石灰炉在线仿真技术与炉况诊断及复杂系统智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰的烧成是一门古老的技术,近代以前石灰多用于建筑工程。随着近代化工和冶金工业的兴起,石灰的用途急剧增大,石灰生产技术和设备的开发研究工作才得到重视。石灰生产设备以前多用土窑,近代开始采用机械化立窑,其生产能力和劳动生产率成倍增长而能耗成倍降低,但仍难以满足现代工业快速增长的高效益、低成本、高自动化的要求,这种状况制约着化工、冶金及造纸等相关行业的发展。
     石灰的生产是一个连续的过程,石灰炉本身是一个连续的反应器,原料和燃料不断输入,产品和二氧化碳等尾气不断输出。以往产品质量的判断主要靠产品产出后样品的化验,化验的结果固然可靠,但存在严重滞后,不能作为在线决策控制的依据。本文以Φ4×21m石灰竖炉为研究对象,在原有检测系统的基础上,通过增加必要的在线检测手段,充分收集石灰炉生产过程的在线信息,实现了石灰炉的“全息监测”。
     通过综合运用炉窑热工及反应动力学原理,开发了石灰炉在线仿真优化模型及软件。在线仿真系统能实时计算石灰石煅烧分解率、出口RO_2(指二氧化碳、二氧化硫等)浓度、“三带”(预热带、煅烧带、冷却带)高度及炉内温度分布,并由计算机在线显示、记录运行历史曲线,为现场的考核与管理提供依据。在“全息监测”与在线仿真的基础上,结合石灰炉工艺的特点与工程技术人员、熟练操作工人的经验,首次建立了石灰炉炉况诊断专家系统,为生产运行和操作提供在线指导。炉况诊断专家系统具有自动报警、故障解释及对策分析等多重功能。
     基于神经网络理论,本文开发了具有自组织与自学习功能的生石灰质量预报模型,该系统以历史数据作为训练样本,对神经网络进行离线训练,训练后的网络用在线信息检验发现,生石灰质量的实测值与预报值有很好的拟合程度,平均预报误差为3.2%,为控制操作提供了准确依据。
     石灰生产过程中原料成分、含水量、进料速度、焦炭成分等生产条件经常变化,根据传热、传质过程建立的模型中有很多参数必须通过机理分析、假设或大量实验来确定,此外还需要检测难以测量
Lime calcining is an old technology. About two century ago lime was only used in building construction. With latter-day's development of chemical engineering and metallurgy, the application and consumption of lime are largely increased, and people find that it is very important to study lime calcining process and equipment. In old times, lime was mostly produced by medieval kiln, and mechanization limekiln wasn't used until recent times. With the application of mechanization kiln lime throughput and productivity were doubly increased, and energy expenditure was decreased quickly. But this improvement can't satisfy the increasing requirement of high benefit, low cost and high automatization for chemical engineering, metallurgy, paper making and correlative industries.Lime production is a sequential processes, limekiln itself is a sequential reactor. Raw material and fuel are steadily input, calcium oxide and carbon dioxide are continuously produced. The estimation of production quality formerly depends on the assay of production sample. As there is a serious lag, so the assay result, which is reliable, can't be regarded as presumptive evidence of on-line decision-making control. A limekiln with diameter of four meters and height of twenty one meters is studied systematically in this paper. Based on existing detection system, by equipping necessary on-line detect instrument and collecting enough on-line information in the process of lime production, limekiln hologram monitor is achieved.By applying synthetically the principle of kiln thermal engineering and reaction kinetics, on-line simulation and optimization model and software were worked out. The concentration of carbon dioxide in the exit, "three zone" (warm-up zone, calcinations zone, cooling zone) heights and temperature distribution in kiln could be calculated by on-line simulation system, meanwhile the running historical curves were recorded by the computer which are important evidences for company assessment and management. On the basis of hologram monitor and
    on-line simulation, combining technical characteristic of limekiln with experiences of engineer and specialized worker, Lime Kiln Status Diagnostic Expert System (LKSDES) was established for the first time to offer on-line guidance for operation. LKSDES can provide multiple functions involving auto alarm, fault interpretation and countermeasure analysis.Based on Neural Network(NN) theory, the author devised a prediction model of quicklime quality with self-organization and self-learning functions. In the system training samples were history data, NN were off-line trained and tested by on-line information. The author found that the average forecasting error is 3.2 percent, thus exact information was offered for manipulation.In the process of lime production, some technical conditions always fluctuate, such as the compositions of raw material, the content of water, the feedrate of charge and the compositions of coke. Many parameters of the model, forming in the process of heat and matter transfer, need be made certain by means of mechanism analysis, hypothesis or experiments. Furthermore, all the state variables should be measured for the operation and management. Based on chaos fuzzy theory, the author adopted system identification method, and studied the interrelation between main control variables and output variables by considering limekiln as a "black-box". By referencing operating knowledge, the author worked out a furnace roof temperature fuzzy controller and an intelligent control system of multi-kiln lime discharging. The former dynamically controlled the roof temperature in the suitable range which was confirmed by simulation and optimization in different working conditions. The latter considered synthetically the complexity of a lime discharging system in the plant, the remarkable nonlinearity, the intense coupling between kilns, the difficulty in detecting important parameters, as well as the fact that only one lime belt system was used by multi-kilns. Then an intelligent control system of material height of limekiln was designed. Based on the chaos theory and the artificial intelligence technology, the intelligent control for the process of calces discharging was realized.The creativeness of the article lies in that the mathematical modeling
    and on-line simulation are combined to realize the multi-mode kiln status diagnosis and intelligent control of limekiln for the first time.
引文
[1] 甄文彬译.石灰的生产.北京:中国建筑工业出版社,1982
    [2] 关宸祥.石灰窑.北京:中国建筑工业出版社,1986
    [3] 梅炽,王前普等.有色冶金炉窑的仿真与优化.中国有色金属学报,1996,6(4):19~23
    [4] 梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001
    [5] 朱苗勇,萧泽强.钢的精炼过程数学物理模拟.北京:冶金工业出版社,1998
    [6] J.Szekely.提取冶金数学模型的进展.闪速炼铜,1991,(3):36~43
    [7] 布路西洛夫斯基.石灰的制造,张莹、刘玉其译.北京:重工业出版社,1956
    [8] B·安谢尔姆.立窑,刘东莱、五家治合译.北京:中国工业出版社,1962
    [9] II.H格里高尔也夫.石灰在建筑工程中的应用,黄帷俭译.北京:建筑工程出版社,1952
    [10] 冶金部《筑炉工手册》编写组.筑炉工手册.北京:中国工业出版社,1970
    [11] 西安冶金学院建筑材料及工艺教研组编.建筑材料.北京:中国工业出版社,1962
    [12] 日本耐火材料技术协会编.新型窑炉及其耐火材料,鞍山焦化耐火材料设计研究院技术情报科译.北京:冶金工业出版社,1979
    [13] 冶金部情报标准研究所.用重油煤粉煤气煅烧石灰.北京:冶金工业出版社,1972
    [14] 宁夏建筑材料研究所编.中速硬烧石灰的煅烧.北京:中国工业出版社,1980
    [15] Bi, X. One Dimensional Models of Blast Furnace Process, Dept. of Process Mettallurgy, The Royal Institute of Technology, Stockholm, Sweden, TRITA-TPMOS, 1989
    [16] Unsi-Honko, H. Prediction of Hot Metal Siliconin of Blast Furnace By Multivariate Time Series Modelling, Report 88-99-A, Dept. of Chemical Engineering, Process Desigh Lab., Abo Akademi, Filand:28~42
    [17] ISIJ, Blast Furnace Phenomena and Modelling, 1987, Elsevier Applied Science Publishers Ltd, London, UK:191.
    [18] Gerald, C.F., Applied Numerical Analysis, Second Edition, Addison. Wesley Publis. Co., 1978:340
    [19] 何平,王鸿绪.模糊控制器的设计及应用.北京:科学出版社,1997.3
    [20] 吕西兴,苏在春.石灰炉的操作改进与管理.轻金属,1995,(8):15~17
    [21] 有色金属技术经济研究院.石灰炉仿真技术研究开发与应用科技查新报告.2001.9
    [22] 邓胜祥.金属熔点附近热物性测试新方法及计算机在线检测与实时控制系统的研究:[硕士学位论文].湖南长沙:中南工业大学,1999
    [23] 周孑民,邓胜祥.金属熔点热物性测试及计算机在线检测.中南工业大学学报,1998,29(6):549~551
    [24] 周孑民,邓胜祥.金属熔点热物性测试中的参数检测与条件控制.中国学术期刊文摘,1998,(6):999~1000
    [25] 邓胜祥,周孑民.一种新型热物性测算系统的研究.计量学报,2001,22(3):193~222
    [26] 彭小奇,周孑民,梅炽等.炼镍用矿热电炉生产过程的计算机辅助模糊自适应控制.[J].中南矿冶学院学报,1993,24(6):766
    [27] MEI CHI, PENG XIAO OI, ZHOU JIE MIN. Fuzzy adaptive control model for process in nickel matte smelting furnace[J]. Transactions of Nonferrous Metals Society of China, 1995, 4(3): 9~11
    [28] 邓胜祥,周孑民,黄年才.柳钢50M~2烧结机参数检测及点火温控系统的研究.烧结球团,2000,(6):18~21
    [29] 邓胜祥,周孑民等.石灰炉炉况诊断与多模型智能控制系统的研究.计算机自动测量与控制,2002,(1):29~41
    [30] 梅炽,周孑民,王临江,徐惠华等.有色冶金炉设计手册.北京:冶金工业出版社,2001
    [31] 蔡自兴,徐光祜.人工智能及其应用.北京:清华大学出版社,1996(2)
    [32] 张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1996:117~172
    [33] 周乃君,易正明,周萍,周孑民.石灰炉炉内过程数值数值仿真.中南工业大学学报,2000,31(5):422~424
    [34] 黄可鸣.专家系统.南京:东南大学出版社,1991
    [35] 王立新.自适应模糊系统与控制——设计与稳定性分析.北京:国防工业出版社,1995
    [36] 冯允成,杜端甫,梁叔平.系统仿真及其应用.北京:机械工业出版社,1992(1)
    [37] 梅炽,游旺.铝电解槽槽膛内形在线显示仿真软件的研究与开发[J].中南工业大学学报,1997(2):138~141
    [38] 周孑民.镍冶炼矿热电炉及自焙电极的电、热解析模型与计算机仿真:[博士学位论文].湖南长沙:中南工业大学,1990
    [39] 游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究:[博士学位论文].湖南长沙:中南工业大学,1997
    [40] 姚俊峰.热工智能与混沌理论在铜锍吹炼炉实时仿真与优化决策中的应用研究:[博士学位论文].湖南长沙:中南大学,2001
    [41] 胡军.铜锍吹炼仿真和操作优化研究:[博士学位论文].湖南长沙:中南大学,2000
    [42] 李欣峰.炼铜闪速炉熔炼过程的数值分析与优化:[博士学位论文].湖南长沙:中南大学,2001
    [43] 梅炽.冶金传递过程原理.湖南:中南工业大学出版社,1987
    [44] 俞左平.传热学.北京:高等教育出版社,1994
    [45] 任鸿九.有色金属熔池熔炼.北京:冶金工业出版社,2001
    [46] 韩曾晋.自适应控制系统.北京:机械工业出版社,1983
    [47] 王东良.石灰窑扩容增量技术改造.化工设备与防腐蚀,2002,5(6):431~432
    [48] 胡向成,韩立平,谢梦.石灰窑砌筑方案的改进.化工设备与防腐蚀,2002, 5(2):118~120
    [49] 郭仲,干斌.石灰窑窑衬的改进.应用化工,2002,31(4):42~44
    [50] 钟世金,黄开启.氧化铝厂石灰炉炉底转盘跑偏分析与改造.有色设备,2002,(2):8~9
    [51] 何启垣.高抗结露布袋除尘器在石灰窑除尘的应用.工业安全与环保,2002,28(3):6~9
    [52] 董红军.平果氧化铝厂石灰炉技改方案分析.有色金属,2002,(2):35~38
    [53] 陈子琦.活性石灰竖窑窑型比选.炼钢,1999,15(5):52~54
    [54] 周展民.将竖式气烧窑改造成混烧石灰窑.现代化工,1999,19(2):23~24
    [55] 蒋玉泽.50m~3石灰窑扩容改造得与失.甘肃冶金,2002,3(1):29~31
    [56] 郝连君,崔金琪.提高石灰竖窑使用寿命的措施.耐火材料,2001,35(4):227~228
    [57] 刘线庆,孙法德,曹艳丽.石灰炉螺锥出灰机走轮轴断轴与锥体跑偏原因分析及对策.有色设备,2002,(6):30~32
    [58] 王宗明,韩光彩,牟浩.2500t/d活性石灰套筒式竖窑及筑炉新工艺.工业加热,2000,(3):31~33
    [59] 王进书,王桂平.冶金石灰竖窑出灰设备的改造.冶金设备,2000,2(1):52~53
    [60] 国辉.表面过滤技术在石灰窑气上的应用.劳动保护科学技术,1998,18(2):33~36
    [61] 赵清玉,杨开保,汪雷.石灰竖窑用喷涂料的应用,耐火材料,1998,(5):302~303
    [62] 蒋琥勤,戴林.水泥机立窑改成石灰窑的可行性及技术措施.水泥工程,1998(6):49
    [63] Moropoulou, A., Bakolas, A. , Aggelakopoulou, E. The effects of limestone characteristics and calcinations temperature to the reactivity of the quicklime. Cement and Concrete Research. Vol. 31, 2001, (4):633~639
    [64] Tran, H., Mao, X., Lesmana, N., Kochesfahani, S.H., Bair, C.M., McBroom, R. Effects of partial borate autocausticizing on Kraft recovery operations. Pulp and Paper Canada. Vol103, 2002, (12):74~78
    [65] 乐可襄,董元篪,王世俊,王海川,钱共,颜钦忠,包精忠.石灰石煅烧活性石灰的实验研究.安徽工业大学学报,2001,18(2):101~103
    [66] 李俊华,夏瑞芬.提高冶金石灰质量的实践.矿业快报,2000,5(10):12~13
    [67] 马骏.富氧助燃技术在石灰窑中的应用.化工生产与技术,2000,7(1):47~48
    [68] 焦忠民.煅烧石灰先投料后出灰新工艺的应用.南方钢铁,2000,8(115):37~40
    [69] 曾伯瑞.石灰煅烧工艺对轻钙生产的影响及控制.江西煤炭科技,2000,(3):25~26
    [70] 陈义胜,贺友多,王占松,马敬浦,马智明,谢继安.竖炉石灰窑风帽改造研究.包头钢铁学院学报,2000,19(2):100~102
    [71] 黄汉平.燃高炉煤气石灰竖窑的优化设计.工业炉,2001,23(4):23~25
    [72] 贾红玉.生产优质冶金石灰的条件.钢铁,2000,35(11):1~3
    [73] 苑安民.石灰窑热工过程优化的研究.冶金能源,1999,18(2):34~38
    [74] 董志永.石灰竖窑结瘤的原因及处理.炼钢,1999,15(2):13~15
    [75] 杨建华,梁伦竹.气烧石灰竖窑生产活性石灰的工艺特点.炼钢,1998,(6):6~9
    [76] 袁晓,郑小力.石灰窑仓泵控制系统的改造.冶金动力,2001,(2):53~59
    [77] 陈新民,李红.双膛竖式石灰窑控制系统设计及应用.冶金自动化,2001,(6):59~61
    [78] 郭栋.无触点智能主令控制器在活性石灰竖炉中的应用.制造业自动化,2002,(1):50~52
    [79] 严珩志,尤胜利,顾跃等.可编程控制器在石灰炉自动控制中的应用.机电工程技术,2002,(5):42~45
    [80] 杨晖.贵铝石灰炉自动控制系统.有色冶炼,2002,(6):158
    [81] 毛红霞,张勇.石灰炉送料车自动控制系统.轻金属,2002,(3):60~62
    [82] 赵建平,刘世华.机械化石灰立窑上料控制系统的改进机械化.内蒙古石油化工,2001,(10):120~62
    [83] 吴树炎.超声波料位计输出假料位的原因.纸和造纸,1998,(5):32
    [84] 苗瑜.5#石灰炉混配系统的智能控制.轻金属,2001,(6):57~60
    [85] 魏同,孙锡生.国内外冶金石灰生产技术现状及发展.石灰,1997,(3):14~22
    [86] 周乃君,易正明,王强,周孑民.石灰石煅烧分解率在线监测模型.化工学报,2001,52(7):612~615
    [87] 易金萍,周乃君,文敦伟,邓胜祥.石灰炉在线监测及炉况诊断系统的开发与应用.有色冶金节能,2000,19(3):21~24
    [88] 李诗久.工程流体力学.北京:机械工业出版社,1989
    [89] 韩昭沧.燃料及燃烧.北京:冶金工业出版社,1993(第二版)
    [90] 吴泉源,刘江宁.人工智能与专家系统.长沙:国防科技大学出处版社,1995
    [91] Adams J B. A probability model of medical reasoning and the MYCIN model. Maghmatical Biosciences, vol. 32, 1976. 177~186
    [92] Aiello N. A comparative study of control strategies for expert systems: AGE implementation of three variations of PUFF. Proceedings of the National Conference on Artificial intelligence, 1983
    [93] Aiello L, Cecchi C, Sartini D. Representation and use of metaknowledge. Proceedings of IEEE, 1986, (74):1304~1321
    [94] Aikins J S. Prototypical knowledge for expert systems. Artificial Intelligence, 1983, (20):163~210
    [95] Aikins J S, Kunz J C, Shorliffe E H, Fallat R J. PUFF: an expert system for interpretation of pulmonary function data. In Clancey and Shortliffe(1984), Chapter 19, 1984
    [96] Alty J L, Coombs M J. Expert systems: Concepts and Examples. NCCC Publications, 1984
    [97] Bachant J, McDermott J. R1 revisited: four years in the renches. AI Magazine, Fall issue, 1984:21~32
    [98] Barnett J A. Computational methods for a mathematical theory of evidence. International Joint Conference on Artificial Intelligence, 1981. 868~875
    [99] Barr A, Feigenbaum E A, ed. The Handbook of Artificial Intelligence, vol. 1. Los Altors CA: Morgan Kaufmann, 1981
    [100] Boose J H. Expertise Transfer for Expert System Design. New York: Elsevier, 1986
    [101] Boose J H, Gaines B. Knowledge Acquisition Tools for Expert Systems. New York: Academic Press, 1988
    [102] Brachman R J, Levesque H J. Readings in Knowledge Representation. Los Altos CA: Morgan Kaufmann, 1985
    [103] Brachman R J, Schmoize J G. An overview of the KL-ONE knowledge representation system. Cognitive science, 1985, (9):171~216
    [104] Buntine W. Decision tree induction systems: a Bayesian analysis. In Kanaly etal. (1989), 1989
    [105] Buxton R. Modelling uncertainty in expert systems. International Journal of Man-Machine Studies, 1989, (31):415~476
    [106] Chandrasekaran B. Generic tasks as a building blocks for knowledge-based systems: the diagnosis and routine design examples. Knowledge Engineering Review, 1988, (3):183~210
    [107] Clancey W J. Knowledge-Based Tutoring: The GUIDON Program. Cambridge MA: MIT Press, 1987
    [108] Chatalic P, Dubois D, Prade H. An approach to approximate reasoning based on the Dempster rule of combination, International Journal of Expert Systems, 1987, (1):67~85
    [109] DeJong G, etal. Explaination-based learning: an alternative view. Machine Learning, 1986, (1):145~176
    [110] De Kleer J. An assumption-based TMS. Artificial Intelligence, vol. 28, 1986, (28):127~162
    [111] Dubois D, Prade H. The treatment of uncertainty in knowledge-based systems using fuzzy sets and possibility theory. International Journal of Intelligent Systems, 1988, (3):141~165
    [112] Englemore R, Morgan T, eds. Blackboard Systems. Reading MA: Addison-Wesley, 1988
    [113] Flann NS, Dietterich T G. A study of explaination-based methods for inductive learning. Machine Learning, 1989, (4):187~226
    [114] Genesereth M W. An overview of meta-level architecture. Proceedings of the National Conference on Artificial Intellligence. Los Altos CA: Morgan Kaufmann, 1987:119~123
    [115] Gilbert N. Explaination and dialogue. The Knowledge Engineering Review, 1989. (4):235~247
    [116] Jackson P. Introduction to expert systems, 2st edn. Wokingham UK: Addison-Wesley, 1990
    [117] Minton S. Quantitative results concerning the utility of explaination-based learning. Artificial Intelligence, 1990, (42):363~391
    [118] Lukaszewiz W. Non-Monotonic Reasoning: Formalization of Commonsense Reasoning. NY: Ellis Norwood, 1990
    [119] Steel L. Components of expertise. AI Magazine. Summer issue, 1990
    [120] 费宗铭等.基于解释的算法构架的学习.软件学报,1994,5(5):1~7
    [121] 沈清,胡德文,时春.神经网络应用技术.长沙:国防科技大学出处版社,1987
    [122] 朱海滨.面向对象技术——原理与设计.长沙:国防科技大学出处版社,1992
    [123] Hayes-Roth, F., D.A. Waterman, and D.B. Lenat. Principles of pattern-directed inference systems. In D.A. Waterman and F Hayes-Roth, eds., Pattern-directed inference systems. New York: Academic Press, 1978:577-601
    [124] 张曾科.模糊数学在自动化技术中的应用.北京:清华大学出版社.1997:179
    [125] 胡守仁,余少波、戴葵.神经网络导论.长沙:国防科技大学出版社,1993,(1):15
    [126] Hebb, D. O.. The Organization of Behavior. Wiley, New York, 1949
    [127] Fukushima, K.. Neural network model for selective attention in visual pattern recognition and associative recall. Appl. Opt. :26, 1987: 4985~4992
    [128] Hogg, T,. and B. A. Huberman. Understanding biological computation. Proc. of the national Academy of Science, USA: 81, 1984:6871~6874
    [129] Hecht-Nielsen, R.. Counter propagation networks. Proc. of IEEE first Int't Conference on Neural Networks, 1987, (Ⅱ): 19~32
    [130] Hopfield, J. J.. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. :79, 1982: 2554~2558
    [131] Ritter, H. J\J. and K. J. Schulten. Convergence properties of Kohonen's topology conserving maps. Biol. Cybern. :71, 1988: 59~71
    [132] Ritter, H. J. and T. Kohonen. Self-organizing Semantic Maps. Boil, Cybern.:61, 1989:241~254
    [133] VandenBout, D.E. and T. K. Miller. A traveling salesman objective function that works. IEEE ICNN, 1988, (Ⅱ): 299~304
    [134] Van Hemmen, J. L.,Grensing, A. Huber, and R. Kuhn. Nonlinear neural networks I. General theory, J. Statistical Phys. :50, 1988: 231~257
    [135] Wolfram, S. (ed.). Theory and Applications of Cellular Automatam. World Scientific, Singapore, 1986
    [136] Yu Shao Bo. Multilayered-multimoduler Neural Network model. SPIE Conf. On Neural Network, USA, 1991
    [137] Yu shao Bo, Parallel, architecture for neural network simulation. SPIE Conf. On Neural Network, San Francisco, 1991
    [138] Shepherd, G. M. NeuroBiology. New York, Oxford University Press, 1988
    [139] Tand, D. W., and J. J. Hopfield, simple neural optimization networks IEEE Trans. cs., CAS-33(5), 1986:533~541
    [140] Suhurmann, B.. Stability and adaptation in artificial neural systems. Phys. Rev.: 40, 1989:2681~2688
    [141] Shastri, L.m. A connectionist approach to knowledge representation and limited inference. Cognitive Science:12, 1988:331~392
    [142] Stork, D. G.. Self-organization, pattern recognition, and adaptive resonance networks. J. Neural Network Computing: 1989, 1, (1): 26~42
    [143] Aarts, E. H. L., and J. H. M. korst. Simulated Annealing and Boltzmann Machines. Wiley, Chichester, 1989
    [144] Abu-Mostafa, Y. S., and D. Psaltis, Optical neural computers, Scientific American :256, 1987:88
    [145] Aleksander, I.. Neural Computing Architectures. North Oxford Academic Pwbl., London, 1989
    [146] Amari, S., Neural theory of association and concept formation, Biol. Cybern.:26, 1977:175~185
    [147] Baldi, P., and K. Hornik. Neural Networks and Principle Component Analysis. Learning from Examples Without Local Minima, Neural Networks :2, 1989:53~58
    [148] Smith P. Explaining Chaos[M]. Cambridge University Press, 1998
    [149] 龙运佳.混沌振动研究.方法与实践[M].北京:清华大学出版社,1997
    [150] 龙运佳.混沌工程学.中国工程科学,2001,3,(2):10~15
    [151] Farquha R, Muhonen D, Church L C. Trajectories and orbital maneuvers for ISEE-3/ICE comet mission[J]. J Astronaut, 1985, 33, (3): 235~254
    [152] Ott E, G rebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990, 64:1196~1199
    [153] 陈立群,刘延柱.混沌的抑制研究进展综述[J].力学进展,1998,289(3):299~309
    [154] 王忠勇,蔡远利,贾冬.混沌系统的小波基控制论[J].物理学报,1999,48(2):206~212
    [155] G. DaviesandE. Blanchard. Advances in isostatic pressing. Ceram. Eng. Sci. Proc., 1996, 17, (1): 67~69
    [156] Josef V. Kerber. Experimentieren mit Fuzzy-Control Teill. Elektronik. 1993, (7):50~58
    [157] Takeshi Furuhashi. An Adaptive Fuzzy Controller Using Fuzzy Neural Networks. 5 IFSA World Congress. 1993:769~772
    [158] 毕学工.高炉过程数学模型及计算机控制.北京:冶金工业出版社,1996:179~183
    [159] 中国石灰协会.国外先进石灰煅烧与加工设备简介.北京,1997
    [160] 张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998:114~115
    [161] 黄焕椿等.热工技术词典.上海:上海辞书出版社,1991:560~561
    [162] 中国冶金百科全书.炼焦化工.北京:冶金工业出版社,1998
    [163] 童景山.流体热物性数据手册.北京:清华大学出版社,1984
    [164] 翟秀贞,谢纪绩,王自和等.差压型流量计.北京:中国计量出版社,1995:315~322
    [165] 陈卓.铜闪速炉系统数值模型及反应塔炉膛内形在线仿真监测研究:[博士学位论文].湖南长沙:中南大学,2002
    [166] 尹朝庆,等.人工智能与专家系统[M].北京.中国水利水电出版社,2002
    [167] Church K W. Introduction to the special issue on computational linguistics using large corpora[J].Computational Linguistics, 1993, 19(1) : 1~24
    [168] 姚宗信,李明,梁大开.基于模糊推理的分布式飞机大气数据专家系统.信息与控制,2004,33(1):124~126
    [169] Chang, C.L., Lee R.C.T. Symbolic Logic and Mechanical Theory Proving. Academic Press, New York and London, 1973
    [170] Lee J.H, Lee K M, Leekwang H. Traffic control of intersection group based on fuzzy logic[A]. Proceedings of the 6th International Congress on Fuzzy System[C].1995:465~468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700