全麻纤维的综合利用及木质素对纤维素酶吸附的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻纤维是我国一类重要的传统纤维原料,种类繁多,资源丰富。其中苎麻具有“中国草”之称,由其皮部韧皮纤维加工成的纺织品具有洁白、挺括、冰爽、舒适、抑菌、保健、卫生等优点,深受国内外消费者喜爱。但苎麻韧皮纤维在使用前,必须首先将其中的胶质脱除,使单根纤维之间分离,同时赋予纤维一定的成纺性能。其中酶法脱胶由于具有脱胶专一性强、作用条件温和、所得麻纤维品质好,柔软、蓬松卷曲、手感好、强度高、光泽度好等诸多优点,以及环境污染轻的优势,成为麻纤维脱胶的发展方向。但目前在高效脱胶菌株、主要脱胶酶组分和脱胶机理等方面的研究还有待于深入,以促进酶法脱胶的发展。除了韧皮纤维外,占生物学产量60%左右的麻秆部分,目前除少部分用于压制纤维板或制浆造纸外,大部分未被有效利用,造成资源的极大浪费,因此急需强化该方面的研究,以达到麻类原料全组分利用的目的。由于麻秆中富含纤维素,因此可望用于转化生产燃料乙醇,但目前尚未有利用苎麻秆生产生物乙醇的报道。在生物转化生产燃料乙醇过程中,由于原料中的木质素在纤维素酶解过程中,会与酶产生非反应性的结合,导致对酶的无效吸附,从而影响纤维素的酶解效率。了解木质素与酶的吸附规律和机制对提高纤维素的酶解具有重要意义。由于不同原料来源的木质素的组成和性质等的不同,将会对吸附造成不同的影响,而该方面研究还未见报道。基于以上背景,本论文对苎麻等原料皮部韧皮纤维的高效脱胶酶系、酶法脱胶机制、麻秆部纤维预处理和糖化发酵产燃料乙醇的可行性、木质素对纤维素酶的吸附及机制等进行了研究。本论文的主要研究结果如下:
     1.苎麻高效脱胶菌株的筛选、酶学性质和果胶酶的生产
     通过比较不同菌株粗酶液的脱胶能力,发现Bacillus sp. Y1的粗酶液具有快速和高效的脱胶能力,脱胶过程在1h内基本完成,并且几乎不含有纤维素酶。酶学性质研究表明,Bacillus sp. Y1粗酶液中的PGL的最适pH为9.6-10.0,最适温度为60℃,在pH7-10.5和30-50℃具有很好的稳定性,有较宽的pH和温度范围,和很好的过氧化氢耐受性,具有较好的应用于酶法脱胶的潜力。该粗酶液在脱胶过程中与过氧化氢具有协同作用,可明显提高苎麻纤维的脱胶率和纤维白度,为酶法脱胶和过氧化氢漂白工艺相结合提供了理论基础。
     通过单因子实验、混料设计、部分因子实验和中心组合设计,对Bacillus sp.Y1产酶培养基组分和培养条件进行了优化,以提高其产酶水平。优化后得到最佳产酶条件为:碳源10.5%,(NH4)2SO40.37%(w/v), MgSO40.3%(w/v),Tween-800.1%(w/v),初始pH8.2,每50mL的发酵培养基的接种量为1.3mL(种子培养液的OD600约为5.77),秋千式摇床转速为100rpm,34℃下发酵60h。相比优化前,PGL酶活和PG酶活分别提高了1倍和2.44倍,产酶高峰缩短了12h,由72h提前至60h。
     2.脱胶机制研究
     通过Bacillus sp. Y1粗酶液酶系分析和粗酶、纯酶添加实验验证,证明Bacillus sp. Y1酶液中具有的高蛋白酶活力是该酶液有效脱胶的一个主要因素,并发现蛋白酶和果胶酶在脱胶中存在协同作用。为酶法脱胶中的有效脱胶酶组分和脱胶酶系改造提供了新的见解。
     通过对不同生长期的苎麻的化学成分和脱胶性能进行分析,发现头麻和二麻在化学成分和脱胶效果上几乎没有差别,而三麻脱胶性能最差。对头麻和三麻不同脱胶时间下的样品进行比较研究,发现三麻中果胶和半纤维素的脱除率明显低于头麻,SEM观察也发现三麻表面附着的胶质明显多于头麻,且较难脱除。分析推测可能是半纤维素阻碍了三麻胶质的脱除。
     3.预处理苎麻秆和红麻秆糖化发酵生产燃料乙醇研究
     比较了几种不同化学预处理方法对苎麻秆和红麻秆纤维素酶解性能的改善效果以及预处理后秆部纤维糖化发酵产燃料乙醇的性能。研究发现碱法预处理较适用于此类原料。4%NaOH和0.02%蒽醌-2-磺酸钠盐(AQSS),在170℃下处理1h的苎麻秆和红麻秆,木质素脱除率最高,经过分批补料半同步糖化发酵工艺,在补料至底物浓度为20%时,乙醇浓度可达63g/L,转化率分别为77%和79%。红麻秆经5.2%NaHSO3和0.2%H2SO4,在170℃下处理1h,补料至20%的底物浓度时,乙醇浓度可达到65g/L,纤维素转化率为72%。
     4.不同原料来源木质素的组成和性质及其对纤维素酶吸附的影响和机制研究
     来源于不同种类原料的木质素对纤维素酶表现出不同的吸附性能,吸附强弱排序为松木木质素>玉米秸木质素>杨木木质素>红麻秆木质素。通过对不同木质素组成和性质的研究,推测木质素的结构特征差异可能是造成吸附差异的潜在机制,如功能团和木质素组成等。具有低S/G比例的木质素对纤维素酶表现出更高的吸附能力。玉米秸木质素中高的酚羟基含量和低的羧酸基团含量是其对纤维素酶吸附能力大于红麻秆木质素和杨木木质素的原因之一。相比玉米秸木质素,松木木质素具有低含量的脂肪羟基,增加了木质素的疏水性,可能是松木木质素对纤维素酶吸附能力大于玉米秸木质素的原因之一。通过酶活测定、纯酶吸附等实验,发现木质素对纤维素酶不同酶组分的吸附力强弱顺序为CBH、木聚糖酶>EG>BG,BG的最弱吸附力表明,CBM在蛋白吸附中发挥重要作用。
Ramie is the traditional fiber crops in China. Its fibers are considered as the longest, strongest, and silkiest in plant fibers and have excellent properties as natural textile material, such as preeminent absorption, quick drying, easy dyeing, shrinkage resistance, good bacteria, mildew, and insect resistance. However, decorticated ramie fibers contain20-35%gum, which mainly consists of pectin and hemicellulose. This gum should be removed as much as possible for most applications. Conventional degumming using NaOH solution consumes large amounts of chemicals and energy, and causes serious environmental pollution. Enzymatic degumming is a gentle reaction, with less damage to fibers and flexible operation, as well as easy processing and quality control, and so on. Hence, it is considered a potential alternative to chemical degumming and has attracted wide attention. The research on efficient degumming enzyme, high-efficient degumming enzyme components and degumming mechanism can promote the understanding and development of the enzymatic degumming. Up to now, the ramie stalk and kenaf stalk have not been used effectively. The stalk contains a lot of cellulose and therefore can be used for the production of bioethanol. The research on the pretreatment of the stalks and fermentation for bioethanol production could provide reference for bioethanol production using this kind of raw materials. Lignin has been always deemed to have a negative impact on the saccharification of lignocellulosic feedstocks by physically barring and unproductively adsorbing hydrolytic enzymes. The lignin sources and structural features of lignin affect the inhibition on the saccharification. The characteristics and compositions of lignin are significantly different in diverse types of biomass. The native difference in lignin is the reason for the differences in their adsorption capacity. However, the mechanism on how it affects the inhibitory hydrolysis was not explained. Based on above, the research contents and the main results of the thesis are as follows:
     1. Screening of strains capable of producing effective degumming enzyme, enzyme characterization and optimization of enzyme production
     It was found that the crude enzyme from wild-type Bacillus sp. Y1had a powerful and fast degumming ability. Its polygalacturonate lyase (PGL) activity was the highest at pH9.6-10.0and60℃, and stable at pH7.0-10.5and30-50℃. The PGL have a wide scope of pH and temperature, and high H2O2tolerance. The gum loss and brightness of fibers could be significantly improved when H2O2was added during enzymatic degumming with the PGL, showed a synergistic action between the PGL and H2O2on the degumming and bleaching of ramie fibers. It was very suitable for a joint process of enzymatic degumming and H2O2bleaching.
     The medium components and fermentation conditions for the pectinase production were optimized by some statistical methods, and the activities of polygalacturonate lyase (PGL) and polygalacturonase (PG) were increased to2.00-and3.44-fold respectively, and the fermentation time shortened12hours (from72hrs to60hrs) after optimization. The final optimal medium components and fermentation conditions were as follows:carbon source,10.5%,(NH4)2SO4,0.37%; MgSO4,0.3%; Tween-80,0.1%(w/v); initial pH,8.2; and inoculum number of1.3mL (with the OD600of the seed medium about5.77) per50mL of fermentation medium on a swing shaker (100rpm) at34℃for60h.
     2. Degumming mechanism with crude enzyme from Bacillus sp. Y1
     The mechanism about effective degumming with crude enzyme from Bacillus sp. Yl was studied by SDS-PAGE, MS/MS, and the adding experments of enzymes and purified protein. It was found that the crude enzyme of wild-type Bacillus sp. Y1contains more proteins compared with the control pectinase, and protease component in it was further substantiated to play an important role in the degumming process. There was a synergistic action between protease and pectinase during degumming.
     Chemical composition and degumming performance of ramie from different growth period were analyzed. Few differences were found in chemical composition and degumming performance between the first ramie and second ramie, and the degumming performance of the third ramie is the worst. The chemical composition analysis showed that the third ramie contains more hemicellulose. It was found from comparative study on the ramie degumming in different time that the degumming process was finished after1h, and the removal of pectin and hemicellulose in the third ramie was obviously lower than that in the first ramie. SEM observation showed that the gum adhesions on the surface of the third ramie was significant more than that on the first ramie, and more difficult to be removed.
     3. Pretreatment of ramie stalk and kenaf stalk and Q-SSF for bioethanol production
     The effects of different chemical pretreatment on enzymatic digestibility of ramie stalk and kenaf stalk were studied. Ramie and kenaf stalks pretreated with alkali were chosen to produce ethanol using quasi-simultaneous saccharification and fermentation (Q-SSF) process. The results show that for the stalk pretreated with4%NaOH and0.02%anthraquinone-2-sulfonic acid sodium salt (AQSS) as catalyzer at170℃for1h, the ethanol concentration could reach51g/L after fermentation for168h at18%of solid substrate concentration. By fed-batch to20%of solid substrate concentration, the ethanol concentration could reach63g/L, and the cellulose conversion was77%and79%for ramie stalk and kenaf stalk, respectively. For kenaf stalk pretreated with5.2%NaHSO3and0.2%H2SO4at170℃for1h, the ethanol concentration and cellulose conversion could reach to65g/L and72%, respectively.
     4. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism
     It was found that lignin sources affected enzyme adsorption using structural features, such as functional groups and lignin composition. G lignin had a higher adsorption capacity on enzymes than S lignin. The adsorption capacity of cellulase onto lignin decreased in the order:pine lignin (PL)> corn stover lignin (CL)> aspen lignin (AL)> kenaf lignin (KL). The lignin with low S/G ratio has higher adsorption capacity on enzyme. A higher content of phenolic hydroxyl groups and a lower content of carboxylic acid groups resulted in stronger adsorption affinity for CL than for KL and AL. The lower amount of aliphatic hydroxyls that increased hydrophobic interactions could explain the higher adsorption capacity of PL than CL. For different mono-component enzymes, the adsorption ability decreased in the order: cellobiohydrolase (CBH), xylanase> endoglucanase (EG)> β-glucosidase (BG), indicating the important role of carbohydrate-binding module (CBM) in protein adsorption.
引文
Alvira P, Tomas-Pejo E, Ballesteros M, et al.2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review. BioresourTechnol,101(13):4851-4861.
    Bajpai, P.2008. Application of enzymes in the pulp and paper industry. Biotechnology progress,15(2):147-157.
    Ballesteros I, Negro MJ, Oliva JM, Cabanas A, et al.2006. Ethanol production from steamexplosion pretreated wheat straw. Appl Biochem Biotechnol,129-132: 496-508.
    Baracat-Pereira MC, Dantas Vanetti MC, de Araujo EF, Silva DO.1993. Partial characterization of Aspergillus fumigatus polygalacturonases for the degumming of natural fibers. J Ind Microbiol Biotechnol,11(3):139-142.
    Baucher M, Bernard-Vailhe MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J.1999. Downregulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol,39:437-447.
    Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J.2006. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J Biotechnol,125:198-209.
    Bj6kman A.1956. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvent. Svensk Papperstidning,59:477-485.
    Bout S, Vermerris W.2003. A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics, 269(2):205-214.
    Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248-254.
    Brooks RE, Moore SB.2000. Alkaline hydrogen peroxide bleaching of cellulose, Cellulose,7:263-286.
    Bruhlmann F, Kim KS, Zimmerman W, Fiechter A.1994. Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl. Environ. Microbiol, 61:2107-2112.
    Bruhlmann F, Leupin M, Erismann KH, Fiechter A.2000. Enzymatic degumming of ramie bast fibers. J Biotechnol,76:43-50.
    Cao J, Zheng L, Chen S.1992. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme and Microbial Technology,14(12):1013-1016.
    Cara C, Ruiz E, Ballesteros I, et al.2006. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem, 41(2):423-429.
    Carrillo-Lopez A, Cruz-Hernandez A, Carabez-Trejo A, Guevara-Lara F, Paredes-Lopez O.2002. Hydrolytic Activity and Ultrastructural Changes in Fruit Skins from Two Prickly Pear (Opuntia sp.) Varieties during Storage, J Agric Food Chem,50:1681-1685.
    Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM.2001. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J,28(3):257-70.
    Chen J, Yi J, Sun P, Liu ZT, Liu ZW.2009. Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization, Cellulose,16:1133-1145.
    Chen XS, Ren XD, Dong N, Li S, Li F, Zhao FL, Tang L, Zhang JH, Mao ZG.2012. Culture medium containing glucose and glycerol as a mixed carbon source improves s-poly-L-lysine production by Streptomyces sp. M-Z18. Bioprocess Biosyst Eng,35:469-475.
    Chim-Anage P, Romsomsa N.2009. Optimized conditions for silk degumming protease production from Bacillus sp. by response surface methodology:an abstract. J Biosci Bioeng,108:S114-S134.
    Chen QH, He GQ, Ali MAM.2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb Technol,30:667-672.
    Conde-Mejiaa C, Jimenez-Gutierreza A, El-Halwagi M.2012. A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection,90(3):189-202.
    Dale BE, Moreira MJ.1982. A freeze explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp,12:31-43.
    Dave BA., Vaughn RH.1971. Purification and properties of a polygalacturonic acid transeliminase produced by Bacillus pumilus. J Bacteriol,108:166-174.
    Dien BS, Miller DJ, Hector RE, Dixon RA, Chen F, McCaslin M, Reisend P, Sarathe G, Cotta MA.2011. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol,102: 6479-6486.
    Ehara K, Saka S.2005. Decomposition behavior of cellulose in supercritical water, subcritical water and their combined treatments. J Wood Sci,51:148-153.
    Ehrman T.1994. Standard method for the determination of extractives in biomass, chemical analysis and testing task laboratory analytical procedures. NREL Ethanol Project.
    El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A.2009. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stabil,94:1632-1638.
    Fang X, Shen Y, Zhao J, et al.2010. Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol,101(13):4814-4819.
    Fan LT, Gharpuraym MM, Lee YH.1987. Cellulose hydrolysis biotechnology monographs. United States.
    Galbe M, Zacchi G.2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Engin/Biotechnol,108:41-65.
    Gao L, Gao F, Wang LS, Geng CL, Chi LL, Zhao J, Qu YB.2012. N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. J Biol Chem,2012,287: 15906-15915.
    Gao L, Wang FH, Gao F, Wang LS, Zhao J, Qu YB.2011. Purification and characterization of a novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production. Bioresour Technol,102: 8339-8342.
    Gould JM, Freer SN.1984. High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H2O2. Biotechnol Bioeng,26(6):628-631.
    Gouveia S, Fernandez-Costas C, Sanroman MA, Moldes D.2012. Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Bioresour Technol,121:131-138.
    Grabber JH.2005. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci,45:820-831.
    Gruno M, Valjamae P, Pettersson G, Johansson G.2004. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng,86:503-511.
    Gummadi SN, Sunil Kumar D.2006a. Optimization of chemical and physical parameters affecting the activity of pectin lyase and pectate lyase from Debaryomyces nepalensis:A statistical approach. Bioche Eng J,30:130-137.
    Gummadi SN, Sunil Kumar D.2006b. Enhanced production of pectin lyase and pectate lyase by Debaryomyces nepalensis in submerged fermentation by statistical methods. Am J Food Technol,1:19-33.
    Guo FF, Zou MY, Li XZ, Zhao J, Qu YB.2013. An effective degumming enzyme from Bacillus sp. Y1 and synergistic action of hydrogen peroxide and protease on enzymatic degumming of ramie fibers. Biomed Res Int. doi: 10.1155/2013/212315.
    Guo Y, Chen SL.1997. Pollution of automobile exhaust and control strategy. Chongqing Environ Sci,19(3):9-13.
    Han Y, Chen H.2007. Synergism between com stover protein and cellulase. Enzyme Microb Technol,41:638-645.
    Hendriks A, Zeeman G.2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol,100:10-18.
    Henriksson G., Akin DE, Hanlin RT, Rodriguez C, Archibald DD, Rigsby LL, Eriksson K.1997. Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and europe. Appl Environ Microbiol, 63(10):3950-3956.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. 2007. Biomass recalcitrance:engineering plants and enzymes for biofuels production. Science,315:804-807.
    Hou J, Shen Y, Li XP, Bao XM.2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett Appl Microbiol,45:184-189.
    Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK.2002. Microbial alkaline pectinases and their industrial applications:a review. Appl Microbiol and Biotechnol,59(4-5):409-418.
    Hsu TA, Ladisch MR, Tsao G.T.1980. Alcohol from cellulose. Chemical Technology 10(5):315-319.
    Ibrahim NA, El-Hossamy M, Hashem MM, Refai R, Eid BM.2008. Novel pre-treatment processes to promote linen-containing fabrics properties. Carbohydr Polym,74:880-891.
    Iyer PV, Wu ZW, Kim SB, Lee YY.1996. Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol,57-58:121-132.
    Kapoor M, Beg QK, Bhushan B, et al.2000. Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochemistry,36:467-473.
    Jayani RS, Saxena S, Gupta R.2005. Microbial pectinolytic enzymes:A review. Process Biochemistry,40(9):2931-2944.
    Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS.2001. Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem,36:803-807.
    Kashayp DR, Vohra PK, Soni SK, Tewari R.2001. Degumming of buel (Grewia optiva) bast fibres by pectinolytic enzyme from Bacillus sp. DT7. Biotechnol Lett,23:1297-1301.
    Kirby AR, MacDougall AJ, Morris VJ.2006. Sugar beet pectin-protein complexes, Food Biophys,1:51-56.
    Kim J.W, Mazza G..2008. Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives. Ind Crop Prod,28:346-355.
    Kobayashi T, Koike K, Yoshimatsu T, Higaki N, Suzumatsu A, Ozawa T, Hatada Y, Ito S.1999. Purification and properties of a low molecular weight, high alkaline pectate lyase from an alkaliphilic strain of Bacillus, Biosci Biotechnol Biochem, 63:65-72.
    Kumar P, Barrett DM, Delwiche MJ, et al.2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res,48(8):3713-3729.
    Lai CH, Tu MB, Li M, Yu SY.2014. Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood. Bioresource Technology,156:92-99.
    Laser M, Schulman D, Allen SG, et al.2002. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology,81(1):33-44.
    Li C, Bai J, Cai Z, et al.2002. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol,93:27-34.
    Liu K, Lin XH, Yue J, et al.2010. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol,101(13):4952-4958.
    Margo P, Varvaro L, Chilosi G, Avanzo C, Balestra GM.1994. Pectolytic enzymes produced by Pseudomonas syringae pv. glycinea, FEMS Microbiol Lett,117: 1-5.
    Marita JM, Ralph J, Hatfield RD, Guo DJ, Chen F, Dixon RA.2003. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase. Phytochemistry,62:53-65.
    Martinello T, Kaneko T M, Velasco M V R, Taqueda M E S, Consiglieri V O.2006. Optimization of poorly compactable drug tablets manufactured by direct compression using the mixture experimental design. International Journal of Pharmaceutics,322:87-95.
    Martin C, Thomsen M.H, Hauggaard NH, et al.2008. Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresour Technol,99:8777-8782.
    Martins ES, Silva D, Da Silva R, Gomes E.2002. Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem,37:949-954.
    Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C.1998. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Biochem,95:6619-6623.
    Millet MA, Baker AJ, Satter LD.1976. Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp,6:125-153.
    Mooney CA, Mansfield SD, Touhy MG, Saddler JN.1998. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour Technol,64:113-119.
    Moyo S, Gashe BA, Collison EK, Mpuchane S.2003. Optimizing growth condition for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. Int J Food Microbiol,15:87-100.
    Muralidhar RV, Chirumamila RR, Marchant R, Nigam P.2001. A response surface approach for the comparison of lipase production by Candida cylindracea using two defferent carbon sources. Biochem Eng J,9:17-23.
    Muteki K, MacGregor JF, Ueda T.2007. Mixture designs and models for the simultaneous selection of ingredients and their ratios. Chemometrics and Intelligent Laboratory Systems,86:17-25.
    Nakagame S, Chandra RP, Kadla JF, Saddler JN.2011. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng,108:538-548.
    Nakagame S, Chandra RP, Saddler JN.2010. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng,105:871-879.
    Nakata T, Hisashi M, Shiro S.2006. Bioethanol from cellulose with supercriticalwater treatment followed by enzymatic hydrolysis. Appl Biochem Biotechnol,130: 476-485.
    Nasuno S, Starr MP.1967. Polygalacturonic acid transeliminase of Xanthomonas compestris. Biochem J,104:178-184.
    Ninomiya K, Kamide K, Takahashi K, et al.2012. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour Technol,103(1):259-265.
    Ooi BG, Rambo AL, Hurtado MA.2011. Overcoming the recalcitrance for the conversion of kenaf pulp to glucose via microwave-assisted pre-treatment processes. Int JMol Sci,12:1451-1463.
    Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S.2012. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol,117: 352-359.
    Pan XJ.2008. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenerg,2:25-32.
    Pareek N, Gillgren T, Jonsson LJ.2013. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresour Technol,148:70-77.
    Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C.2002. Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol,20(6):607-612.
    Piquemal J, Chamayou S, Nadaud I, Beckert M, Barriere Y, Milal, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, GoVner D, Pichon M. 2002. Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol,130:1675-1685.
    Purama RK, Goyal A.2008. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour Technol,99:7108-7114.
    Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K.2013. Inhibitory effect of lignin during cellulose bioconversion:the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol,133:270-278.
    Reese ET, Siu RG, Levinson HS.1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis, Journal of Bacteriology,59(4):485-497.
    Saha BC, Iten LB, Cotta MA, et al.2005. Dilute acid pretreatment, enzymaticsaccharification and fermentation of wheat straw to ethanol. Process Biochem,40:3693-3700.
    Said S, Fonseca M, Siessere V.1991. Pectinase production by Penicillium frequentans. World Journal of Microbiology and Biotechnology,7(6): 607-608.
    Sarita CR, Rubens MF, Aline CC.2008. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Appl Biochem Biotechnol,144:87-100.
    Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF.2009. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib 6 phenotype. Plant Physiol,150: 584-595.
    Selig MJ, Vinzant TB, Himmel ME, et al.2009. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol,155:397-406.
    Sewalt VJH, Glasser WG, Beauchemin KA.1997. Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem,45:1823-1828.
    Sharma DC, Satyanarayana T.2006. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsrl in submerged fermentation by using statistical methods. Bioresour Technol,97: 727-733.
    Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A.2005. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell,17(7): 2059-2076.
    Silva D, da Silva Martins E, da Silva R, Gomes E.2002. Pectinase production by Penicillium viridicatum RFC3 by solid state fermentation using agricultural wastes and agro-industrial by-products. Braz J Microbiol,33:318-324.
    Skyba O, Douglas CJ, Mansfield SD.2013. Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol,79: 2560-2571.
    Sorensen HR, Pedersen S, Vikso-Nielsen A, Meyer AS.2005. Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme and Microbial Technology, 36:773-784.
    Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE.2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol,96:2014-2018.
    Tian S, Zhu W, Gleisner R, et al.2011. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnol Prog, 27(2):419-427.
    Tu MB, Pan XJ, Saddler JN.2009. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem,57:7771-7778.
    Wang B, Peng DX, Liu LJ, Sun ZX, Zhang N, Gao SM.2007. An efficient adventitious shoot regeneration system for ramie(Boehmeria nivea Gaud) using thidiazuron. Bot Stud,48:173-180.
    Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB.2004. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett,26:885-890.
    Wang Y, Wang ZH, Du GC, Hua ZZ, Liu LM, Li JH, Chen, J.2009. Enhancement of alkaline polygalacturonate lyase production in recombinant Pichia pastoris according to the ratio of methanol to cell concentration, Bioresour Technol,100: 1343-1349.
    Wang ZJ, Zhu JY, Zalesny Jr RS, et al.2012. Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel,95:606-614.
    Wen JL, Xue BL, Xu F, Sun RC, Pinkert A.2013. Unmasking the structural features and property of lignin from bamboo. Ind Crop Prod,42:332-343.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY.2005. Coordinated Development of Leading Biomass Pretreatment Technologies. Bioresour Technol,96:1959-1966.
    Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M.2011. Deactivation of cellulases by phenols. Enzyme Microb Technol,48:54-60.
    Yamashita Y, Shono M, Sasaki C, et al.2010. Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohyd Polym,79(4): 914-920.
    Yao L, Yue J, Zhao J, Dong JQ, Li XZ, Qu YB.2010. Application of acidic wastewater from monosodium glutamate process in pretreatment and cellulase production for bioconversion of corn stover-feasibility evaluation. Bioresour Technol,101:8755-8761.
    Yadav S, Yadav PK, Yadav D, Yadav KDS.2009. Pectin lyase:A review. Process Biochemistry,44:1-10.
    Zhang DS, Yang Q, Zhu JY, et al.2013. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresour Technol,129:127-134.
    Zhang YH, Cui J, Lynd LR, Kuang LR.2006. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid:evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules,7:644-648.
    Zhao XB, Peng F, Cheng KK, et al.2009. Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microb Tech, 44(1):17-23.
    Zheng LS, Du YM, Zhang JY.2001. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresour. Technol,78: 89-94.
    Zheng Y, Pan ZL, Zhang RH.2009. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng,2(3):51-68.
    Zhou X, Xu JJ, Wang ZY, Cheng JJ, Li RY, Qu RD.2012. Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresource Technology,104:823-827.
    Zhu JY, Gleisner R, Scott CT, et al.2011. High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: a comparison between SPORL and dilute acid pretreatments. Bioresour Technol, 102(19):8921-8929.
    Zhu JY, Pan XJ, Wang GS, et al.2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol,100(8): 2411-2418.
    Zorba O, Kurt S.2006. Optimization of emulsion characteristics of beef, chicken and turkey meat mixtures in model system using mixture design. Meat Science,73: 611-618.
    Zou MY, Guo FF, Li XZ, Zhao J, Qu YB.2014. Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by fed-batch fermentation. PLoS ONE,9(3):e90392. doi:10.1371/journal.pone.0090392.
    Zou MY, Li XZ, Shi WJ, Guo FF, Zhao J, Qu YB.2013. Improved production of alkaline polygalacturonate lyase by homologous overexpression pelA in Bacillus subtilis. Process Biochemistry,48:1143-1150.
    曹石林,詹怀宇,付时雨,等.2006.蒽醌磺酸钠用于竹浆氧脱木质素的研究.中国造纸,25(8):5-8.
    陈洪章.2005.纤维素生物技术.北京:化学工业出版社.
    郭尧君.1999.蛋白质电泳实验技术.北京:科学出版社.
    金顺玉,卢孟柱,高健.2008.基因工程调控木质素生物合成研究现状及在竹子上改良的应用前景.安徽农业科学,36(20):8497-8499.
    乐学义,卢其明,何庭玉,等.2000.造纸黑液木质素在肥料中的应用.再生资源研究,3:38-41.
    李德舜,颜涛,宗雪梅,等.2006.芽孢杆菌(Bacillus sp.No.16A)苎麻脱胶研究.山东大学学报:理学版,41(5):151-154.
    李建武等.1994.生物化学实验原理和方法.北京大学出版社.
    李建洲,李江华,许正宏,等.2005.嗜盐嗜碱菌Alkalibacterium sp. F26产碱性果胶酶发酵条件优化.食品与生物技术学报,24(6):43-48.
    李祖明,何立千,李鸿玉,白志辉,叶磊,荣瑞芬.2007.碱性果胶酶的应用进展.8:1-4.
    李祖明,李鸿玉,白志辉,等.2008.高产碱性果胶酶吉氏芽孢杆菌的诱变育种与固态培养条件优化.食品科技,33(9):5-9.
    林树花,李高阳,谭欢,黄绿红.2009.果胶酶高产菌选育研究进展.农产品加工,12:53-58.
    刘唤明,彭定祥,梁运祥.2006.苎麻酶法脱胶的研究.中国麻业,28(2):87-90.
    刘慧娟,华兆哲,堵国成,等.2007.芽孢杆菌发酵生产碱性果胶酶的温度控制策略.过程工程学报,7(4):786-789.
    刘自铭,程海,任建平,等.2001.大麻酶法脱胶机理初探.纺织学报,2001,22(3):184-185.
    刘自铭,任建平,冯瑞良,等.2004.一株产韧皮纤维脱胶酶的菌株及其在苎麻、大麻胶上的应用.专利号:ZL01127440.9,授权公告日:2004.07.14.
    彭源德.2004.亚麻生物脱胶研究综述.中国麻业,26(6):293-295.
    阮奇城,祁建民,胡开辉,等.2011.红麻秸秆高效预处理方法的选择.中国农学通报,27(15):112-116.
    阮奇城,祁建民,胡开辉,等.2012.红麻秸秆发酵转化燃料乙醇.福建农林大学学报,41(1):78-82.
    石淑兰,何福望.2008.制浆造纸分析与检测.北京:中国轻工业出版社.
    王健,杜兆芳,等.2009.Ca2+激活生物酶对苎麻纤维脱胶的工艺参数优化.上海纺织科技,37(7):28-32.
    王俊丽.2011.芦竹原料生产纤维素酶与发酵产乙醇的工艺研究.山东大学硕士学位论文.
    王鑫,张希彪,刘建新,徐秋明,曹兵.2006.混料试验设计在西瓜包膜控释尿素配比研究中的应用.土壤通报,37(6):1142-1145.
    肖丽,王贵学,陈国娟.2004.苎麻酶法脱胶的研究进展.微生物学通报.31(5):101-105.
    闫丽.2011.高粱耐盐碱种质资源筛选及木质素合成相关基因鉴定.山东大学博士学位论文.
    杨喜爱,彭源德,等.2008.苎麻复合酶脱胶影响因子优化研究.中国麻业科学,30(1):21-24.
    姚兰.2011.玉米秸秆的酸性废水预处理及木质素对纤维素酶吸附的研究.山东大学博士学位论文.
    张保国,白志辉,李祖明,等.2005.克劳氏芽孢杆菌S-4菌株固态发酵产碱性果胶酶.食品与发酵工业,31(3):8-11.
    张健红,李寅,刘和,等.2005.一株碱性果胶酶高产细菌的分离、系统发育分析和产酶条件的初步优化.应用与环境生物学报,11(3):354-358.
    赵丛,张敏,王建玲,杜连祥,殷向斌.2007.枯草芽孢杆菌ZC-7中性蛋白酶的分离纯化及酶学性质研究.中国生物工程杂志,27(10):28-33.
    郑皆德.2003.竺麻生物酶脱胶工艺优化研究.西安工程科技学院硕士学位论文.
    周带娣.2003.苎麻生物脱胶研究进展.作物研究,1:60--62.
    庄新姝,袁振宏,孙永明,许敬亮,吴创之,马隆龙.2009.中国燃料乙醇的应用及生产技术的效益分析与评价.太阳能学报,30(4):526-531.
    邹谋勇.2013. Bacillus subtilis碱性果胶酶的生产及基因工程菌株的构建.山东大学硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700