超短期负荷预测及火电厂厂级负荷优化分配的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力的非存储性,决定了负荷的实时平衡性。所以本文从平衡的角度出发,研究了超短期负荷预测,以及超短期负荷调度的子环节之一:火电厂厂级负荷优化分配。
     电力系统负荷预测是实现电力系统安全、经济运行的基础。通过负荷预测,对电力需求预先做出估计和推测,根据这些预测结果,可以针对性的采取技术措施来提高系统运行的经济性和可靠性。对电力系统来说,提高电网运行的安全性和经济性,改善电能质量,都依赖于准确的负荷预测。因此负荷预测的关键是提高预测的准确度。
     本文开始分析了电力系统负荷的构成和特点,以及负荷预测的分类、特点及其影响因素,为理解负荷预测提供理论基础。目前最常用的超短期负荷方法是神经网络法和线性外推法,神经网络法作为一种人工智能方法有较好的预测精度,线性外推法则因为计算简单、耗时少而得到较广泛的应用。但线性外推法为线性模型,难以反映电力负荷的非线性特性,而神经网络法存在容易陷入局部最优、过拟合、泛化性能力不强等缺点。
     支持向量机是近年来才被重视的一种机器学习算法,在多个领域都得到了广泛应用。本文阐述了支持向量机及最小二乘支持向量的理论基础,在模糊加权最小二乘支持向量机的输入向量中引入横向加权,形成双向加权最小二乘支持向量机的超短期负荷预测模型,以体现负荷预测中历史数据对预测值“近大远小”的影响。并且在每次预测前不断更新训练样本对模型进行训练,以体现新样本对预测值的影响。以15分钟为步长,对所提出的预测模型进行了验证,并与神经网络和曲线外推法的预测结果进行了比较。结果表明,改进的方法在预测精度上具有一定的优越性。
     在火电厂负荷分配的环节,本文介绍了负荷调度所考虑的经济性模型,以及可能会涉及的环保性、快速性指标,从而研究火电厂负荷实时调度的多目标优化。在多目标优化算法上,介绍了粒子群优化算法及其多目标优化理论,为了增强粒子群多目标优化算法的局部搜索能力,本文将混沌局部搜索法引入带密度距离的粒子群多目标优化算法中,从而形成带混沌搜索粒子群多目标优化算法。用六机组系统验证了改进的算法在处理双目标和三目标优化的可行性。并将改进方法的优化结果与原方法和NSGA-Ⅱ的结果做了比较。从对比来看,改进的粒子群多目标优化算法比原来的带密度距离的多目标粒子群优化算法有更好解空间的搜索性,并且非支配解的分布性也较佳。
Electric energy can not be stored, this determines the load should be keep in balance in real-time. From this point of view, the ultra-short-term load forecasting and load dispatch optimization of thermal power plant which is a sub segment of very short term load dispatch of the system are studied.
     Load forecasting is the foundation of power system security and economic operating, through load forecasting, electricity demand can be estimated in advance. According to the outcomes of the prediction load, technical measure can be taken to improve the system economy and reliability. As for the power system, improving the operating security and economy, meliorating power quality, are mostly dependent on accuracy of load forecasting. So the key of the load forecasting is to improve its accuracy.
     The composition and characteristic of the load will be analyzed, the classification and characteristic and the influencing factors of the load forecasting also introduced in the beginning of the paper, all the work will be done to offering theoretical basis for the ultra-short-term load forecasting. Presently, the most commonly used ultra-short-term load forecasting models are neural network and linear extrapolation. As a kind of artificial intelligence, neural network method can get good prediction accuracy; the linear extrapolation is widely used due to its simply calculating and less time-consuming. But the linear extrapolation is difficult to reflect the nonlinear characteristics of the load, while the neural network have the shortcomings of easy to fall into local optimum exists, over-fitting and the generalization ability is not strong enough sexuality.
     Support Vector Machine is a kind of machine learning algorithms had arising much attention in recent years, and is applied in many aspects. The theory of support vector machines and least squares support vector machine are systematically described. Horizontal weighting will be introduced into the input vector of fuzzy weighted least squares support vector machine to form the bidirectional weighted least squares support vector machine model for ultra-short-term load forecasting, the model can reflect the characteristic that the nearer date has a greater impact on the predicting value. Update the training sample to determine the forecasting model before forecasting of each time. 15 minute-step is used to validating the proposal method, and the neural network and curve extrapolation prediction results will be compared with, the results show that the improved method of forecasting can get a better accuracy.
     As for the thermal power plant load distribution, this paper considered the economic load dispatch model, and the model of environmental, fast load changes requirements, that may be consideration during real-time scheduling of multi-objective load optimization of the plant. As for the multi-objective optimization algorithm, particle swarm optimization and multi-objective optimization theory will be systematically introduced. In order to improve the searching ability of particle swarm optimization algorithm, chaotic local search method will be applied into the multi-objective particle swarm optimization with crowding distance, to form a new multi-objective particle swarm optimization algorithm. Six-unit system will be used to verification of the algorithm. The result of the modified method is comparison with its original method and NSGA-Ⅱmulti-objective optimization method, the conclusion show that the modified method performance is well, and has a better searching ability of the solution space and distributional feature than its original method.
引文
[1]李政林.火电厂厂级负荷优化调度系统的研究[硕士学位论文].北京:华北电力大学,2003.
    [2] Nidul Sinha, Bipul Syam, et al. optimal combined non-convex economic and emission load dispatch using NSDE[C]. International conference on computational intelligence and multimedia application, 2007:473-480
    [3]邹森,电力系统安全分析与控制[M].北京:水利电力出版社.1995。
    [4] Trudnowskid J, Mcreynolds L, Johnson M. Real-time Very Short-term Load Prediction for Power System Automatic Generation Control[J].IEEE Transactions on Power Systems,2001,9(2): 254-260
    [5]丁恰,卢建刚,钱玉妹,等.一种实用的超短期负荷预测曲线外推法[J].电力系统自动化,2004,28(16):83—85.
    [6] M. T, Hanan S, Behr M. The time series approach to short-term forecasting[J], IEEE Trans. Power Syst. 1987,2(3):785-791.
    [7] Wiktor Charytoniuk, Mo-Shing Chen. Very short-Term load forecasting using artificial neural networks. IEEE Trans. Power Syst. 2000, 15(1):263-268
    [8]谢开,汪峰,于尔铿,等。应用Kalman滤波方法的超短期负荷预报[J].中国电机工程学报,1996,16(4):245—249.
    [9]徐洪基.灰色模型在电力负荷预测中的应用[J],江苏工学院学报,1990,11(1):86-92.
    [10]陆海峰.超短期负荷预测及其在优化调度中应用[硕士学位论文].南京:东南大学,2001.
    [11]杨争林,宋燕敏,曹荣章等.超短期负荷预测在发电市场中的应用[R].南京:国家电力公司自动化研究院,2000,24(11):14-17
    [12]张锋,吴劲晖,张怡等.基于负荷趋势的新型超短期负荷预测法[J].电网技术,2004,28(19):64-67
    [13] Dingguo Chen, York M. Neural Network Based Very Short term Load Prediction[C]. IEEE/PES. Transmission and Distribution Conference and Exposition.2008:1-9
    [14] Daneshi, H. Daneshi,A. Real time load forecast in power system[C]. The third international conference on electric utility deregulation and restructuring and power technologies. 2008:689-695
    [15] Alfuhaid, M. A.E l-sayed, M.S.Mahmoud. Cascaded artificial neural networks for short term load forecasting[J]. IEEE Transactions on Power systems, 1997, 12(4):1524-1529
    [16]吴劲晖,王冬明,黄良宝,孙维真.一种超短期负荷预测的新方法——负荷求导法[J].浙江电力,2000,6:1-4
    [17]赵成旺,顾幸生,严军.负荷求导法在超短期负荷预测中的应用[J].电力系统自动化学报,2006,18(5):5-9
    [18]罗滇生,李伟伟,何供英.基于局部形相似的超短期负荷预测方法[J].电力系统自动化学报,2008,20(1):75-79
    [19]包丹.一种简单易行的超短期负荷预报方法[J].东北电力技术,2000,(3):50-52
    [20]周劼英,张伯明,尚金成,等.基于日周期多点外推法的超短期负荷预测及其误差分析[J].电力自动化设备,2005,25(2):15-18
    [21]杨争林,唐国庆,宋燕敏,等.改进的基于聚类分析的超短期负荷预测的方法[J].电力系统自动化,2005,12(25):83-86
    [22] K, Liu. S, SUBBARAYAN. R.R.SHOULTS. et al. Comparison of very short-term load forecasting techniques[J]. IEEE Transaction on power systems, 1996, 11(2):877-882
    [23]侯云鹤,熊信艮,吴燿武,鲁丽娟.基于广义蚁群算法的电力系统经济负荷分配[J].中国电机工程学报,2003,23(3):59-64.
    [24] S.Panta. et al. optimal economic dispatch for power generation using artificial neural network[C]. International power engineering conference, 2007:1343-1348.
    [25]王爽心,韩芳,朱衡君.基于改进尺度混沌优化方法的经济负荷分配[J].中国电机工程学报,2005,25(24):90-95
    [26]王欣,秦斌,阳春华,等.基于混沌遗传混合优化算法的短期负荷环境和经济调度[J].中国电机工程学报,2006,26(11):128-133
    [27] Prasanna, T.S. Somasundaram, P. Fuzzy mutated evolutionary programming based algorithm for combined economic and emission dispatch[C]. TENCOM IEEE region 10 conference, 2008:1-5
    [28]王治国,刘吉臻,谭文,等.基于快速性的火电厂厂级负荷优化分配研讨[J].现代电力,2006,23(2):68-71
    [29]王治国,刘吉臹,谭文,等.基于快速性与经济性多目标优化的火电厂厂级负荷分配研究[J].中国电机工程学报,2006,26(19):86-91
    [30]李学斌.火电厂厂级负荷分配的多目标优化和决策研究[J].中国电机工程学报,2009,28(35):102-107
    [31]王晛,李渝曾,张少华.一种求解环境经济负荷调度问题的人工神经网络新方法[J].电力系统自动化,2002,26(21):45-48
    [32]刘晨晖.电力系统负荷预报理论与方法. 1987.哈尔滨工业大学出版社.哈尔滨.
    [33]康重庆,夏清,刘梅.电力系统负荷预测[M]. 2007,中国电力出版,北京。
    [34]杜俊红.在线超短期负荷预测的分析与应用[硕士学位论文].成都:四川大学. 2004.
    [35]龙立波,姚建刚,李连结,等.短期电力负荷预测中数据处理技术[J].电力需求侧管理,2007,9(1):11-14
    [36]夏红军.短期负荷预测中坏数据的修复[J].电网建设,2008,9:7-8
    [37]周开得,康耀红.神经网络模型及其MATALB仿真程序设计.北京:清华大学出版社,2005.7:68-100.
    [38] Bernard Widrow, Michael A.Lehr. 30 Year of adaptive neural networks: perceptron, Madaline, and Backpropagatin[J]. Proceedings of the IEEE, 1990, 78(9):1415-1442
    [39]阮晓钢.神经计算科学[M].北京:国防工业出版社,2006:325-328.
    [40] Yehui Liu; Yuye Yang; Liang Huang. Fault diagnosis of analog circuit based on support vector machines[C]. IEEE International conference on communications technology and applications. 2009:40-43.
    [41] Chandra Sekhar, C. Palaniswami, M. Classification of multidimensional trajectories for acoustic modeling using support vector machines[C]. Proceeding of international conference on intelligent sensing and information processing. 2004: 153-158.
    [42]李元诚,方廷建,于尔铿.短期负荷预测中支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.
    [43]谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22.
    [44] J.A.K Suykens. J Vandenwalle. Least squares support vector machine classifiers[J]. Neural Network Letters, 1999,9(3):293-300.
    [45]王晓红,吴德会.一种基于最小二乘支持向量机的年电力需求预测方法[J].继电器,2006,34(16):74-77.
    [46] J.A.K Suykens, J.D.Brabanter, L.Lukas, J.Vandewalle. Weight least squares support vector machine: robustness and sparse approximation. Neurocomputing 2002, 48:85-105
    [47]孙林,杨世元,吴德会.基于隶属度模糊最小二乘支持向量机的工序能力预测[J].中国机械工程,2008,19(13):1561-1564
    [48] Gavin C.Cawley, Nicola L.C.Talbot. Preventing over-fitting during model selection via Bayesian regularization of the Hyper-Parameters[J]. Machine Learning research, 2007,8(5):841-861
    [49]章健.电力系统负荷模型与辨识[M].北京:中国电力出版社.2007:95-101.
    [50]孙林,杨世元,吴德会.基于隶属度模糊最小二乘支持向量机的工序能力预测[J].中国机械工程.2008,19(13):1561-1564.
    [51] Suykens J A K, van Gestel T, de Brabanter J, Least Squares Support Vector Machines. Singapore: World scientific, 2002
    [52]王得胜.综合环境因素的火电厂负荷优化分配的研究[硕士学位论文].北京:华北电力大学,2009
    [53]侯子良.中国火电厂自动化发展趋势及对策[J].中国电力,1999,32(10):41-45.
    [54]李鹏.等微增率准则在机组负荷优化分配中的应用条件[J].南方电网技术,2008,2(5):43-46
    [55] S.H. Ling, H. K. Lam, F. H. F. Leung, Y. S. Lee. Improved genetic algorithm for economic load dispatch with value-point loadings[C].The 29th annual conference of the IEEE, 2003:442-447
    [56] Eberhart R, kennedy J, a new optimizer using Particle swarm theory[C]. proc 6 Inter symposium on micro machine and human science, Nagoya, Japan, 1995, 39-43.
    [57]刘太兴.火电机组负荷优化分配系统研究[硕士学位论文].北京:华北电力大学,2007.
    [58] N. Srinival, K. Deb. Multiobjective function optimization using nondomination sorting genetic algorithm[J], Evol. Comput., 1995, 2(3):221-248.
    [59] Deb K, Pratab A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(2):182-197.
    [60]王洪涛,刘玉田.基于NSGA-Ⅱ的多目标输电网架最优重构[J].电力系统自动化,2009,33(23):14-18
    [61]冯士刚,艾芊,王伟,等.基于伪并行NSGA-Ⅱ算法的火电站多目标负荷调度[J].上海交通大学学报,2008,42(3):421-425
    [62]李铁苍,周黎辉,等.基于粒子群算法的火电厂机组负荷优化分配[J].华北电力大学学报,2008,35(1):44-47
    [63]刘佳,李丹,等.多目标无功优化的向量评价自适应粒子群算法[J].中国电机工程学报,2008,28(31):22-28
    [64]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社.2008.
    [65] Coello C., Lechuga, M.S. MOPSO: a proposal for multiple objective particle swarm optimization[C]. Proceedings of the congress on Evolutionary Computation, 2002:1051-1056
    [66] Coello C., Pulido, G., Salazar, M. Handling multi-objectives with particle swarm optimization [J]. IEEE Transaction on Evolutionary Computation, 2004, 8:256-279.
    [67] Carlo R. Raquel, Prospero C. Naval. Jr. An effective use of crowding distance in multiobjective particle swarm optimization[C]. Proceeding of the conference on genetic and evolutionary computation. 2005: 257-264.
    [68]郑金华.多目标进化算法及其应用[M].北京:科学出版社.2007.
    [69] I.Jacob Raglend, Narayana Prasad Padhy. Solutions to practical unit commitment problems with operational, Power Plow and Environmental Constraints[C]. Power engineering society general meeting, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700