三自由度串联机械臂的主从同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步是指两个或多个具有同时性的相互关系的行为。同步现象广泛存在于自然界、生命、工程技术、甚至经济社会人类活动等许多领域。针对具有相同或不同机械结构的多机器人系统,可以采用外同步、互同步等策略完成同一工作目标。研究机器人机械动力学系统的广义同步问题在现代制造装配和空间工程应用中起着非常重要的作用,对深入研究机器人系统同步理论,服务工程实际都具有重要的理论价值和现实意义。
     本文主要研究机械臂动力学系统的广义同步控制问题,以主从机械臂系统的外部同步为目标,主要应用机器人学理论、现代控制理论、系统稳定性理论,对实验室现有的AS-MRobot三自由度刚性机械臂进行动力学建模、外部同步控制器设计、控制系统稳定性判别和数值仿真,为进一步的实验与理论对比奠定基础。具体成果如下:
     以AS-MRobot三自由度刚性机械臂为研究对象,分别进行运动学和动力学分析,建立动力学模型。针对机械臂系统本身的物理特征,论述构造满足机器人闭环系统全局渐近稳定的李雅普诺夫函数方法。
     为实现机械臂系统外部同步控制,本文设计一种基于全状态可观测的主从外部同步控制器。随后,选取迟滞非线性系统为主系统,Duffing系统为从系统,应用李亚普诺夫稳定性判别方法推导出控制器,并通过数值仿真的方法证明了其有效性。
     在末端轨迹同步跟踪方面,利用前面的方法设计了一种主从机械臂末端轨迹同步控制器,并通过仿真证明了其有效性。在关节同步方面,通过研究PD控制方法,提出了一种可调增益系数的方法,通过仿真可以看出该控制方法能有效的减小初始力矩的大小。针对机械臂动力学系统存在模型误差,本文提出机械臂鲁棒同步轨迹跟踪控制方法,设计了鲁棒同步轨迹跟踪控制器。最后,针对机械臂实际控制中利用多项式函数来“内插”或“逼近”期望轨迹的情况,进行了同步控制的仿真模拟,表明了该控制器可以快速实现对AS-MRobot的三个关节运动的同步轨迹跟踪控制。
     本文研究了动力学系统的几种广义外部同步控制方法,从机械臂动力学系统建模、控制器设计方法、稳定性判别和数值仿真等角度对机械臂同步控制器的设计过程进行了深入研究。本文将为今后的主从机械臂系统内、外部同步,多机械臂系统同步等研究提供有力的理论帮助,同时也为实验与理论相对照奠定坚实基础。
Generally, the concept of synchronization means the correlated or corresponding in-time behaviors of two or more processes. The synchronized phenomena vastly exist in nature, sciences, and engineering technology, even as well as social and economical activities. Concerning a multi-robot system, which may include the identical or non-identical mechanical structures, many different synchronization patterns, such as external synchronization and mutually synchronization, are adopted to achieve their work task. In order to meet the requirement of trajectory tracking control of a parallel robot, the controlled synchronization method is used to enhance the accuracy of the track follower. The research on synchronization of robot dynamic system plays a key role in manufacturing and space engineering, whilst it expands the application of robotic synchronization and deepens the understanding of synchronized theory.
     In this paper, based on robotics, modern control theory, system stability theory, the research focuses on the external synchronization of master-slave system. Dynamic model, external synchronization controller and stability of control system are studied repectively for AS-MRobot system, which pave the road to achieve comparison between experiments and simulation with synchronized control. The main content of this paper is following:
     Considering the rigid AS-MRobot with 3 freedoms, the dynamic equation is built according to robotic kinematics and dynamics. The Lyapunov function is constructed in order to demonstrate the asymptotical stability of robotic closed-loop control system.
     In order to realize the synchronized control goal, a controller based on all states observed is designed. Then the referred simulation is done on a master-slave system, where a nonlinear hysteretic system is chosen as master, and a Duffing system is taken as slave. The simulation indicates that the controller is applicable.
     Then a controller on the track synchronization of the Mater-Slave end-manipulators is designed follow the above method, and the simulation indicates that the controller is applicable. Through the research on the PD control method, a method on variable gain is designed which can reduce the initial torque effectively. With the respect of model error of dynamic mathematic model, a kind of robust synchronized track control method is involved in this paper. Finally, considered the polynomial function is often used to approach the desired trajectory, AS-MRobot is simulated using the adaptive method in order to validate its application.
     In this paper, some generalized methods about robotic external synchronized control are studied. From the aspects of building robot dynamic model, designing synchronized controller, establishing system stability and simulating validation, the whole process of synchronization of robot dynamic system is investigated deeply, which will promote the future work of master-slave robots' internal/external synthronization and multi-robots system synchronization research, meanwhile establish a strong background for the following robot synchronized experiment.
引文
1. Michael Rosenblum, Arkady Pikovsky. Synchronization from pendulum clocks to chaotic lasers and chemical oscillators[J], Contemporary Physics,2003,44(5):401-416.
    2. Winfree, A. T. The Geometry of Biological Time[J], New York:Springer,1980.
    3. Steven H S. Spontaneous synchronization in nature[C], IEEE internation frequency control symposium,1997
    4. Blekhman I I. Synchronization in Science and Technology[M], New York:ASME Press Translations, 1988.
    5. Gray C. M. Synchronous oscillations in neuronal systems:mechanisms and functions[J], Journal of Computational Neuroscience,1994,1:11-38.
    6. Mirollo R E, Strogatz S H. Synchronization of pulse-coupled biological oscillators[J], SLAM J. Appl. Math.1990,50:1645-1662.
    7. 闻邦椿等.机械系统的振动同步与控制同步[M],北京:科学出版社,2003
    8. 闻邦椿,赵春雨,宋占伟.机械系统的振动同步、控制同步、复合同步[J],工程设计,1999,3:1-5.
    9. 闻邦椿,刘树英,何琼.振动机械的理论与动态设计方法[M],北京:机械工业出版社,2001
    10. Alejandro Rodriguez Angeles. Synchronization of Mechanical Systems[D], Technische Universiteit Eindhoven,2002
    11. Brunt, M. Coordination of Redundant Systems[D], The Netherlands:Technical University Delft,1998
    12. Lu Ren. Synchronized trajectory tracking control for parallel manipulators [D]. University of Toronto, 2006
    13. Sun D, Mills J K. Adaptive synchronized control for coordination of multirobot assembly tasks [J], IEEE Trans On Roboticsand Automation,2002,18:498-510.
    14. Koichi Ozaki, et al. Synchronized Motion by Multiple Mobile Robots using Communication. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems Yokohama, Japan 1993:1164-1170.
    15. Dong Sun. Position synchronization of multiple motion axes with adaptive coupling control[J], Automatica,2003,39:997-1005.
    16. Spall J. C, Cristion, J. A. Model-free control of nonlinear stochastic systems with discrete-time measurements[J], IEEE Trans On Automatic Control,1998,43(9):1198-1210.
    17. Huygens. The Pendulum Clock [M], America Iowa State University Press,1986.
    18. Rayleigh J. The Theory of Sound[M], New York:Dover Publ,1945.
    19. Blekhman I I. et al. Self-synchronization and controlled synchronization:general definition and example design[J], Mathematics and Computers in Simulation,2002,58:367-384.
    20. Blekhman I I. et al. On self-synchronization and controlled synchronization[J], Systems&Control Letters,1997,31:299-305.
    21.吴忠强,朴春俊.模型参考自适应控制理论发展综述[J],信息技术,2000,07:33-35
    22. Whitaker H P, et al. Design of model-reference adaptive control system for aircraft. Report R-164. Instrumentation laboratory, MIT,Cambridge,Mass,1958.
    23. Drossber RW. An approach to model-reference adaptive control system.lEEETrans. Autom.control,1967.75-80.
    24. Price C F. An accelerated gradient method for adaptive control system. IEE symp. Adaptive processesDecision and control,1979:4.1-4.9.
    25. Pearson A E. An adaptive control algorithm for linear system. IEEE Trans. Autom.control,1969:497-503
    26. Donalsson D D, et al. Review of adaptive control system theories and techniques. Model control systems theory,1965,2:New York:Mcgraw-Hill,228-284.
    27. Shachcloth B, Butchart R L. Synthesis of model reference adaptive control systems by Liapunov's second method. IFAC Aymposium. Jeddinglon,1965.
    28. Parks P C. Lyapunov redesign of model reference adaptive control systems. IEEE Trans. Autom. Control.1966,AC-11;362-367.
    29. Phillipson PH. Design methods for model-reference adaptive systems. Proc.Inst, Mech.., Engrs,1968:675-700.
    30.方锦清,非线性系统中混沌控制方法、同步原理及其应用前景(二)[J],物理学进展,1996,16(2):137-159.
    31. Alejandro Rodriguez Angeles. Synchronization of Mechanical Systems[D], Technische Universiteit Eindhoven,2002
    32. Lu Ren. Synchronized trajectory tracking control for parallel manipulators [D]. University of Toronto, 2006
    33. Sun D, Mills J K. Adaptive synchronized control for coordination of multirobot assembly tasks [J], IEEE Trans On Roboticsand Automation,2002,18:498-510.
    34. Koichi Ozaki, et al. Synchronized Motion by Multiple Mobile Robots using Communication. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems Yokohama, Japan 1993:1164-1170.
    35. Femat R, Perales G S, On the chaos synchronization phenomenon[J], Phys. Lett., A,1999,262:50-60
    36. Yang X S. Concepts of synchronization in dynamical systems[J], Phys. Lett., A,1999,260:340-344
    37.廖晓昕,陈关荣.混沌同步的一些新结果(英文)[J],控制理论与应用,2003,20(2):254-257
    38.杨涛,戴晓明,邵惠鹤.基于比例微分反馈控制思想的不同类型混沌系统同步方法[J],控制理 论与应用(增刊),2001,18:55-58
    39.刘曾荣.控制与混沌控制[J],自然杂志,2000,22(5):481-488.
    40.陈立群,刘延柱.控制混沌的研究现状与展望[J].上海交通大学学报,1998,32(1):108-114.
    41.黄显高,徐健学,陈高平.混沌区间自同步研究[J],西北大学学报,1999,29(3):205-207.
    42.张家树,肖先赐.基于广义混沌映射切换混沌同步保密通信[J],物理学报,2001,50(11):2121-2125.
    43.罗晓曙,汪秉宏,蒋品群,方锦清.一种基于混沌渐近同步的数字保密通信方法[J],通信技术,2003,24(1):60-65.
    44. Dong Sun, et al. Adaptive synchronized control for coordination of two robot manipulators[C], Proceedings of the 2002 IEEE International Conference on Robotics & Automation Washington DC, 2002:976-981
    45. Denis V. Efimov, dynamical adaptive synchronization[C], Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain,2005,12-15: 1861-1866
    46. Wen-Hong Zhu. On Adaptive Synchronization Control of Coordinated Multirobots With Flexible/Rigid Constraints[J], IEEE Transactions on Robotics,2005,21(3):520-525
    47.熊万里,闻邦椿,段志善.自同步振动振动同步传动的机电耦合机理[J],振动工程学报,2000,13(3):325-331
    48.张天伙,闻邦椿,范俭.液压马达驱动的双偏心转子同步问题[J],东北大学学报(自然科学版),1997,增刊(18)
    49.张天侠,鄂晓宇,闻邦椿.振动同步系统中的耦合效应[J],东北大学学报(自然科学版),2003,24(9):839-842
    50.闻邦椿,张天伙,徐培民.振动与波利用技术的新进展[M],沈阳:东北大学出版社,2000
    51.胡海岩.力学系统混沌的主动控制,力学进展[J],1996,26(4):453-463
    52.刘曾荣.关于同步的几个理论问题,自然杂志[J],2004,26(5):298-300
    53.陈骏刘,曾荣.不同系统之间的部分同步[J],应用数学和力学,2005,26(9):1033-1037
    54.张刚,刘曾荣,马忠军.连续动力系统的广义同步[J],应用数学和力学,2007,28(02): 141-146
    55.陈立群,刘延柱.混沌振动系统的开闭环控制[J],应用科学学报,1999,17(4):445-449
    56. Liqun Chen, Yanzhu Liu. An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J]. International Journal of Bifurcation and Chaos,2002,12(5):1219-1225.
    57. Chen Li-Qun. An open plus nonlinear closed loop control of chaotic oscillator, Chinese Physics,2002, 11(9):1009-1963.
    58. Li-Qun Chen. An open-plus-closed-loop control for discrete chaos and hyperchaos[J], Physics Letters A 2001,281:327-333.
    59. Henk Nijmeijer, Iven M Y, Mareels. An Observer Looks at Synchronization[J],IEEE Transactions on circuits and systems-Ⅰ:fundamental theory and application,1997,44(10):882-890.
    60. WALCOTT B L, ZAK S H. State Observation of Nonlinear Uncertain Dynamical Systems[J], IEEE Transaction on automatic control,1987, AC-32(2):166-170
    61. Kiyotoshi Matsuoka, Norifumi Ohyama, Atsushi Watanabe, and Masataka Ooshima. Control of a Giant Swing Robot Using a Neural Oscillato[J], Lecture Notes in Computer Science,2006,3611: 274-284
    62. Ono K, Yamamoto K, Imadu A. Control of giant swing motion of a two-link Horizontal Bar Gymnastic Robot[J], Advanced Robotics,2001,449-465
    63. Matthew M W, Neural control of rhythmic arm movements[J], Neural Networks,1998,11:1379-1394.
    64. Jiangsheng Ni, Seiji Hiramatsu, Atsuo Kato. A Model of Neuro-Musculo-Skeletal System for Human Locomotion Under Position Constraint Condition[J], Journal of Biomechanical Engineering,2003, 125:499-506
    65. AS-MRobot用户使用及开发指导手册,上海广茂达伙伴机器人有限公司.2006.7
    66.罗家洪.矩阵分析引论(第三版)[M],广州:华南理工大学出版社,2002
    67.柳洪义,宋伟刚.机器人技术基础[M],北京:冶金工业出版社,2002
    68. Olsson H, et al. Friction Models and Friction Compensation, Lund University,1997
    69. Rosas D I, Alvarez J. Robust synchronization of nDOF Lagrangian systems[C].2005 IEEE PhysCon, St. Petersburg, Russia,174-179
    70. loan Grosu, Robust synchronization[J], Physical Review E,1997,56(3):3709-3712
    71. Elabbasy E M, El-Dessoky M M. Synchronization of van der Pol oscillator and Chen chaotic dynamical system[J], Chaos, Solitons & Fractals, In Press, Corrected Proof, Available online 30 October 2006.
    72. Samuel Bowong. Stability analysis for the synchronization of chaotic systems with different order: application to secure communications[J], Physics Letters A 2004,326:102-113
    73. Elabbasy E M, El-Dessoky M M, Synchronization of van der Pol oscillator and Chen chaotic dynamical system, Chaos, Solitons & Fractals,2006
    74. A.I. Lerescu A I, Constandache N, Oancea S, Grosu I, Collection of master-slave synchronized chaotic systems, Chaos, Solitons and Fractals,2004,22,599-604
    75. Bowong S, Stability analysis for the synchronization of chaotic systems with different order: application to secure communications, Physics Letters A,2004,326,102-113
    76. Ming Cong, Sunan Huang. Synchronization and Control of Duffing's System with Uncertain Parameters, Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China,2480-2484
    77. Loria, A. and Panteley, E. and Nijmeijer, H. (1998) Control of the chaotic Duffing equation with uncertainty in all parameters. IEEE transactions on circuits and systems,45 (12). pp.1252-1255. ISSN 1057-7122
    78. Elabbasy E M, El-Dessoky M M, Synchronization of van der Pol oscillator and Chen chaotic dynamical system, Chaos, Solitons & Fractals,2006
    79. A.I. Lerescu A I, Constandache N, Oancea S, Grosu I, Collection of master-slave synchronized chaotic systems, Chaos, Solitons and Fractals,2004,22,599-604
    80. Bowong S, Stability analysis for the synchronization of chaotic systems with different order: application to secure communications, Physics Letters A,2004,326,102-113
    81. Bai E W, lonngern K E. Synchronization and Control of Chaotic Systems[J], Chaos, Solitons&Fractals,1999,10(9):1571-1575
    82.霍伟.机器人动力学与控制[M],北京:高等教育出版社,2005
    83.刘金琨.先进PID控制MATLAB仿真(第二版)[M],北京:电子工业出版社,2004
    84.刘金琨.机器人控制系统的设计及matlab仿真[M],北京:清华大学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700