非线性系统的分数阶控制理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在确定的非线性动力系统中常常被发现存在着混沌这种类似随机的复杂行为。分数阶微积分是研究任意阶微积分的理论,是整数阶微积分向任意阶的推广,分数阶系统与整数阶系统相比更能反应系统呈现的工程物理现象。分数阶系统因其阶次可调,在密码学、保密通信等领域有着更大的应用空间,近年来分数阶系统的混沌同步成为研究热点。
     滑模变结构控制通过控制量的切换使系统状态沿着滑模面运动,从而使系统在受到参数摄动和外干扰时具有不变性。正是由于它的鲁棒性好、算法简单、可靠性高,被广泛应用于运动控制中。
     本文研究内容如下:
     首先研究了具有不匹配参数的分数阶Coullet系统的混沌同步的滑模控制。把分数阶导算子引入滑模变结构控制的指数趋近律中,即分数阶指数趋近律,通过分数阶指数趋近律来设计滑模面和变结构控制,调节相应参数,提高了控制效果,减小了抖动问题。
     其次,论文深入研究了一个新的分数阶分段线性系统。根据平衡点个数的不同改变系统本身的参数进行了分类讨论,又基于分段系统初始位置不同而系统表达式不同的特点,继续讨论了不同初值下的系统运动行为,给出了大量的系统相轨迹图,从图中可看出分数阶分段线性系统呈现出了复杂多变的动力学行为,也发现了一些系统的运动规律。
     最后研究了分数阶分段线性系统的混沌同步。结合系统本身的特点,设计了两个控制器,一个为分数阶滑模变结构控制,另一个为简单反馈控制。两个控制器最终实现了驱动系统和响应系统的混沌同步,为验证同步效果,给出了混沌状态下的不同参数和不同初值的同步效果图,通过调节分数阶趋近律的阶次α和系数λ,基本消除了由于分段系统切换所造成的毛刺现象,这也验证了该控制方法的灵活性。
The chaos, a complicated motion which is similar to random, has often been found in the determined nonlinear dynamic systems. Fractional calculus is the theory which researches on arbitrary order calculus, and it is the extension of integer order calculus to arbitrary order calculus. Compare with integer-order system, fractional-order system has a better reaction to engineering physics. As the fractional order can be adjusted, the fractional-order chaotic system has a wide application to cryptography, secure communications and other fields. In recent years, the chaotic synchronization in fractional-order nonlinear system has become a researching hotspot.
     Sliding mode control can make the system state move on the sliding surface by switching the control variable, so that the system can maintain invariant under parametric perturbation and external disturbances. Sliding mode control is widely used in motion control because of its good robustness, simple algorithm and high reliability.
     The research contents in this paper are as follows:
     Firstly, the chaotic synchronization in fractional order Coullet system with unmatched parameters using sliding mode control has been studied. The fractional order derivative operator has been introduced into exponential approach law of sliding mode control, which forms the fractional order exponential approach law. Finally, the control effort was increased and the jarring was eliminated with the design of sliding mode surface and the variable structure controller through the fractional order exponential approach law and the adjustment of parameters.
     Secondly, a new fractional piecewise linear system has been studied in depth. Classified discussion has been done by changing the system parameters according to the number of equilibrium points, then the system behavior with different initial values is discussed on the basis of characteristics that system expression differs as the different initial position of piecewise systems. Therefore, a large number of figures of phase trajectory have been given. From these figures, the phenomenon that fractional piecewise linear system presents a complex dynamic behavior can be seen, and some motion laws of this system can also be found.
     Finally, the chaotic synchronization of fractional-order piecewise linear system has been studied. Combined with the characteristics of the system itself, two controllers have been designed, one is fractional-order sliding mode controller, and the other is a simple feedback controller. Ultimately, two controllers realized chaos synchronization between the drive system and response system. In order to verify the synchronization effect, some chaotic synchronization diagrams have been given with different parameters and different initial values. By adjusting the order a and coefficientλof the fractional-order approach law, the flash burr caused by switching in system has been eliminated largely, which also verifies the flexibility of the control method.
引文
[1]张伟等.非线性系统的周期振动和分岔[M].北京:科学出版社.2002.
    [2]高为炳,程勉.非线性控制系统的发展[J].自动化学报,1991,17(5):512-523.
    [3]黄琳,余年才,王龙.李雅普诺夫方法的发展与历史性成就[J].自动化学报,1993,19(5):587-593.
    [4]余凯.不确定非线性系统的鲁棒控制器设计[D].哈尔滨工业大学工学博士学位论文,2003-3
    [5]A.Isidori,A.Ruberrti. On the Synthesis of Linear Input-Output Responses for Nonlinear Systems[J]. Systems&Control Letters,1984,4(1):17-22.
    [6]夏小华,高为炳.非线性系统控制及解耦[M].科学出版社,1993.
    [7]高为炳,吴东.关于非线性控制系统的线性化问题[J].中国科学(辑),1987,(7):740-748.
    [8]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安交通大学出版社,2001.
    [9]G.Bartolini,A.Ferrara,L.Giacomini. A Robust Control Design for A Class of Uncertain Nonlinear Systems Featuring a Second-Order Sliding Mode[J]. Int.J.Control,1999,72(4): 321-331.
    [10]康宇.滑模变结构理论的研究与应用[D].合肥工业大学工学硕士学位论文,2002.2
    [11]王祝炯.滑模变结构控制系统设计方法研究[D].浙江工业大学工学硕士学位论文,2003.5.
    [12]方洋旺.非线性控制系统的综合理论研究[D].西安交通大学博士论文.1997.
    [13]Rugh D. Nonlinear System Theory[M].The John Hopkins University Press, Beltimore, 1980.
    [14]曹建福,韩崇昭.非线性控制系统的频谱理论及应用[J].控制与决策,1998,3:193-199.
    [15]符文彬.非线性动力系统的分岔控制研究[D].湖南大学博士学位论文.2004.
    [16]Leipnik R B,Newton T A. Double strange attractors in rigid body motion[J].Phys Lett A 1981,86:63-70.
    [17]吴祥兴,陈忠.混沌学导论[M].上海科学技术文献出版社,1997.
    [18]Tom T. Hartley, Carl F. Lorenz and Helen Killory Qammer. Chaos in a Fractional Order Chua's System[J]. IEEE Trans CAS-I.1995,42(8):485-490.
    [19]Wajdi M. Ahmad and J. C. Sprott. Chaos in Fractional-order Autonomous Nonlinear Systems[J]. Chaos, Solitons and Fractals.2003 16:339-351.
    [20]C.P.Li and G.J.Peng.Chaos in Chen's System with a Fractional Order[J]. Chaos,Solitons and Fractals.2004 (22):443-450.
    [21]王发强,刘崇新,分数阶临界混沌系统及电路实验研究[J].物理学报,2006,55(8):3922-3927.
    [22]T.T.Hartley,C.E.Lorenzo,H.K.Chaos in a fractional order. Chua's system Qammer[J],IEEE Trans.CAS-I 42.1995,485-490.
    [23]P.Arena,R.Caponetto,L.Fortuna,D.Porto.Chaos in a fractional order Duffing system[J]. Proc.ECCTD,Budapest,1997,1259-1262.
    [24]Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems [J]. Chaos,Solitons&Fractals,2003,16 (2):339-351.
    [25]J.G.Lu. Chaotic dynamics of the fractional-order Lu system and its synchronization[J]. Physics Letters A,2006,354(4):305-311.
    [26]J.Lu,T.Zhou,G..Chen et al. Controlling between the Lorenz and the Chen System[J]. Int.J.of Bifur.Chaos.2002,12(6):1417-1422.
    [27]C.Li,G Chen. Chaos and hyperchaos in the fractional-order Rossler equations[J]. Physica A:Stat.Mech.Appl,2004,341:55-61.
    [28]J.G.Lu.Chaotic Dynamics and Synchronization of Fractional-order Genesio-Tesi Systems[J]. Chinese physics,2005,14(8):1517-1527.
    [29]L.J.Sheu,H.K.Chen,J.H.Chen,L.M. Chaos in the Newton-Leipnik system with fractional order[J]. Chaos Solitons Fractals,2006,36(1):98-103.
    [30]J.F.Heagy,T.L.Carroll,L.M.Pecora.Synchronous chaos in coupled oscillator systems[J]. Phys. Rev. E,1994,50(3):1874-1885.
    [31]陈向荣,刘崇新,李永勋.基于非线性观测器的一类分数阶混沌系统完全状态投影同步[J].物理学报,2008,57(3):1453-1457.
    [32]高金峰,张成芬.基于非线性观测器实现一类分数阶混沌系统的同步[J].复杂系统与复杂性科学,2007,4(2):50-55
    [33]胡建兵,韩炎,赵灵冬.基于Lyapunov方程的分数阶混沌系统同步[J].物理学报.2008,57(12):7522-7526
    [34]张成芬,高金峰,徐磊.分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步[J].物理学报,2007,56(9):5124-5130.
    [35]I.Podlubny.Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation[J]. Fractional calclus Applied Analysis,2002,(15):367-386.
    [36]I.Podlubny.Matrix Approach to Discrete Fractional Calculus[J]. Fractional calclus Applied Analysis,2000, (4):359-386.
    [37]Oustaloup A, Mathieu B, Lanusse P. The CRONE control of resonant plants:Application to a flexible transmission[J]. European J of Control,1995, 1(2):275-283.
    [38]Matignon. Stability results for fractional differential equations with applications to control processing[C]. Computational Engineering in Systems and Application Multiconference. Lille:MACS IEEE-SMC,1996:963-968.
    [39]Matignon. Some results on control ability and observability of finite-demensional fractional differential systems[C]. Computational Engineering in Systems and Application Multiconference. Lille:IMACS IEEE-SMC,1996:952-956.
    [40]Podlubny I. Fractional-order systems and PIλDμ controllers[J]. IEEE Trans Automat Contro1999,44(1):208-214.
    [41]Podlubny I. Fractional differential equations [M]. San Diego:Acdemic Press,1999.
    [42]贾银刚.分数阶控制系统与控制器设计[D].辽宁:东北大学硕士学位论文,2005.
    [43]苟坤.分数阶微积分在振子方面的某些应用[D].山东大学硕士学位论文,2006.
    [44]陈炎冬.分数微积分理论在车辆底盘控制中的应用研究[D].南京:南京林业大学硕士学位论文,2006.
    [45]Duarte Pedro Mata de Oliveira Valerio. Fractional Robust System Control[D]. UNIVERSIDADE TECNICA DE LISBOA, Doctoral Dissertation,2005.
    [46]缪盛.混沌与分数阶混沌系统同步控制研究及其电路仿真[D].镇江:江苏大学硕士学位论文,2010.
    [47]张成芬.分数阶系统中的混沌及其同步控制研究[D].郑州:郑州大学硕士学位论文,2007.
    [48]A.Charef,H.H.Sun,Y.Y.Tsao,and B.Onaral. Fractal System as Represented by Singularity Function.1992,37(9):1465-1470
    [49]Diethelm K, Freed A D, Ford N J. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations [J]. Nonlinear dynamics,2002,29(4):3-22.
    [50]Ahmed.E., A.M.A. El-Sayed, H.A.A. El-Saka (2007). Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models[J]. Journal of Mathematics Analysis,325 (1):542-553.
    [51]Matignon. D, Lille. Stability result on fractional differential equations with applications to control[C], processing in IMACS-SMC Proceedings,Lille,France,2006:963-968.
    [52]Wunchw S. Reproduction of an Arbitrary Function of Time by Discontinuous Control [D]. Stanford (CA, USA):Stanford University,1953.
    [53]Emelyanov S V. Control of First Order Delay Systems by Means of A nastatic Controller and Nonlinear Correction [J]. Automation and Remote Control,1959,20(8):983-991.
    [54]Utkin V I.VSS:Present and Future[J]. Automation and Re-mote Control,1983,44(11): 1105-1120.
    [55]Utkin V I, SHI JX. Integral Sliding Mode in Systems Operating under Uncertainty Conditions[C]. Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan:IEEE Press,1996:4591-4596.
    [56]El-khazali R. Output feedback variable structure control design[J], Automatic,1995, 31:805-816.
    [57]Efe M.O., Unsal C., Kaynak O., Yu X.H. Variable structure control of uncertain systems[J].Automatica,2004,40:59-64
    [58]Xu J.X, Heng L.T, Wang M., et al. Design of variable structure controllers with continuous switching control[J].International Journal of Control,1996,65(3):409-431.
    [59]Zoran M. Discrete-time variable structure control systems-multivariable linear plant case[J].Automatic Control and Robotics,1999,2:983-994.
    [60]Utkin V I. Variable structure systems with sliding modes[J]. IEEE Transactions Automatic Control,1977,22(2):212-222.
    [61]Young K D, Utkin V I, Ozguner t.A Control Engineer's Guide to Sliding Mode Control[J]. IEEE Transactions on Control Systsms Technology,1999,7(3):328-342
    [62]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [63]姚琼荟,黄继起,吴汉松主编.变结构控制系统[M],重庆:重庆大学出版社,1997.
    [64]胡跃明著.变结构控制理论与应用[M].北京:科学出版社,2003.
    [65]高为炳著.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [66]Wu C W, Chua L O. Synchronization in an array of linearly couple dynamical systems [J].IEEE Trans. Circuits Syst,1995,42(8):430-447.
    [67]Henon M A. Two-dimensional mapping with a strange attractor[J].Commun Math Phys,1976,50(2):69-77.
    [68]Genensio R, Tesi A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems[J].Automatica,1992,28(3):531-548.
    [69]Sprott J C. Some simple chaotic flows[J].Phys. Rev. E,1994,50(2):R647-650.
    [70]Khibnik A I, Roose D, Chua L O. On periodic orbits and Homoclinic bifurcation in Chua's circuit with a smooth nonlinearity[J].Int.J. Bifurcation and Chaos,1993,3(2):363-384.
    [71]刘扬正,费树岷.Genesio-Tesi和Coullet混沌系统之间的非线性反馈同步[J].物理学报,2005,54(8):3486-3490.
    [72]刘扬正,费树岷,李平.变形蔡氏电路混沌同步的非线性反馈控制[J].系统工程与电子技术,2005,27(8):1448-1451.
    [73]King G P, Gaito S T. Bistable chaos. I. Unfolding the cusp[J].Phys. Rev. A,1992,46(6): 3092-3099.
    [74]Chua L O, Wu C W, Huang A, et al. A universal circuit for studying and generating chaos, part I:routes to chaos[J]. IEEE Trans. Circuits Syst.,1993,40(10):730-743.
    [75]Hu, J.B., Han, Y. and Zhao L.D. Synchronization in the Genesio Tesi and Coullet systems using the Backstepping[J]. Approach, Journal of Physics,2008,96,1-6.
    [76]Chen SH, Zhao LM, Liu J. Parameter identification and synchronization of an uncertain Chen chaotic system via adaptive control [J]. Chinese Physical,2002,11 (6):543-546.
    [77]Hector P, Jose A R, Ilse C. A simple tracking control for Chua's circuit [J]. IEEE Transactions on Circuits and Systems,2003,50 (2):280-284.
    [78]Li C P,Yan J P. The synchronization of three fractional differential systems[J]. Chaos, Solitons & Fractals,2007,32(2):751-757.
    [79]Diethelm K, Ford N J,Freed A D.A predictor-corrector approach for the numerical solution of fractional differential equation[J].Nonlinear Dynamics,2002,29(1):3-22.
    [80]张若询,杨世平.一个分数阶新超混沌系统的同步[J].物理学报,2008,57(11):6837-6842.
    [81]Zhu H. Zhou S B. Chaos end synchronization of the fractional-order Chua's system[J]. Chaos, Solitons & Fractals,2009,39(4):1595-1603.
    [82]Wang Y.W., Wen C.Y., Xiao J.W. Impulsive synchronization of Chua's oscillators via Single variable[J].Chaos, Solitons & Fractals,2006,29:198-201.
    [83]Lti J H, Zhou T S, Chen G R, et al. Generating chaos with a switching piecewise-linear controller[J]. Chaos,2002,12(2):344-349.
    [84]Zheng Z H, Lu J H, Chen G R, et al. Generating two simultaneously chaotic attractors with a switching piecewise-linear controller[J]. Chaos, Solitons & Fractals,2004,20(2): 277-288.
    [85]单梁,混沌系统的若干同步方法研究[D].南京:南京理工大学博士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700