1):55~62.
    [5]封锡盛.从有缆遥控水下机器人到自治水下机器人[J].中国工程科学,2000,2(12):29~33.
    [6] Smith S. M., Dunn S. E..The Ocean Voyager II: an AUV designed for coastal oceanography[A].In: Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology[C],1994:139~147.
    [7] Damus R., Manley J., Desset S., et al.Design of an inspection class autonomous underwater vehicle[C].Ocean's 2002 Conference and Exhibition,2002:180~185.
    [8] Frye D.E., Kemp J., Paul W.; et al.Mooring developments for autonomous ocean-sampling networks[C].IEEE Journal of Oceanic Engineering,2001, 26(4):477~486.
    [9] Singh H., Bellingham J.G.. Hover F, et al.Docking for an autonomous ocean sampling network[C].IEEE Journal of Oceanic Engineering,2001, 26(4):498~514.
    [10] Purcell M., Von A. C., Allen B..New capabilities of the REMUS autonomous underwater vehicle[C] . OCEANS 2000 MTS/IEEE Conference and Exhibition,2000:147~151.
    [11] Allen B., Stokey R., Austin T..REMUS: a small, low cost AUV; system description, field trials and performance results[C].OCEANS '97 MTS/IEEE Conference Proceedings,1997:994~1000.
    [12] Von A. C., Allen B., Austin T., et al.Remote environmental measuring units, autonomous underwater vehicle technology[C] . Proceedings of the 1994 Symposium on AUV,1994:13~19.
    [13] Anon。Unmanned vehicles tested in the Gulf[J].Warship Technology,2004:16~17.
    [14] Ura T, Obara T, Nagahashi K, Kim K, Oyabu Y, Sakamaki T, Asada A, Koyama H . Introduction to an AUV "r2D4" and its Kuroshima Knoll Survey Mission[C].OCEANS '04,2004:840~845.
    [15] Balasuriya A, Ura T.Autonomous target tracking by Twin-Burger 2[C].IEEE International Conference on Intelligent Robots and Systems,2000:849~854.
    [16] Ura T, Kumagai M, Sakakibara T, Kimura Y, Okumura T, Kazuyoshi S, Sasaki M, Matsushima M.Construction and operation of four autonomous underwater vehicles for lake survey[C].Proceedings of UT02 IEEE,2002:24~29.
    [17] Imai T, Ura T, Nose Y.Semi-autonomous touching of underwater object by unmanned untethered vehicle[C].Oceans’02,2002:236~241.
    [18] Nakatani, T; Ura, T; Ito, Y, et al.AUV "TUNA-SAND" and its exploration of hydrothermal vents at Kagoshima Bay[C].OCEANS 2008,2008,1(3):1154~1158.
    [19] Tsukioka S, Aoki T, Tamura K, Murashima T, Nakajoh H, Ida T.Development of a Long Range Autonomous Underwater Vehicle AUV-EX1[J].Underwater Technology,2000:254~258.
    [20] Storkersen N. J., Kristensen A., Indreeide J. . HUGIN-UUV for seabed surveying[J].Sea Technology,1998,39(2):22~27.
    [21] Hagen P. E., Storkersen N. J., Vestgard K..HUGIN-use of UUV technology in marine applications[C].OCEANS '99 MTS/IEEE Conference Proceedings,1999:967~972.
    [22] Hagen P. E., Storkersen N., Vestgard K., et al.The HUGIN 1000 autonomous underwater vehicle for military applications[C].Proceedings of Oceans,2003:1141~1145.
    [23] Hagen P. E., Storkersen N. J., Marthinsen B. E., et al.Military operations with HUGIN AUVs: lessons learned and the way ahead[C].OCEANS’05 Europe Conference Proceedings,2005:810~813.
    [24] Collar P. G., Mcphail S. D..Autosub: an autonomous unmanned submersible for ocean data collection[J].Electronics & Communication Engineering Journal, 1995,7 (5):105~114.
    [25]桑恩方,庞永杰,卞红雨.水下机器人技术[J].机器人技术与应用,2003,(3):8~13.
    [26]侯巍.具有着陆坐底功能的水下自航行器系统控制与实验研究[D](博士学位论文).天津,天津大学,2006.
    [27]张宏伟.可着陆水下自航行器系统设计与动力学行为研究[D](博士学位论文).天津,天津大学,2007.
    [28]温秉权.小型浅水域水下自航行器系统设计与实验研究[D](博士学位论文).天津,天津大学,2005,
    [29] Webb D., Simonetti P., and Jones C..SLOCUM: an underwater glider propelled by environmental energy[C].IEEE Journal of Oceanic Engineering,2001,26(4):447~452.
    [30] S. Stommel.The Slocum Mission[J].Oceanography,1989,2(1):22~25.
    [31] Eriksen C. . Autonomous underwater gliders[R] . In : Autonomous and Lagrangain Platforms and Sensors (ALPS) Workshop, Sea Lodge, La Jolla, CA , U.S.A., 2003.
    [32] Eriksen C. C., Osse T. J., Light R .D., et al.Seaglider: a long-range autonomous underwater vehicle for oceanographic research[C].IEEE Journal of Oceanic Engineering,2001,126(4):424~436.
    [33] Sherman J., Davis R. E., Owens W. B., Valdes J..The autonomous underwater glider“spray”[C].IEEE Journal of Oceanic Engineering,2001,126(4):437~446.
    [34] Diving deep below the surface, accessed November 2007, online available at: http://thedaily.washington.edu/article/2007/3/30/divingDeepBelowTheSurface
    [35] Tomoda Y., Kawaguchi K., Ura T., et al.Development and sea trials of a shuttle type auv ALBAC[A].In: Proc. 8th Int. Symposium on Unmanned Untethered Submersible Tech. [C].Durham,NH,1993:7~13.
    [36]王延辉,王树新,谢春刚.基于温差能源的水下滑翔器动力学分析与设计[J].天津大学学报,2007,40(2):133~138.
    [37]王树新,王延辉,张大涛等.温差能驱动的水下滑翔器设计与实验研究[J].海洋技术,2006,25(1):1~5.
    [38]王延辉.水下滑翔器动力学行为与鲁棒控制策略研究[D](博士学位论文).天津,天津大学,2007.
    [39]俞建成,张奇峰,吴利红等.水下滑翔机器人系统研究[J].海洋技术,2006,25(1):6~10.
    [40]胡克,俞建成,张奇峰.水下滑翔机器人载体外形设计与优化[J].机器人,2005,27(2):108~112.
    [41]阚雷,张宇文,范辉等.浮力驱动式水下滑翔机运动仿真[J].计算机工程与应用,2007,43(18):199~201.
    [42]葛晖,徐德民,周秦英.基于变质心控制的低速水下航行器动力学建模[J].机械科学与技术,2007,26(3):327~331.
    [43]马峥,张华,张楠等.水下滑翔机滑翔运动的能量分析及水动力性能研究[J].船舶力学,2006,10(3):53~60.
    [44] Jenkins S., Humphreys D., Sherman J., et al.Underwater glider system study,Technical report[R].Office of Naval Research,U.S.A.,2003.
    [45] Richard D., Dberg B..The development of autonomous underwater vehicles (AUV): a brief summary[R].In:IEEE International conference on Robotics and Automation,Korea ,2001.
    [46] Ahmed-ali T., Cuillerier L., Seube N..Nonlinear identifier and observer design for an underwater glider[R].In:IFAC Conf on Maneuvering and Control of Marine Crafts,Girona,Spain,2003.
    [47] MOITIE R., SEUBE N..Guidance and control of an autonomous underwater glider[R] . In : Proc. 12th Int. Symposium on Unmanned Untethered Submersible Tech.,Durham,NH,2001.
    [48] Yamamoto Ikuo, Research and development of past, present, and future AUV technologies, accessed November 2007, online available at: http://www.noc.soton.ac.uk/CASEE/CASEE2/pages/Masterclass/R&D%20past%20present%20future%20AUV%20tech-2.pdf
    [49]彭慧等.“探索者”号自治式无缆水下机器人控制软件体系结构[J].机器人,1995,17(3):177~183.
    [50] Kimon P.V., Denis Gracanin, Maja Matijasevic.Control architectures for autonomous vehicles[C].IEEE on control systems,1997:48~64.
    [51]马骥,李一平,李硕.基于RS-485网络的分布式水下机器人控制系统[J].自动化博览,2003,20(6):79~81.
    [52] LPC2119/2129/2194/2292/2294使用指南,广州周立功单片机发展有限公司
    [53]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003:20~36,39~136,137~140,154~160.
    [54] Maxon Motor Ag, Maxon Motor Sample Book, 2004
    [55]王晓鸣.混合驱动水下自航行器动力学行为与控制策略研究[D](博士学位论文).天津,天津大学,2009.
    [56]邵贝贝等译.嵌入式实时操作系统μC/OS-II[M].北京:北京航空航天大学出版社,2003:116~282.
    [57]王晓鸣,王树新,张宏伟.实时操作系统μC/OS-II在ARM上的移植[J].机电一体化,2007,13(1):56~58.
    [58]陈是知.μC/OS-II内核分析、移植与驱动程序开发[M].北京:人民邮电出版社,2007:127~164.
    [59]徐良波等.大容量存储器K9K8G08U0A及其在定点垂直升降剖面测量系统中的应用[J].海洋技术,2008,27(4):25~28.
    [60] K9K8G08U0A DataSheet,Samsung Electronics
    [61]席爱民.模糊控制技术[M].西安:西安电子科技大学出版社,2008:1~10.
    [62]廉小亲.模糊控制技术[M].北京:中国电力出版社,2003:53~72.
    [63]武建国.混合驱动水下滑翔器系统设计与性能分析[D](博士学位论文).天津,天津大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700