机器人机械动力学系统的广义同步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步现象作为事物运动内在联系的一种表征,广泛存在于自然与生命科学、工程科学与技术、社会经济活动等领域。在现代机械系统中,由多个部分组成的系统需要同步、协同和合作来完成统一的工作任务,如:装配、运输、喷涂和焊接等。在机器人领域,机器人按照轨迹规划运动,各关节驱动要按规划同步运动。研究机器人机械动力学系统的广义同步问题在现代制造装配和空间工程应用中起着非常重要的作用,对更好的深入研究机器人系统同步理论,拓宽应用领域,服务工程实际都具有重要的理论价值和现实意义。
     本文主要研究机器人动力学系统的广义同步控制问题,以主从机器人系统的外部同步为目标,主要应用机器人学理论、现代控制理论、系统稳定性理论,对实验室现有的AS-MRobot三自由度刚性机器人进行动力学建模、外部同步控制器设计、控制系统稳定性判别和数值仿真,为进一步的实验与理论对比奠定基础。具体成果如下:
     以AS-MRobot三自由度刚性机器人为研究对象,分别进行运动学和动力学分析,建立动力学模型。针对机器人系统本身的物理特征,论述构造满足机器人闭环系统全局渐近稳定的李雅普诺夫函数方法。作为后续实验的基础,介绍了机器人系统关节摩擦模型及其补偿方法。
     为实现机器人系统外部同步控制,本文设计一种基于全状态可观测的主从外部同步控制器。选取可模拟机器人关节摩擦的迟滞非线性系统为主系统,Duffing系统为从系统,应用Lyapunov稳定性判别方法推导出控制器。采用数值仿真方法证明并讨论了主从互换的同步过程。研究表明,控制器参数主要影响实现同步运动的过渡时间。
     针对机器人动力学系统存在模型误差及干扰等因素,本文提出机器人鲁棒同步轨迹跟踪控制方法,设计了鲁棒同步轨迹跟踪控制器。针对AS-MRobot三自由度刚性机器人,在有无干扰信号和有无鲁棒控制情况下,仿真分析机器人同步轨迹跟踪的效果。本文还论述了一种在混沌动力学系统主从同步控制中较为广泛适用的开闭环同步方法,并尝试将该方法应用于机器人动力学系统同步轨迹跟踪控制,通过理论分析和数值仿真讨论了开闭环控制方法的优缺点。
     最后,研究主从机器人的自适应同步控制,讨论基于PD增益自适应调节的模型参考自适应控制和鲁棒自适应控制。对参考模型选取、PD增益自适应控制器设计和稳定性判定等进行探讨。应用数值方法论证了该方法对于AS-MRobot的三个关节的同步轨迹跟踪控制的适用性。
     本文递进地研究了机器人动力学系统三种广义外部同步控制方法,从机器人动力学系统建模、控制器设计方法、稳定性判别和数值仿真等角度对机器人同步控制器的设计过程进行了深入研究。本文将为今后的主从机器人系统内、外部同步,多机器人系统同步等研究提供有力的理论帮助,同时也为实验与理论相对照奠定坚实基础。
Synchronized phenomena, which exist in nature, life sciences, engineering technology, and social and economical activities vastly, can be characterized by the appearance of certain relations between some functionals for the processes based on time. The significance of synchronization is not only valuable in practice but can be demonstrated by theory. In modern mechnical systems, a multi-composed system usually executes a task by synchronization, coordination and cooperation. For example, assemblage, transportation, spray, jointing, as well as the joints of robot rotating synchronizedly according to track programming. The research on synchronization of robot dynamic system plays a key role in manufacturing and space engineering, whilst it expands the application of robotic synchronization and deepens the understanding of synchronized theory.
     In this paper, based on robotics, modern control theory, system stability theory, the research focuses on the external synchronization of master-slave system. Dynamic model, external synchronization controller and stability of control system are studied repectively for AS-MRobot system, which pave the road to achieve comparison between experiments and simulation with synchronized control. The main content of this paper is following:
     Considering the rigid AS-MRobot with 3 freedoms, the dynamic equation is built according to robotic kinematics and dynamics. The Lyapunov function is constructed in order to demonstrate the asymptotical stability of robotic closed-loop control system. As the foundation of following experiment, the friction compensation method and the structure of AS-MRobot control system are introduced.
     In order to realize the synchronized control goal, a controller based on all states observed is designed. The referred simulation is done on a master-slave system. A nonlinear hysteretic system is chosen as master, which can imitate the friction phenomenon of robotic joint, while a Duffing system is taken as slave. The simulation indicates that the controller is applicable as well as for the inverse process. The influence of controller's parameters is discovered, which can affect the transfer time of synchronization.
     With the respect of model error of dynamic mathematic model and disturbance from uncertain element, a kind of robust synchronized track control method is involved in this paper. Furthermore, the OPCL method, which is usually used for complicated dynamic systems, is also involved into the robotic synchronized track control. The above two methods are validated by simulation.
     Finally, the adaptive synchronized control for robots is studied including the MRAC based on PD gain adaptive tuning and robust MRAC. The design of reference model, PD adaptive controller and stability method are analyzed respectively. Likewise, the joint track of AS-MRobot is simulated using the adaptive method in order to validate its application.
     In this paper, three generalized methods about robotic external synchronized control are studied. From the aspects of building robot dynamic model, designing synchronized controller, establishing system stability and simulating validation, the whole process of synchronization of robot dynamic system is investigated deeply, which will promote the future work of master-slave robots'internal/external synthronization and multi-robots system synchronization research, meanwhile establish a strong background for the following robot synchronized experiment.
引文
1. Michael Rosenblum, Arkady Pikovsky. Synchronization from pendulum clocks to chaotic lasers and chemical oscillators[J], Contemporary Physics,2003,44(5):401-416.
    2. Winfree, A. T. The Geometry of Biological Time[J], New York:Springer,1980.
    3. Steven H S. Spontaneous synchronization in nature[C], IEEE internation frequency control symposium, 1997
    4. Blekhman I I. Synchronization in Science and Technology[M], New York:ASME Press Translations, 1988.
    5. Gray C. M. Synchronous oscillations in neuronal systems:mechanisms and functions[J], Journal of Computational Neuroscience,1994,1:11-38.
    6. Mirollo R E, Strogatz S H. Synchronization of pulse-coupled biological oscillators[J], SIAM J. Appl. Math.1990,50:1645-1662.
    7. Blekhman 11, Landa P. S, Rosenblum M. G. Synchronization and chaotization in interacting dynamical systems, ASME Applied Mechanical Review,1995,48:733-752
    8.闻邦椿等.机械系统的振动同步与控制同步[M],北京:科学出版社,2003
    9.闻邦椿,赵春雨,宋占伟.机械系统的振动同步、控制同步、复合同步[J],工程设计,1999,3:1-5.
    10.闻邦椿,刘树英,何琼.振动机械的理论与动态设计方法[M],北京:机械工业出版社,2001
    11. Alejandro Rodriguez Angeles. Synchronization of Mechanical Systems[D], Technische Universiteit Eindhoven,2002
    12. Brunt, M. Coordination of Redundant Systems[D], The Netherlands:Technical University Delft,1998
    13. Lu Ren. Synchronized trajectory tracking control for parallel manipulators [D]. University of Toronto, 2006
    14. Sun D, Mills J K. Adaptive synchronized control for coordination of multirobot assembly tasks [J], IEEE Trans On Roboticsand Automation,2002,18:498-510.
    15. Koichi Ozaki, et al. Synchronized Motion by Multiple Mobile Robots using Communication. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems Yokohama, Japan 1993:1164-1170.
    16. Dong Sun. Position synchronization of multiple motion axes with adaptive coupling control[J], Automatica,2003,39:997-1005.
    17. Spall J. C, Cristion, J. A. Model-free control of nonlinear stochastic systems with discrete-time measurements[J], IEEE Trans On Automatic Control,1998,43(9):1198-1210.
    18. Huygens. The Pendulum Clock [M], America Iowa State University Press,1986.
    19. Rayleigh J. The Theory of Sound[M], New York:Dover Publ,1945.
    20. Blekhman I I. et al. Self-synchronization and controlled synchronization:general definition and example design[J], Mathematics and Computers in Simulation,2002,58:367-384.
    21. Blekhman I I. et al. On self-synchronization and controlled synchronization[J], Systems&Control Letters,1997,31:299-305.
    22.方锦清,非线性系统中混沌控制方法、同步原理及其应用前景(二)[J],物理学进展,1996,16(2):137-159.
    23. Boccaletti S., Kurths J., Osipov G., Valladares D. L., Zhou C. S. The synchronization of chaotic systems[J], Physics Reports,2002,366:1-101.
    24. Lerescu A I, Constandache N, Oancea S, Grosu I. Collection of master-slave synchronized chaotic systems[J], Chaos, Solitons and Fractals,2004,22:599-604.
    25. Femat R, Perales G S, On the chaos synchronization phenomenon[J], Phys. Lett., A,1999,262:50-60
    26. Yang X S. Concepts of synchronization in dynamical systems[J], Phys. Lett., A,1999,260:340-344
    27.廖晓听,陈关荣.混沌同步的一些新结果(英文)[J],控制理论与应用,2003,20(2):254-257
    28.杨涛,戴晓明,邵惠鹤.基于比例微分反馈控制思想的不同类型混沌系统同步方法[J],控制理论与应用(增刊),2001,18:55~58
    29.刘曾荣.控制与混沌控制[J],自然杂志,2000,22(5):481~488.
    30.陈立群,刘延柱.控制混沌的研究现状与展望[J].上海交通大学学报,1998,32(1):108~114.
    31.黄显高,徐健学,陈高平.混沌区间自同步研究[J],西北大学学报,1999,29(3):205~207.
    32.张家树,肖先赐.基于广义混沌映射切换混沌同步保密通信[J],物理学报,2001,50(11):2121~2125.
    33.罗晓曙,汪秉宏,蒋品群,方锦清.一种基于混沌渐近同步的数字保密通信方法[J],通信技术,2003,24(1):60~65.
    34. Dong Sun, et al. Adaptive synchronized control for coordination of two robot manipulators[C], Proceedings of the 2002 IEEE International Conference on Robotics & Automation Washington DC,2002: 976-981
    35. Denis V. Efimov, dynamical adaptive synchronization[C], Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain,2005,12-15:1861-1866
    36. Wen-Hong Zhu. On Adaptive Synchronization Control of Coordinated Multirobots With Flexible/Rigid Constraints[J], IEEE Transactions on Robotics,2005,21(3):520-525
    37.熊万里,闻邦椿,段志善.自同步振动振动同步传动的机电耦合机理[J],振动工程学报,2000,13(3):325-331
    38.张天侠,闻邦椿,范俭.液压马达驱动的双偏心转子同步问题[J],东北大学学报(自然科学版),1997,增刊(18)
    39.张天侠,鄂晓宇,闻邦椿.振动同步系统中的耦合效应[J],东北大学学报(自然科学版),2003,24(9):839-842
    40.闻邦椿,张天侠,徐培民.振动与波利用技术的新进展[M],沈阳:东北大学出版社,2000
    41.胡海岩.力学系统混沌的主动控制,力学进展[J],1996,26(4):453-463
    42.刘曾荣.关于同步的几个理论问题,自然杂志[J],2004,26(5):298-300
    43.陈骏刘,曾荣.不同系统之间的部分同步[J],应用数学和力学,2005,26(9):1033-1037
    44.张刚,刘曾荣,马忠军.连续动力系统的广义同步[J],应用数学和力学,2007,28(02): 141-146
    45.陈立群,刘延柱.混沌振动系统的开闭环控制[J],应用科学学报,1999,17(4):445-449
    46. Liqun Chen, Yanzhu Liu. An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J]. International Journal of Bifurcation and Chaos,2002,12(5):1219-1225.
    47. Chen Li-Qun. An open plus nonlinear closed loop control of chaotic oscillator, Chinese Physics,2002, 11(9):1009-1963.
    48. Li-Qun Chen. An open-plus-closed-loop control for discrete chaos and hyperchaos[J], Physics Letters A 2001,281:327-333.
    49. Henk Nijmeijer, Iven M Y, Mareels. An Observer Looks at Synchronization[J],IEEE Transactions on circuits and systems-1:fundamental theory and application,1997,44(10):882-890.
    50. WALCOTT B L, ZAK S H. State Observation of Nonlinear Uncertain Dynamical Systems[J], IEEE Transaction on automatic control,1987,AC-32(2):166-170
    51. Kiyotoshi Matsuoka, Norifumi Ohyama, Atsushi Watanabe, and Masataka Ooshima. Control of a Giant Swing Robot Using a Neural Oscillato[J], Lecture Notes in Computer Science,2006,3611:274-284.
    52. Ono K, Yamamoto K, Imadu A. Control of giant swing motion of a two-link Horizontal Bar Gymnastic Robot[J], Advanced Robotics,2001,449-465
    53. Matthew M W, Neural control of rhythmic arm movements[J], Neural Networks,1998,11:1379-1394.
    54. Jiangsheng Ni, Seiji Hiramatsu, Atsuo Kato. A Model of Neuro-Musculo-Skeletal System for Human Locomotion Under Position Constraint Condition[J], Journal of Biomechanical Engineering,2003,125: 499-506
    55. Fu K S, Gonzalez R C, and Lee C S G. Robotics:Control, Sensing, Vision, and Intelligence[M]. McGraw-Hill, Inc.1987
    56 Olsson H, et al. Friction Models and Friction Compensation, Lund University,1997
    57. AS-MRobot用户使用及开发指导手册,上海广茂达伙伴机器人有限公司.2006.7
    58. Elabbasy E M, El-Dessoky M M. Synchronization of van der Pol oscillator and Chen chaotic dynamical system[J], Chaos, Solitons & Fractals, In Press, Corrected Proof, Available online 30 October 2006.
    59. Samuel Bowong. Stability analysis for the synchronization of chaotic systems with different order: application to secure communications[J], Physics Letters A 2004,326:102-113
    60. Bai E W, lonngern K E. Synchronization and Control of Chaotic Systems[J], Chaos, Solitons&Fractals, 1999,10(9):1571-1575
    61. Rosas D I, Alvarez J. Robust synchronization of nDOF Lagrangian systems[C].2005 IEEE PhysCon, St. Petersburg, Russia,174-179
    62. loan Grosu, Robust synchronization[J], Physical Review E,1997,56(3):3709-3712
    63.刘金琨.先进PID控制MATLAB仿真(第二版)[M],北京:电子工业出版社,2004,425-431
    64.申铁龙.机器人鲁棒控制基础[M],北京:清华大学出版社,2001,65-69
    65. Jackson E. An open-plus-closed-loop (OPCL) control of complex dynamic systems[M]. Physica D 1995,85:1-9
    66. Mark W S. The swing up control problem for the Acrobot[J], IEEE control system 1995 february,1995, 49-55
    67.熊有伦等.机器人学[M],北京:机械工业出版社,1992,294-299
    68.K.J.奥斯特隆姆,B.威顿马克.自适应控制[M],北京:科学出版社,1992,31-34
    69 Rademakers N G M. Adaptive Control of a CFT Master-Slave Robot System, Traineeship report, Eindhoven University of Technology,2003
    70. Arimoto S, Miyazaki F. Stablity and Robustness of PID Feedback Control for Robot Manipulator of Sensory Capability[C], Third International Symposium of Robotics Research, Gouvieux, Franc,1985
    71. John J. Craig. Adaptive Control of Mechanical Manipulators[M], Addison-Wesley Publishing Company, 1988,15-16
    72. Paden B, Panja R. Globally asymptotically stable 'PD+' controller for robot manipulators[J]. International Journal of Control,1988,47:1697-1712.
    73.焦晓红,李运锋,方一鸣,耿秋实.一种机器人鲁棒自适应控制方法[J],机器人技术与应用,2002,3:40-43
    74. Romeo Ortega, Mark W S. Adaptive motion control of rigid robots:a tutorial[C]. Proceedings of the 27th Conference on Decision and Control. Austin, Texas,1988,1575-1584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700