电驱动水下滑翔器控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下滑翔器是重要的海洋资源探测和海洋环境监测平台。它使用电能作为驱动能源,航行范围大、噪音低,在螺旋桨推进模式下速度快、机动性高,在航洋探测领域和军事领域有着广泛的应用前景。
     本文根据水下滑翔器的性能指标,设计了水下滑翔器的控制系统,使其能够适应复杂的海洋环境,并着重于系统的可靠性、低功耗特性、环境适用性方面对系统进行优化。本文的主要研究内容及成果如下:
     1、根据水下滑翔器的硬件需求及功能需求,设计了滑翔器的主控制系统,系统结构采用集中式控制结构,采用ARM系列全新32位处理器和军品元器件,有效解决了控制系统硬件连续长时间工作的可靠性。同时对系统的能源系统进行设计,着重分析了滑翔器搭载的能源类型及各模块的供电控制。
     2、对底层执行机构的控制方式进行研究,采用了基于Canopen通讯的多电机分布式控制结构,它有效地满足系统通讯实时性高的要求,并大大节省了主控单元的接口需求。姿态调节系统加装绝对编码器和制动器,使系统具有断电抱死和掉电记忆的功能。浮力驱动系统采用光电开光进行油量检测,有效解决了浮力驱动系统分步排油的问题。
     3、运动控制采用数字PID算法,并设计了PID控制器。同时根据现有定位导航技术,分析了定位导航技术中难点。
     4、对各个传感器单元进行了功能测试,验证了单元模块的功能,并对耐压壳体进行压力测试和浮力损失测试,验证浮力系统分步排油的合理性。
The underwater glider can be served as im portant platform s for m arine environment observation and ocean resource exploration. It uses battery as the driving energy, and it has a long range of navigati on and low noise. In propeller mode, it has the high performance of speeding and mobility. In the field of marine and military, it has far-reaching applications.
     In this paper , based on the perform ance of underwater gliders, we designed a control system of unde rwater gliders, wh ich was adapted to the complex m arine environment. And we also optim ize the system, based on the system reliability, low power consumption and environment applicability.
     The main contents and results of the paper are as follows:
     1. According to hardw are and functiona l requirements, we designed the m ain control system of the underwater gliders. We used centralized control structure, with a new series of 32-bit ARM processor and military component. It is an efficient solution to the hardware system relia bility problem, which is wo rking long hours. W e also designed the ener gy system of underwater g liders, focusing on the analysis of the energy type that the glider carried and the power supply control mode.
     2. We study the control ways of the bo ttom actuating m echanism and getting a distribution contro l structure for m ulti-motor system , which ad opt Canopen communication. It effectively meet the requirement of real time, and it also saving the main control unit interface. The absolu te encoder and brake were a dded on the attitude control system. It makes the system remember its position and lock braking when power down. The buoyancy-driven system used optical opening for fuel testing. It is an effective solution to the problem of oil discharge step by step.
     3. Motion control used digital PID algorith m, and we designed a PID controller . At the same time we analyzed the difficulties in positioning and navigation according to the existed navigation technology.
     4. We tested each sensor to verify th e unit function. We also have stress testing and buoyancy loss testing for pressure hull, proving it is reasonable for oil dischar ge step by step.
引文
[1] J.Yuh, Des ign and control of autonom ous underwater robots: a survey, Autonomous Robots, 2000, 8(1):7~24
    [2]赵进平,发展海洋检测技术的思考与实践,北京:海洋出版社,2005
    [3] S. Stommel, The Slocum Mission, Oceanography, 1989, 2(1): 22~25
    [4] D. Richard Blidberg, The developm ent of autonom ous underwater vehicles (AUV); A Brief Su mmary, IEEE Intern ational Conference on Robotics and Automation, Korea 2001:1~12
    [5] David L. Martin, Autonom ous Platform s in Persistent Littoral Undersea Surveillance: Scientific and Systems Engineering Challenges, 2005
    [6] A. Caffaz, A. Caiti, G. Casalino, A. Turetta, The hybrid Glider/AUV Folaga, IEEE Robotics&Automation Magazine, 2010, 17(1): 31~44
    [7] La Spezia, Inovative glider technology, Technical Report, ACSA Underwater GPS, 2008.
    [8]王晓明,混合驱动水下自航行器动力学行为与控制策略研究,天津大学博士论文,2009
    [9] Todd Allen, Joseph Caldwell, Sean Kuhn, et al, Autonomous underwater vehicle: powered glider, Technical Report, Florida Institute of Technology, 2007
    [10] Jianguo Wu, Chaoying Chen, Shuxin W ang, Hydrodynamic effects of a shroud design for a hybrid-driven underwater glider, Sea Technology, 2010, 51(6):45-47
    [11] Wood, Stephen, Autonom ous underwater glider, Technical Report, Florida Institute of Technology, 2007
    [12] La Spezia, Inovative glider technology, Technical Report, ACSA Underwater GPS, 2008.
    [13] John Keller, UUV mothership to depl oy intelligence-gathering un manned underwater vehicles in develop ment by SAIC, Military and Aerospace Electronics, 2010, 6(1): 6~9
    [14]施生达,潜艇操纵性,北京:国防工业出版社,1995
    [15]张捍东,徐龙,岑豫皖,Canopen协议在ARM控制多电机驱动器系统中的应用与设计,自动化与仪表仪器,2011(2):40~43
    [16]李彦波,电驱动水下滑翔器姿态调整系统研究,天津大学硕士论文,2007
    [17]季龙,水下滑翔机定位导航系统及实验研究,浙江大学硕士论文,2006
    [18]卞秀辉,基于CAN总线的血管造影机运动控制系统设计,沈阳工业大学硕士论文,2007
    [19]饶运涛,邹继军,郑勇芸,现场总线CAN原理与应用技术,北京:北京航空航天大学出版社,2003
    [20]固态继电器,上海苏伟为机械有限公司,http://b2b.mainone.com/product/700/58/78/700587817.htm
    [21]伟利国,张小超,胡小安,TCM3电子罗盘的特性与应用,传感器与微系统,2009
    [22]李澄,赵辉,CANopen协议及在电机系统控制中的应用,机电工程,2008
    [23]黄伟,电能驱动水下滑翔器控制系统的设计,天津大学硕士论文,2007
    [24]郑飞,基于ARM的智能PID控制系统,北京交通大学硕士论文,2009
    [25] Joshua Grady Graver, Underwater glid ers: dynamics, control and design, PhD thesis, Princeton: Princeton University, 2005
    [26]王树新,王延辉,张大涛等,温差能驱动的水下滑翔器设计与实验研究,海洋技术,2006,25(1):1-5
    [27]王延辉,水下滑翔器动力学行为与鲁棒控制策略研究:[博士学位论文],天津,天津大学,2007.
    [28] Z. P. W ang, S. S. Ge, T. H. Lee, Robust adaptive neural network control of uncertain nonholonomic systems with strong nonlinear drifts, IEEE Trans Syst Man Cybern B Cybern. 2004, 34(5):2048-2059
    [29] P. Bhatta, Nonlinear s tability and cont rol of gliding vehicles : [ Dissertation], USA:Princeton University, 2006
    [30]徐丽娜,神经网络控制,北京:电子工业出版社,2003
    [31]姜琳,过程优化控制中的智能方法研究,吉林大学博士论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700