基于智能计算的大坝安全监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以大坝的安全监测为背景,根据智能计算在各学科领域内的广泛应用和大坝安全监测分析方法的发展特点,进行了安全监测中正反分析智能化分析的新方法以及安全监测点位置优化选择的研究。主要内容如下:
     引入基于统计学习理论的机器学习方法—支持向量机(SVM)到大坝安全监测领域,建立了大坝安全监测的SVM模型,经对实际数据的建模分析并和以往方法的比较表明,支持向量机在预测精度、泛化性能等方面明显好于以往方法。针对经典SVM在处理大规模数据问题时效率慢的不足,引入最小二乘支持向量机(LSSVM),大大改善了其学习效率,同时结合和声搜索(HS)算法,建立了和声搜索最小二乘支持向量机(HSLSSVM)的大坝安全监测自适应建模方法,实测数据分析表明该模型同时具有建模简单、自适应、学习效率高、预测精度高和泛化能力强等特点。
     应用大坝材料参数反演的两种新方法:微粒群算法(PSO)和人工鱼群算法(AFSA)并对其进行改进。对PSO重新构建了惯性权重的非线性衰减函数,能够更好地协调算法的全局和局部收敛能力;同时还将模拟退火算法(SA)引入到微粒群算法中,增强了算法跳出局部极小的能力,提高了搜索效率。对AFSA,首先应用具有完全混沌特性的Logistic映射系统构造了AFSA的随机数发生系统,同时构建了感知距离的动态调整策略,不仅使算法能较快地到达全局极值附近,同时还加强了算法后期的局部搜索能力。计算表明,改进后建立的ISAPSO和ICAFSA反演算法是两个整体性能较优的新方法,丰富了大坝材料参数反演的智能化方法集。
     分析了大坝效应量、参数灵敏度和监测点位置优选的关系,提出了大坝安全监测中测点位置优选度的概念并建立了测点位置优选度定量计算的方法,以此可以指导在建大坝安全监测点的布设和已建大坝进行正反分析时监测资料的选取。然后通过对神经网络和支持向量机结构的分析和公式推导,得到网络输出对网络输入的灵敏度计算的一般公式。在使用正交实验定性地分析了对大坝应力应变起主要作用的控制性参数之后,分别通过重力坝和土石坝算例,应用有限元-神经网络方法计算了大坝控制性参数的灵敏度在坝体内的分布,然后进行了大坝位移监测点的位置优选度计算,最后通过算例对本文计算方法的正确性进行了验证。
Based on the development character of dam safety monitoring and the wide applicationof intelligence computation, with the theories and methods of computational intelligence, thenew modeling methods of forward and inverse analysis and the computation of optimalselection degree of measuring points' location were investigated in this paper. The majorcontributions are summarized as follows:
     A novel machine learning method called support vector machine (SVM) based onstatistical learning theory was introduced into the field of dam safety monitoring, and theSVM model of dam safety monitoring was established to forecast the dam deformation.Through the comparison with traditional statistical regression model and neural networkmodel, results indicate that SVM-based model possesses not only higher precision offorecasting, but also better generalization ability in long-interval forecasting. In view of thelow training speed of the standard SVM algorithm which is hard to solve large scale dataproblem, a least squares support vector machine (LSSVM) was put forward for improving thedisadvantage of standard SVM algorithm. The training speed and the ability to solve largescale data problem were much improved by using LSSVM. Appropriate parameters were verycrucial to learning and generalization ability of LSSVM, so we introduced a novel heuristicand stochastic global optimization algorithm-Harmony Search (HS) algorithm to realize theadaptive selection of LSSVM parameters, and brought forward a novel fusion monitoringmodel-harmony search least squares support vector machine (HSLSSVM). Simulation showsthat HSLSSVM-based monitoring model of dam safety has the advantages of simplemodeling technique, adaptive technique, higher learning speed, higher forecasting precision,better generalization ability etc al.
     Two novel intelligence inversion algorithms of dam parameters were modified and used.They were particle swarm optimization (PSO) and artificial fish swarm algorithm (AFSA).For PSO, a new non-linear attenuation strategy of inertia weight was established to effectivelyharmonize the ability of global convergence and local convergence; simultaneity simulatedannealing algorithm was introduced to PSO, so that the ability of getting away from localminimum was reinforced and the search efficiency of algorithm was improved. To theimproving of AFSA, we firstly applied the Logistic mapping system provided withcompletely chaotic characteristic to replace the random number system of AFSA, and then anew strategy of dynamically adjusting visual was reconstructed, so the improved CAFSApossessed not only quicker speed of getting to global optimum, but also the stronger ability ofsearching local optimum. Results of computation example show that ISAPSO and ICAFSA have the predominant integer performance for dam parameters' inversion.
     On the basis of deep analysis of the relationship among effect-variable, parameterssensitivity and optimal layout of measuring points, the concept and computing way of theoptimal selection degree of measuring points' location was built, based on the way, we couldlay measuring points in the projects of constructing dams and selection measuring data toforward and inverse analysis for the projects of existing dams. Through the structure analysesand formula deductions of neural network and support vector machine, the normal formulaeof parameters sensitivity were obtained by network's output variables derivative about inputvariables. After the key parameters which control the strain and stress of dam were foundthough orthogonal test method, the sensitivity distribution of key parameters in gravity damand embankment dam was obtained by using FEM-NN method, then the optimal selectiondegree of measuring points' location in dam was computed based on the proposedcomputation method. Finally, the result indicates that the proposed method of optimalselection degree of measuring points' location in dam is reasonable and practicable.
引文
[1] 吴中如.重大水工混凝土结构病害检测与健康诊断.北京:高等教育出版社,2005.
    [2] 吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003.
    [3] 刘宝军,张金宏.我国的水库建设与防洪.中国水利,1999,(7):16-17.
    [4] 973项目《灾害环境下重大工程安全性的基础研究》研究简报.2004,(3):23-35.
    [5] 张有天.从岩石水力学观点看几个重大工程事故.水利学报,2003,(5):1-10.
    [6] 牛运光.病险水库加固实例.北京:中国水利水电出版社,2002.
    [7] 王晓旭.自动真空激光大坝变形测量系统的研制:(博士学位论文).大连:大连理工大学,2005.
    [8] Alberts H C, Alberts R M, Bloom M F. The Three Gorges Dam Project from a Systems Viewpoint. Systems Research and Behavioral Science, 2004, 21(6):585-602.
    [9] 方卫华.综论土石坝的安全监测.红水河,2002,21(4):64-67.
    [10] Marchuk A N, Pomytkina S V, Krat T Y. Problems of the geodynamic effect on large dams. Hydrotechnical Construction, 1995, 29(7):370-378.
    [11] Chiaruttini C, Grimaz S, Priolo E. Modelling of ground motion in the vicinity of massive structures. Soil Dynamics and Earthquake Engineering, 1996, 15(2):75-82.
    [12] Proulx J, Paultre P, Rheault J, et al. An experimental investigation of water level effects on the dynamic behaviour of a large arch dam. Earthquake Engineering & Structural Dynamics, 2001, 30(8):1147-1166.
    [13] Darbre G R, Proulx J. Continuous ambient-vibration monitoring of the arch dam of Mauvoisin. Earthquake Engineering & Structural Dynamics, 2002, 31(2): 475-480.
    [14] 曹乐安.简论水工建筑物及其基础安全监测系统设计.见:王德厚编.大坝安全监测与监控.北京:中国水利水电出版社,2004:3-14.
    [15] Bonaldi P, Fanelli M, Giusepptti G. Displacement forecasting for concrete dams via deterministic mathematical models. International Water Power & Dam Construction, 1977, 29(9):143-148.
    [16] 杨杰,吴中如.大坝安全监控的国内外研究现状与发展.西安理工大学学报,2002,18(1):26-30.
    [17] 李珍照.国外大坝监测分析的新进展.水力发电学报,1992,11(2):75-84.
    [18] 李珍照.大坝安全监测.北京:中国电力出版社,1997.
    [19] Huang Ming, Li Zhen-Zhao. Research on dam space displacement monitoring model and confidence region. Proceedings of 99 international conference on dam safety and monitoring, Beijing, 1999.454-457.
    [20] 吴中如,朱伯芳.三峡水工建筑物安全监测及反馈设计.北京:中国水利水电出版社,1999.
    [21] 吴中如,顾冲时,吴相豪.碾压混凝土坝安全监测理论及其应用.北京:科学出版社,2001.
    [22] Wu Z R, Wang Z R. Dynastic monitoring model of space displacement field of concrete dam. International Symposium on Monitoring Technology of Dam Safety, Hangzhou 1992.
    [23] 何金平,李珍照.大坝结构性态多测点数学模型研究.武汉水利电力大学学报,1994,27(2):134-14.
    [24] 黄铭,李珍照.重力坝安全监测位移多测点二维分布数学模型的研究.武汉水利电力大学学报,1997,30(1):1-5.
    [25] 黄铭,李珍照.大坝监测空间位移统计模型研究.武汉水利电力大学学报,1999,32(3):19-22.
    [26] 黄铭,葛修润,刘俊.大坝安全监测多测点位移向量模型.上海交通大学学报,2001,35(4):514-517.
    [27] 徐梦华,李珍照,李民等.大坝监测多测点多方向位移数学模型研究..长江科学院院报,2003,20(1):29-32.
    [28] 李民,李珍照,何金平.大坝实测位移模型及建模方法.四川大学学报,2003,35(3):21-25.
    [29] 刘思峰,郭天榜.灰色系统理论及其应用.开封:河南大学出版社,1991.
    [30] Wang L X. a course in fuzzy systems and control. New York: Prentice-Hall Press, 1997.
    [31] Sugeno M, Tanaka K. Successive identification of a fuzzy model and its applications to prediction of a complex system. Fuzzy Sets and systems, 1991, 42(3): 315-343.
    [32] 吴祥兴,陈忠等.混沌学导论.上海:上海科学技术文献出版社,1996.
    [33] Chui C K. An introduction to wavelets. New York: Academic Press, 1992.
    [34] Zhang Q, Benveniste A. Wavelet networks. IEEE Trans on Neural Networks, 1992, 3(6):889-898.
    [35] Kennecly M, Pchua L O. Neural networks for nonlinear programming. IEEE Transactions on Circuits and System, 1988, 35(5): 554-562.
    [36] Nguyen D H, Widrow B. Neural networks for self-learning control systems. IEEE Control Systems Magazine, 1990, 10(3):18-23.
    [37] Willis M J, Montague G A, Massimo C D, et al. Artificial neural networks in process estimation and control. Automatics, 1992, 28(6): 1181-1187.
    [38] 吴徽.神经网络计算.北京:高等教育出版社,2003.
    [39] 熊支荣,李珍照.灰色系统理论在大坝观测资料分析中的应用.水利水电技术,1991,(4).
    [40] 蓝悦明,王新洲.灰色预测用于大坝水平变形预测的研究.武汉测绘科技大学学报,1996,21(4):350-354.
    [41] 杨杰,党志良,吴中如等.土石坝竖向位移的灰色非线性拟合与预测.水电能源科学,2002,20(4):31-33.
    [42] 刘观标,用逐步模糊聚类分析法进行混凝土坝的位移预报.大坝观测与土工测试,1989,13(3):10-17.
    [43] 李珍照,张淑丽.大坝观测数据的模糊分析.水电自动化与大坝监测,1992,16(1):1-8.
    [44] 顾冲时,吴中如.应用模糊控制论建立新安江3号坝基扬压力预测模型.大坝观测与土工测试,1996,20(4):7-10.
    [45] 薛桂玉,李民.洪门土坝垂直变形规律分析.人民长江,1998,29(1):30-32.
    [46] 马福恒,王仁钟,吴中如等.模糊控制的预测模型及其应用.大坝观测与土工测试,2001,25(2)::17-20.
    [47] 汪树玉,刘国华,杜王盖等.大坝观测数据序列中的混沌现象.水利学报,1999,(7):22-26.
    [48] 汪树玉,刘国华,包志仁等.观测数据分析中几种方法的探讨(三)混沌时间序列的预测.水电自动化与大坝监测,2003,27(4):45-48.
    [49] 高平.大坝变形监测短期模型研究:(硕士学位论文).武汉:武汉大学,2002.
    [50] 高平,薛桂玉.基于小波网络的大坝变形监测模型与预报.水利学报,2003,(7):107-110.
    [51] 赵斌,吴中如,张爱玲.BP模型在大坝安全监测预报中的应用.大坝观测与土工测试,1999,23(6):1-4.
    [52] 杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究.西安理工大学学报.2001,17(1):25-29.
    [53] 吴云芳,李珍照.改进的BP神经网络模型在大坝安全监测预报中的应用.水电站设计,2002,18(2):21-24.
    [54] 刘福深,刘耀儒,杨强.基于差异进化算法的前馈神经网络在大坝变形监测中的应用.岩土力学,2006,27(4):597-600.
    [55] 张晓春,徐晖,邓念武等.径向基函数神经网络在大坝安全监测数据处理中的应用.武汉大学学报,2003,36(2):33-36.
    [56] 陈继光,吕学昌.土坝观测数据的模糊人工神经网络分析.水利学报,2000,(1):19-22.
    [57] 陈继光,祝令德,孙立堂.基于自适应神经模糊推理的形变数据仿真计算.计算机工程与应用,2006,(16):219-221.
    [58] 徐洪钟,张乾飞,顾冲时.基于神经网络的土石坝沉降组合模型.水电能源科学,2000,18(4):19-21.
    [59] 徐洪钟,单泰松,吴中如.大坝观测数据的模糊神经网络分析.大坝观测与土工测试,2001,25(3):17-19.
    [60] 徐洪钟,胡群革,吴中如.自适应模糊神经网络在大坝安全监控中的应用.河海大学学报,2001,29(3):8-10.
    [61] 王铁生,华锡生.基于模糊聚类算法的大坝监控模型的研究.水利学报,2003,(6):115-118.
    [62] 阳武,伍元,吴中如.模糊神经网络预报模型的研究.水电能源科学,2004,21(1):63-65.
    [63] 王新洲,邓兴升.大坝变形预报的模糊神经网络模型.武汉大学学报,2005,30(7):588-591.
    [64] 李端有,周元春.BP网络在大坝变形空间多测点监测模型中的应用.长江科学院院报,2005,22(6):1-2.
    [65] 朱伯芳,黎展眉,张璧城.结构优化设计原理与应用.北京:水利电力出版社,1985.
    [66] 朱伯芳.水工建筑物施工期反馈设计.水力发电学报,1995,(2):74-81.
    [67] Kavanagh K, Clough R W. Finite Element Application in the characterization of Elastic Solid. International Journal of Solids Structures, 1971, (7): 11-23.
    [68] Sakurai S, Takeuchi K. Back analysis of measured displacement of tunnel. Rock Mechanics and Rock Engineering, 1983, 16(3):173-180.
    [69] Arai R. An inverse problem approach to the prediction of mutli-dimensional consolidation behavior. Soil and Foundations, 1984, 21(1): 95-108.
    [70] Gioda G, Jurina G. Numerical identification of soil structure interaction pressures. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(1): 33-56.
    [71] Giusepptti G. Basic theory underlying the computation of influence coefficients. ISMES, 1986.241-247.
    [72] 陈久宇,林见.观测数据的数学处理.上海:上海交通大学出皈社,1986.
    [73] 陈久宇.应用实测位移资料研究刘家峡重力坝横缝的结构作用.水利学报,1982,(12):
    [74] 陈久宇.利用实测位移资料估计坝体混凝土的实际弹性模量.水电自动化与大坝监测,1983,7(2):
    [75] 吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000.
    [76] 吴中如,顾冲时,沈振中.大坝安全综合分析和评价的理论方法及其应用.水利水电科技进展,1998,18(3):2-6.
    [77] 顾冲时,诸渭林.探讨大坝与岩基的反馈分析的新理论和新方法.大坝观测与土工测试,2000,24(1):8-12.
    [78] 顾冲时,吴中如.综论大坝原型反分析及其应用.中国工程科学,2001,3(8):76-81.
    [79] 吴中如,顾冲时,吴相豪.碾压混凝土坝安全监控理论及其应用.北京:科学出版社,2001.
    [80] 顾冲时,吴中如,吴相豪.碾压混凝土坝安全监控理论和方法.水利学报,2002,(9):112-116.
    [81] Kaiser P, Zou D, Lang P. Stress determination by back-analysis of excavation induced stress changes. Rock Mechanics and Rock Engineering, 1990, 23(3):185-200.
    [82] 刘维倩,黄光远,穆永科等.岩土工程中的位移反分析法.计算结构力学及其应用,1995,12(1):93-101.
    [83] Swoboda G, Ichikawa Y, Dong Q, et al. Back analysis of large geotechnical models. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12):1455-1472.
    [84] 刘怀恒.支护简载反演及安全度预测.西安矿业学院学报,1991,11(4):1-8.
    [85] 王银芝,杨志法,王思敬.岩石力学位移反演分析回顾与进展.力学进展,1998,28(4):488-498.
    [86] 杨志法,丁恩保,张三旗.地下工程平面问题弹性有限元图谱.北京:科学出版社,1989.
    [87] 吉林,赵启林,冯兆祥等.岩土工程中反分析的进展.水利水运工程学报,2002,(4):57-63.
    [88] 吕爱钟.地下巷道弹性位移反分析各种优化方法的探讨.岩土力学,1996,17(2):29-34.
    [89] 吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1998.
    [90] 孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法.岩石力学与工程学报,1992,11(3):221-229.
    [91] 王平,朱维申,王可钧.单纯形法及其在广蓄电站围岩变形反分析中的应用.岩土力学,1991,12(2):
    [92] 周志芬,顾长存,吴跃东.拉西瓦水电工程岩体裂隙透水性反分析研究.水文地质工程地质,1993,(6):
    [93] 吴相豪,吴中如,顾冲时等.碾压混凝土拱坝徐变度反演分析方法.大坝观测与土工测试,2000,24(1):22-25.
    [94] 李守巨,刘迎曦,周承芳.岩土渗流问题反分析的非线性最小二乘法.中国有色金属学报,1998,8(suppl.2):726-729.
    [95] 刘迎曦,李守巨,陈昌林等.丰满混凝土重力坝材料参数识别研究.水利学报,1999,(9):38-43.
    [96] 刘迎曦,李守巨,周承芳等.丰满混凝土重力坝渗透系数反演分析.武汉水利电力大学学报,1999,32(1):1-4.
    [97] 刘迎曦,王登刚,张家良等.材料物性参数识别的梯度正则化方法.计算力学学报,2000,17(1):69-75.
    [98] 李守巨,刘迎曦,王登刚等.混凝土重力坝材料参数识别的正则化最小二乘法.计算物理,2000,17(6):702-706.
    [99] 李守巨,刘迎曦,王登刚等.岩石和混凝土材料参数识别的修正高斯—牛顿算法.岩石力学与工程学报,2000,19(1):93-96.
    [100] 李守巨,刘迎曦,王登刚.混凝土重力坝弹性参数识别的灵敏度分析及实例.岩土工程学报,2000,22(3):381-383.
    [101] 王登刚,刘迎曦,李守巨.混凝土重力坝振动参数识别研究.水力发电,2001,(2):17-19.
    [102] 李守巨,刘迎曦,张正平等.基于神经网络的混凝土大坝弹性参数识别方法.大连理工大学学报,2000,40(5):531-535.
    [103] 李守巨,刘迎曦,王登刚等.云峰大坝弹性参数识别的神经网络方法.水利水电技术,2000,31(8):51-55.
    [104] 练继建,王春涛,赵寿昌.基于BP神经网络的李家峡拱坝材料参数反演.水力发电学报,2004,23(2):44-49.
    [105] 刘健,练继建.李家峡拱坝坝体弹性模量及基岩变形模量的反演.岩石力学与工程学报,2005,24(24):4466-4471.
    [106] 赵斌,吴中如,沈振中等.应用hopfield网络反演分层分区变形模量.水电能源科学,2000,18(3):4-6.
    [107] 刘先珊,余成学,张立君.RBFNN模型在渗透系数反演中的应用.岩土力学,2003,24(3):1025-1029.
    [108] 朱国金,胡灵芝,顾冲时等.基于神经网络模型的某大坝混凝土弹性模量时变规律反演分析.水电自动化与大坝监测,2005,29(4):32-34.
    [109] 刘迎曦,王登刚,李守巨.识别混凝土重力坝弹性模量的一种新方法.大连理工大学学报,2000,40(2):144-147.
    [110] 郭雪莽,田明俊,秦理曼.土石坝位移反分析的遗传方法.华北水利水电学院学报,2001,22(3):94-98.
    [111] 向衍,苏怀智,顾冲时.基于遗传算法的物理力学参数反演.长江科学院院报,2003,20(6):55-58.
    [112] 向衍,苏怀智,吴中如.基于大坝安全监劂资料的物理力学参数反演.水利学报,2004,(8):98-102.
    [113] 向衍,郑东健,何旭升.基于MSC.Marc的物理力学参数反演.水电能源科学,2003,21(4):7-10.
    [114] 李守巨.基于计算智能的岩土力学模型参数反演方法及其工程应用:(博士学位论文).大连:大连理工大学,2004.
    [115] 王凌.智能优化算法及其应用.北京:清华大学出版社,2003.
    [116] 冯夏庭,张治强,杨成祥.位移反分析的进化神经网络方法研究.岩石力学与工程学报,1999,18(5):529-533.
    [117] 徐洪钟,吴中如,李雪红.应用模糊神经网络反演大坝弹性模量.河海大学学 报,2002,30(2):14-17.
    [118] 朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究.岩石力学与工程学报,2003,22(2):197-202.
    [119] 李守巨,刘迎曦,任明法等.基于改进遗传算法的水轮发电机振动荷载参数识别.工程力学,2003,20(5):163-169.
    [120] 李守巨,刘迎曦,陈昌林等.基于混合遗传算法的混凝土大坝力学参数反演.大连理工大学学报,2004,44(2):195-199.
    [121] 何翔,李守巨,刘迎曦.基于遗传神经网络的坝基岩体渗透系数识别.岩石力学与工程学报,2004,23(5):751-757.
    [122] 刘福深,刘耀儒,杨强等.基于改进遗传算法的拱坝位移反分析.岩石力学与工程学报,2005,24(23):4341-4345.
    [123] 黄勇,周志芳.基于混沌遗传混合法的裂隙岩体模型参数识别.勘察科学技术,2005,(4):19-23.
    [124] 张丙印,袁会娜,李全明.基于神经网络和演化算法的土石坝位移反演分析.岩土力学,2005,26(4):547-552.
    [125] 姚磊华.遗传算法和高斯牛顿法联合反演地下水渗流模型参数.岩土工程学报,2005,27(8):885-890.
    [126] 谢献忠,易伟建.混合遗传算法在结构动力反演中的应用研究.工程力学,2005,22(3):21-25.
    [127] 张社荣,何辉.改进的遗传算法在堆石体参数反演中的应用.岩土力学,2005,26(2):182-186.
    [128] 龚晓南.确定地基固结过程中材料参数的反分析法.应用力学学报,1991,8(2):131-133.
    [129] 魏汝龙.从实测沉降过程推算固结系数.岩土工程学报,1993,15(2):15-21.
    [130] 付宏渊.基于灵敏度分析的地基沉降反演参数优化.长沙理工大学学报,2006,3(2):24-28.
    [131] 蔡新.混凝土面板堆石坝结构分析与优化设计.北京:中国水利水电出版社,2005.
    [132] 黄景忠.堆石蠕变对面板堆石坝变形性态影响的研究:(河海大学硕士学位论文).南京:河海大学,2005.
    [133] 何昌荣,杨桂芳.邓肯-张模型参数变化对计算结果的影响.岩土工程学报,2002,24(2):170-174.
    [134] 黄光远,刘小军。数学物理反问题.济南:山东科学技术出版社,1993.
    [135] Cobb R G, Liebst B S. Sensor Placement and Structural Damage Identification from Minimal Sensor Information. AIAA Journal, 1997, 35(2):369-374.
    [136] 崔飞,袁万城,史加钧.传感器优化布设在桥梁健康监测中的应用.同济大学学报,1999,27(2):165-169.
    [137] 李宏南,李东升.土木工程结构安全性评估、健康监测及诊断评述.地震工程与工程振动,2002,22(3):82-90.
    [138] 于阿涛,赵鸣.基于振动的土木工程结构健康监测研究进展.福州大学学报,2005,33(z1):233-239.
    [139] Ledesma A, Gens A, Alonso E E. Parameter and variance estimation in geotechnical back analysis using prior information. International Journal for Numerical and Analytical Methods in Geomechanics. 1996, 20(2): 119-141.
    [140] 杨林德.岩土工程问题的反演理论与工程实践.北京:科学出版社,1996.
    [141] 赵启林,吉林.参数灵敏度分析的有限元-神经网络方法.土木工程学报,2004,37(4):60-64.
    [142] 吕爱钟.巷道围岩参数计地应力可辨识性的探讨.岩石力学与工程学报,1988,7(2):155-164.
    [143] 王登刚.非线性反演算法及其应用研究:(博士学位论文).大连:大连理工大学,2001.
    [144] 赵启林,朱晓文,孙宝俊.考虑误差影响的力学参数反分析神经网络方法研究.东南大学学报,2003,33(5):601-604.
    [145] 范益群,李锡夔.岩土力学弹塑性模型参数反演中的灵敏度分析.岩土工程学报,1998,20(2):15-18.
    [146] 陈斌,吉林,张旭晖.邓肯模型参数敏感性分析.华北水利水电学院学报,2002,23(4):10-13.
    [147] 陈斌.岩土工程随机反演及工程应用:(博士学位论文).南京:河海大学,2001.
    [148] Haftka R T, Adelman H M. Recent developments in structural sensitivity. Structural and Multidisciplinary Optimization, 1989, 1(3): 137-151.
    [149] 蔡新,郭兴文,张旭明.工程结构优化设计.北京:中国水利水电出版社,2003.
    [150] 陈建峰,石振明,沈明荣.路堤工程信息化施工测点的优化布置.中国公路学报,2003,16,(2):35-41.
    [151] 苏怀智,吴中如.大坝工程安全监测仪器优化设计.南昌工程学院学报,2005,24(3):5-9.
    [152] 张恒喜,郭基联,朱家元等.小样本多元数据分析方法.西安:西北工业大学出版社,2002.
    [153] Hornik K, Stinchombe M, White H. Multilayer feed forward network are universal approximators. Neural Networks, 1989, 2(5):359-366.
    [154] Vapnik V. The nature of statistical learning theory. New York: Springer, 1995.
    [155] 张学工译.统计学习理论的本质.北京:清华大学出版社,2000.
    [156] Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3):273-297.
    [157] Steve R Gunn. Support vector machines for classification and regression. Technical Report, England: Southampton University, 1998.
    [158] 张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42.
    [159] 黄席樾,张著洪,何传江等著.现代智能算法理论及应用.北京:科学出版社,2005.
    [160] 安金龙.支持向量机若干问题的研究:(博士学位论文).天津:天津大学,2004.
    [161] 田英杰.支持向量回归机及其应用研究:(博士学位论文).北京:中国农业大学,2005.
    [162] Osuna E, Freund R, Girosit F. Training support vector machines: an application to face detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, 1997:130-136.
    [163] Burges J C. A Tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
    [164] Lijuan Cao, Francis E.H Tay. Financial Forecasting Using Support Vector Machines. Neural Computing & Applications, 2001, 10(2):184-192.
    [165] Kim K J. Financial time series forecasting using support vector machines. Neurocomputing, 2003, 55(2): 307-319.
    [166] 胡寿松,王源.基于支持向量机的非线性系统故障诊断.控制与决策,2001,16(5):617-620.
    [167] 高学,金连文,尹俊勋等.一种基于支持向量机的手写汉字识别方法.电子学 报,2002,30(5):651-654.
    [168] 刘涵,刘丁,李琦.基于支持向量机的混沌时间序列非线性预测.系统工程理论与实践,2005,25(9):94-99
    [169] 赵洪波.岩爆分类的支持向量机方法.岩土力学,2005,26(4):642-644.
    [170] 王亮,张宏伟,牛志广.支持向量机在城市用水量短期预测中的应用.天津大学学报,2005,38(11):1021-1025.
    [171] 雄建秋,李祚泳.基于支持向量机的水流挟沙力预测研究.水利学报,2005,(10):1171-1175.
    [172] Khan M S, Coulibaly P. Application of Support Vector Machine in Lake Water Level Prediction. Journal of hydrologic engineering. 2006, 11(3):199-205.
    [173] 李亚伟,陈守煜,韩小军.基于支持向量机SVR的黄河凌汛预报方法。大连理工大学学报,2006,46(2):272-275.
    [174] Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 2003, 15(7):1667-1689.
    [175] 余志雄,周创兵,李俊平等.基于v-SVR算法的边坡稳定性预测.岩石力学与工程学报,2005,24(14):2468-2475.
    [176] Browne M W. Cross-validation methods. Journal of Mathematical Psychology, 2000, 44(1): 108-132.
    [177] 陈伟,胡昌华,曹小平等.基于最小二乘支撑矢量机的陀螺仪漂移预测.宇航学报,2006,27(1):135-13.
    [178] Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letter, 1999, 9(3): 293-300.
    [179] Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using Least Squares Support Vector Machines. Proceeding of International Symposium on Circuits and Systems, Geneva 2000, 2:757-760.
    [180] 王宇红,黄德先,高东杰等.基于LS-SVM的非线性预测控制技术.控制与决策,2004,19(4):383-387.
    [181] 阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究.控制与决策,2003,18(3):358-360.
    [182] 刘涵,刘丁,郑岗等.基于最小二乘支持向量机的天然气负荷预测.化工学报,2004,55(5):828-832.
    [183] Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76(2): 60-68.
    [184] Lee K S, Geem Z W, Lee S H. The harmony search heuristic algorithm for discrete structural optimization. Engineering Optimization, 2005, 37(7): 663-684.
    [185] Geem Z W, Lee K S, Tseng C L. Harmony Search for Structural Design. Proceeding of the 2005 Conference on Genetic and Evolutionary Computation, New York, 2005, 651-652.
    [186] 刘铁男,冯兆冰.基于和声搜索的自适应滤波算法.吉林大学学报,2004,22(4):306-309.
    [187] 李亮.迟世春,林皋.引入和声策略的遗传算法在土坡非圆临界滑动面求解中的应用.水利学报,2005,36(8):913-918.
    [188] 孙钧,袁金荣.深大基坑施工变形的智能预测与控制.地下工程与隧道,2000,(4),12-23.
    [189] 赵洪波,冯夏庭.非线性位移时间序列预测的进化一支持向量机方法及应用.岩土工程学报,2003,25(4):468-471.
    [190] Kenendy J, Eberhart R. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, Perth, 1995: 1942-1948.
    [191] Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory. Sixth International Symposium on Micro Machine and Human Science, Nagoya, 1995: 39-43.
    [192] Kennedy J. The Particle Swarm: Social Adaptation of Knowledge. Proc. IEEE International Conference on Evolutionary Computation, Indianapolis, 1997: 303-308.
    [193] Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. IEEE World Congress on Computational Intelligence, Anchorage, 1998: 69-73.
    [194] Eberhart R, Hu X H. Human Tremor Analysis Using Particle Swarm Optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Washington, 1999: 1927-1930.
    [195] Shi Y, Eberhart R. Empirical study of particle swarm optimization. Proceedings of the Congress on Evolutionary Computation, Washington, 1999: 1945-1950.
    [196] Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation. 2002, 6 (1): 58-73.
    [197] Angeline P J. Using Selection to Improve Particle Swarm Optimization. IEEE International Conference on Evolutionary Computation, Anchorage, 1998: 84-89.
    [198] Yoshida H, Kawata K, Fukuyama Y, et al. A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment. IEEE Transactions on Power Systems, 2000, 15(4): 1232-1239.
    [199] Parsopoulos K E, Vrahatixs M N. Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing, 2002, 1(2-3): 235-306.
    [200] 谢晓峰,张文俊,杨之廉.微粒群算法综述.控制与决策,2003,18(2):129-134.
    [201] 康琦,张燕,汪镭等.智能微粒群算法.冶金自动化,2005,(4):5-9.
    [202] 曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社,2004.
    [203] 王凌.智能优化算法及其应用.北京:清华大学出版社,2003.
    [204] 刘丽姮,王凌,刘波等.基于一类混合PSO算法的函数优化与模型降阶研究.化工自动化及仪表,2006,33(2):9-12.
    [205] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing. Science, 1983, 220(320): 671-680.
    [206] Rutenbar R A. Simulated Annealing Algorithms: An Overview. IEEE Circuits and Devices Magazine, 1989, 5(1): 19-26.
    [207] Eglese, R W. Simulated Annealing: A tool for operational research. European Journal of Operational Research, 1990, 46(3): 271-281.
    [208] Y Gao, S L Xie. Particle Swarm Optimization Algorithms Based on Simulated Annealing. Computer Engineering and Applications. 2004, 40(1):47-50.
    [209] 王丽芳,曾建潮.以模拟退火算法为收敛判据的混合微粒群算法.计算机工程和科学,2006,28(5):77-79.
    [210] 李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38.
    [211] 李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究.电路与系统学报,2003,8(1):1-6.
    [212] 李晓磊.一种新型的智能优化方法—人工鱼群算法:(博士学位论文).杭州:浙江大学,2003.
    [213] 刘秉正,彭建华.非线性动力学.北京:高等教育出版社,2004.
    [214] 陈予恕.非线性振动系统的分叉和混沌理论.北京:高等教育出版社,1993.
    [215] 计明军.若干随机性全局优化算法的研究:(博士学位论文).大连:大连理工大学,2004.
    [216] Yuan X H, Yuan Y B, Zhang Y C. A hybrid chaotic genetic algorithm for short-termhydro system scheduling. Mathematics and Computers in Simulation, 2002, 59(4):319-327.
    [217] Ji M j, Tang H W. Application of chaos in simulated annealing. Chaos, Solitons and Fractals, 2004, 21(4):933-941.
    [218] Jiang C W, Bompard E. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment. Energy Conversion and Management, 2005, 46(17):2689-2696.
    [219] Hashem S. Sensitivity analysis for feed-forward artificial neural networks with differentiable activation functions. The International Joint Conference on Neural Networks, Baltimore, 1992: 419-424.
    [220] 伍建国,孙庆鸿,毛海军等.基于BP神经网络模型的磨床部件动态灵敏度分析.东南大学学报,2002,32(4):601-604.
    [221] 陈太聪,韩大建,苏成.参数灵敏度分析的神经网络方法及其工程应用.计算力学学报,2004,21(6):752-756.
    [222] Hagan M T, Mcnhaj M B. Training feedforward network with the Marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6):989-993.
    [223] 刘宁,杜丽惠,廖柏华.水布垭面板坝土体参数反馈分析中清华非线性K-G模型参数敏感性分析.见:关志诚编.混凝土面板堆石坝筑坝技术与研究.北京:中国水利水电出版社,2005:90-96.
    [224] 方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    [225] 顾淦臣,束一鸣,沈长松.土石坝工程经验与创新.北京:中国电力出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700