用户名: 密码: 验证码:
基于共振光声光谱的变压器油中溶解气体在线监测原理及方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油中溶解气体是表征运行电力变压器早期潜伏性故障的重要特征量之一,油中溶解气体的在线监测技术在变压器运行状态的在线评估及剩余寿命的预测领域具有良好的应用前景。光声气体检测技术作为一种光学检测技术,它自身不需要消耗及分离气体,且在灵敏度、选择性、动态检测范围等方面显示了独特的优点,其在变压器油中溶解气体在线监测技术领域具有巨大的应用潜力。论文从气体红外吸收特性分析、光声光谱在线监测系统的构建及微弱信号检测三方面着手,系统地研究了油中溶解气体光声光谱在线监测的原理与方法。
     深入剖析气体光声效应的产生机理,即热的产生与声的激发,研究标准圆柱形光声池中声场的分布特点及其振幅的大小,在分析实际光声池中声能损耗的基础上,得出计及声能损耗的波动方程与光声信号的振幅幅值,为气体光声检测系统的组建,特别是光声池的优化设计奠定理论基础。
     气体的红外吸收特性是利用红外光学技术分析气体的理论依据,提出了气体红外吸收特性的逐线积分模型,结合HITRAN2004数据库提供的气体谱线参数,给出在任意温度、任意压强及浓度下,气体在指定波长处的吸收系数;并以CH_4、C_2H_6、C_2H_4、C_2H_2、CO和CO_2的特定吸收谱线为研究对象,分析了峰值吸收系数及谱线线型受压强和温度的影响。
     在详细剖析非共振、赫姆霍兹共振及空腔共振光声池的工作原理及特点的基础上,通过分析光声池谐振腔的几何参数与其特性参数-共振频率、品质因数与池常数的关系曲线,设计出能够满足油中溶解气体在线监测实际需求的一阶纵向共振光声池;同时,通过分析非相干与相干红外光源应用于气体光声检测系统的优缺点,并通过对CH_4和C_2H_2气体的近红外光谱的理论分析,建立了基于分布反馈半导体激光器阵列光源的油中溶解气体光声光谱在线监测系统;提出一种基于最小二乘回归的气体光声定量分析方法,实验分析表明,该方法对于选择性优良的光声光谱系统的气体光声定量是有效的。
     针对目前在微弱信号检测中广泛应用的互相关方法的信噪比门限较高的不足,提出基于互相关和李雅普诺夫指数的微弱信号混沌检测方法,仿真实例分析表明,该方法能够从强噪声中检测出互相关方法所不能检测的微弱正弦信号,且在精度上比单独的互相关和混沌检测方法更优。
Dissolved gases in transformer oil are important characteristic values which reflect the types of incipient faults of the transformers, and on-line monitoring of dissolved gases has fine prospects in the application to on-line evaluation of the running state of the transformers and on-line forecast of their residual lives. As an optical detection technique, photoacoustic spectrometry (PAS) need not consume gas and separate gas, and has some advantages including high sensitivity, high selectivity, and big dynamic detection range. This dissertation investigates the applications of PAS to analyze dissolved gases in transformer oil.
     The mechanism of the photoacoustic effect in gas, namely, the heat production and the sound generation, is analyzed in detail. The distribution of the sound field and its amplitude in the standard cylindrical photoacoustic cell are researched. And the wave equation and the amplitude of the photoacoustic signal are also given on the base of analyzing the sound energy loss of the actual photoacoustic cell. These theories provide guidance for the establishment of the photoacoustic gas detection system, especially for the design of the photoacoustic cell.
     Gaseous infrared absorption properties are the bases of analyzing gas by infrared optical methods. A line-by-line integration model for the gaseous infrared absorption properties is given in this dissertation. The gaseous absorption coefficients for specific wavelength at different temperatures and pressures can be calculated by using this model and gaseous line parameters of HITRAN2004 database. As for the specific absorption lines of CH_4, C_2H_6, C_2H_4, C_2H_2, CO and CO_2, the laws that the peak absorption coefficients vary with the pressure and temperature are also analyzed.
     The first longitude resonant cell which can satisfy the need of on-line monitoring of gas in oil is designed on the basis of analyzing detailedly the operating principles and the features of the non-resonant, Helmoholtz, and resonant photoacoustic cells, and analyzing the relationship curves between the geometric parameters of the resonant cavity and the characteristic parameters, namely, resonant frequency, quality factor, and cell constant. In the meantime, by analyzing the advantages and disadvantages of the application of incoherent sources and coherent sources in the photoacoustic gas detection systems and the near infrared spectra of CH_4 and C2H2, an experiment-setup for on-line photoacoustic monitoring of dissolved gases in oil based on the array source which is composed of several distributed feedback diode lasers is established. And a method of photoacoustic quantitative analysis for gas based on the least square regression is proposed, experimental results show that it is valuable in the quantitative analysis for a photoacoustic gaseous detection system with good selectivity.
     On account that the cross-correlation method has the disadvantage of high signal to noise ratio threshold, a chaotic detection method based on the cross-correlation and the Lyapunov exponent is given. Simulation analyses show that the proposed method can detect weak sine signals in strong noise, which can not be detected by the cross-correlation method, and that it is superior to the cross-correlation method and the chaotic detection method in precision.
引文
[1]王梦云. 2004年度110kV及以上变压器事故统计分析[J].电力设备, 2005, 6 (11): 31-37.
    [2]王梦云. 110kV及以上变压器事故与缺陷统计分析[J].供用电,2007, 24(1):1-5.
    [3]孙才新,陈伟根,李俭,等.电气设备油中溶解气体在线监测与故障诊断技术[M].科学出版社, 2003.
    [4] GB/T 7252—2001,变压器油中溶解气体分析和判断导则[S].2001.
    [5] R.R.Rogers. IEEE and IEC Codes to Interpret Incipient Faul ts in Transformer, Using Gas in Oil Analysis[J]. IEEE Trans. on Dielectrics and Electrical Insulation, 1978, E1-13: 349-354.
    [6] M.Duval, Fault Gases Formed in Oil-filed Breathing E.H.V. Power Transformer—the Interpretation of Gas Analysis data[C], in Proc. IEEE Power ENG.Soc. Conf., paper C74-476-8.
    [7] Mineral oil-impregnated electrical equipment in service–guide to thee interpretation of dissolved and free gases analysis[S], IEC Std. 60599.
    [8] C.E.Lin, J.M. Ling, and C.L. Huang, An expert system for transformer fault diagnosis using dissolved gas Analysis[J]. IEEE Trans. on Power Delivery, 1993, 8(1): 231-238.
    [9] Z.Y.Wang, Y.L. Liu, and P.J. Griffin. A combined ANN and expert system tool for transformer fault diagnosis[J]. IEEE Trans. on Power Delivery, 1998, 13(4): 1224-1229.
    [10] Y.C. Huang and C.M. Huang. Evolving wavelet networks for power transformer condition monitoring[J]. IEEE Trans. on Power Delivery, 2002, 17(2): 412-416.
    [11]宋斌,于萍,廖冬梅,等.变压器故障诊断中溶解气体的模糊聚类分析[J].高电压技术, 2001,.27(3): 69-71.
    [12]董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报, 2003, 23(7): 88-92.
    [13]莫娟,王雪,董明,等.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报, 2004, 24(7): 162-167.
    [14]中国电能成套设备总公司,500千伏变压器质量情况汇编[M],电力部电力科学研究院,1996.
    [15] DL/T 596-1996.电力设备预防性试验规程.[S].中国电力出版社, 1997.
    [16]操敦奎.变压器油中溶解气体分析诊断与故障检查[M].中国电力出版社. 2005.
    [17]王文华.变压器油气相色谱分析试验的误差分析[J].变压器,1993, 30(9):10-12.
    [18]陈伟根.以油中多种气体为特征量的变压器绝缘在线监测及故障诊断技术研究[D].重庆大学, 2003.
    [19]肖燕彩,朱衡君,张霄元,等.基于溶解气体分析的电力变压器在线监测与诊断技术[J].电力自动化设备, 2006, 26(6): 93-96.
    [20] B. Sparling, J. Aubin, A. Glodjo. Field experience with multigas on-line monitoring of powertransformers[J]. IEEE Transmission and Distribution Conference, 1999, 895-900.
    [21] http://www.serveron.com/products/TG-tga-main.asp.
    [22]孙毓润.大型变压器油色谱在线监测装置[M].东北电力科学研究院, 1994.
    [23]崔雪梅,张小平.大型电力变压器油色谱在线监测系统及其应用[J].攀枝花学院学报, 2002, 19(5): 63-66.
    [24] G L. Marton The Hydran - a system for the detection and monitoring of failure conditions in power transformers[C], IEE colloquium on Monitors and condition assessment equipment. 1996.
    [25]贾瑞君.变压器油中溶解氢气在线监测仪的研制[J].电网技术. 1998, 22(1): 4-7.
    [26]贾瑞君.关于变压器油中溶解气体在线监测的综述[J].电网技术. 1998, 22(5): 49-55.
    [27] Technical manual of Morgan Schaffer Systems[M]. 2000.
    [28] Michel Dual. New techniques for dissolved gas-oil analysis[J]. IEEE Electrical Insulation Magazine. 2003, 19(2):6-15.
    [29]李红雷.油浸电力设备色谱在线监测及诊断系统的研究[D].上海交通大学. 2000.
    [30]张川,王辅.光声光谱技术在变压器油气分析中的应用[J].高电压技术, 2005, 31(2): 84-86.
    [31]刘先勇,周方洁,胡劲松,等.光声光谱在油中溶解气体分析中的应用前景[J].变压器, 2004, 41(7): 30-33.
    [32] H. Varagas, L. C. M. Miranda. Photothermal techniques applied to thermophysical properties measurements (plenary)[J]. Review of scientific instruments, 2003, 74(1): 794-799.
    [33] M. W. Sigrist. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary)[J], Review of scientific instruments, 2003, 74(1): 486-490.
    [34] A.G. Bell. On the production and reproduction of sound by light[J]. American Journal of Science. 1880, 20: 305-309.
    [35] V. Altuzar, M. Pacheco, S. A. Tomás, et al. Analysis of ethylene concentration in the Mexico city atmosphere by photoacoustic spectroscopy[J]. Analytical sciences, 2001, 17(S): 541-543.
    [36] P. W. Nebiker, R. E. Pleisch. Photoacoustic gas detection for fire warning[J]. Fire safety journal, 2002, 37(4): 429-436.
    [37] T. Chen, G. Su, H. Yuan. In situ gas filter correlation: photoacoustic CO detection method for fire warning[J]. Sensors and actuators B, 2005, 109(2): 233-237.
    [38] Q Shan, R. J. Dewhurst, A. Kuhn, et al. Modelling of a photoacoustic probe designed formedical applications[J]. Ultrasonics, 1996, 34(2-5): 575-577.
    [39]郝绿原.研究分子高振动态的高灵敏激光光声光谱方法[D].中国科学技术大学, 2003.
    [40] A.Miklos.Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J].Review of Scientific Instruments,2001, 72(4):1937-1955.
    [41] A. Rosencwaig. Photoacoustics and photoacoustic spectroscopy[M]. Wiley and sons, 1980.
    [42] P.L. Meyer, M.W. Sigrist. Atmospheric pollution using CO2-laser photoacoustic spectroscopy and other techniques[J]. Review of Scientific Instruments, 1990, 61(7):1779-1807.
    [43] P. Hess. Resonant photoacoustic spectroscopy. Topics in Current Chemistry[M]. Springer-Verlag, Berlin, 1983
    [44]杜功焕.声学基础[M].南京大学出版社,2001.
    [45]殷庆瑞,王通,钱梦碌.光声光热技术及其应用[M].科学出版社, 1991.
    [46] Lu-yuan Hao, Zhi Ren, Qiang Shi, et al. A new cylindrical photoacoustic cell with improved performance[J]. Review of Scientific Instruments. 2002, 73(2): 404-410.
    [47] Y. H. Pao.Optoacoustic spectroscopy and detection[M].Academic Press,1977.
    [48] P.M.莫尔斯, K.U.英格特.理论声学(上册)[M].科学出版社,1984.
    [49] S. Schit, L. Thevenaz, M. Nikdes, et al. Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications[J]. Spectroschimica Acta-Part A: Molecual and Biomolecular Spectroscopy. 2004, 60(14): 3259-3268.
    [50] J.S. Li, X.M. Gao, L. Fang, et al. Resonant photoacoustic detection of trace gas with DFB diode laser[J]. Optics and Laser Technology. 2007, 39(6): 1144-1149.
    [51] P. Kanta and S. Civis. Application of InAsSb/InAsSbP and lead chalcogenide infrared diode lasers for photoacoustic detection in the 3.2 and 5μm region[J]. Spectrochimica Acta Part A. 2003, 59(13): 3063-3074.
    [52]何祚镛,赵玉芳.声学理论基础[M].国防工业出版社, 1981
    [53] P.M.莫尔斯, K.U.英格特.理论声学(下册)[M].科学出版社,1986.
    [54] K. Song, H. K. Cha, V. A. Kapitanov, et al. Differential Helmholtz resonant photoacoustic cell for spectroscopy and gas analysis with room-temperature diode lasers[J]. Applied Physics B-Lasers and Optics, 2002, 75(2-3): 215-227.
    [55]蒋亚龙.火灾烟气探测中光声光散射复合技术应用研究[D].中国科学技术大学, 2006.
    [56] A. Karbach and P. Hess. High precision acoustic spectroscopy by laser excitation of resonator modes[J]. The Journal of Chemical Physics. 1985, 83(3): 1075-1084.
    [57] J.P. Besson, S. Schilt, L. Thevenaz. Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes[J]. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy. 2004, 60(14): 3449-3456.
    [58]王宗明.实用红外光谱学[M].石油工业出版社. 1990.
    [59] M. W. Sigrist. Air monitoring by spectroscopic techniques[M]. John Wiley & Sons, 1994.
    [60]沈淑娟.波谱分析法[M].华东化工学院出版社. 1992.
    [61]陈英方.红外和喇曼光谱技术[M].纺织工业出版社, 1988.
    [62]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].科学技术文献出版社. 1994.
    [63]严衍禄.近红外光谱分析基础与应用[M],2005,北京:中国轻工业出版社.
    [64]王汝琳,王咏涛.红外检测技术[M].化工出版社. 2006.
    [65]许长存,过已吉.原子和分子光谱学[M].大连理工大学出版社. 1989.
    [66] P. F. Bernath. Spectra of atoms and molecules[M]. Oxford University Press,2005.
    [67] A. C. Vandaele, C. Hermans, S. Fally, et al.Absorption cross-sections of NO2:simulation of temperature and pressure effects[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2003, 76(3): 373-391.
    [68] M. E. Webber.Diode laser measurements of NH3 and CO2 for combustion and bioreactor applications[D].Stanford University, 2001.
    [69] L. S. Rothman, D. Jacquemart, A. Barbe, et al.The HITRAN 2004 molecular spectroscopic database[J].Journal of Quantitative Spectroscopy & Radiative Transfer. 2005, 96(2): 139-204.
    [70] A.M. Parkes, A.R. Linsley, A.J. Orr-Ewing. Absorption cross-sections and pressure broadening of rotational lines in the 3v3 band of N2O determined by diode laser cavity ring-down spectroscopy[J]. Chemical Physics Letters. 2003, 377(3): 439-444.
    [71] Philip W. Morrison, Jr. and Oranut Taweechokesupsin. Calculation of gas spectra for quantitative fourier transform infrared spectroscopy of chemical vapor deposition[J]. Journal of the Electrochemical Society, 1998, 145(9):3212-3219.
    [72]刘先勇.用傅立叶红外构造变压器油中溶解气体在线监测仪[D].北京理工大学, 2002.
    [73] S. P. Fuss and A. Hamins.Determination of Planck mean absorption coefficients for HBr,HCl,and HF[J].Journal of Heat Transfer. 2002, 124(1): 26-29.
    [74] K. Wakatsuki, S. P. Fuss, A. Hamins, et al.A technique for extrapolating absorption coefficient measurements[C].Proceedings of the Combustion Institute-Thirtieth International Symposium on Combustion. 2005, 31: 1565-1573.
    [75] L. Sparks.Efficient line-by-line calculation of absorption coefficients to high numerical accuracy[J].Journal of Quantitative Spectroscopy & Radiative Transfer,1997,57(5):631-650.
    [76] A. A. Mitsel and K M.Firsov. A fast line-by-line method[J].Journal of Quantitative Spectroscopy & Radiative Transfer. 1995, 54(3): 549-557.
    [77] D. S. Turner.Absorption coefficient estimation using a two-dimensional interpolation procedure[J].Journal of Quantitative Spectroscopy & Radiative Transfer,1995,53(6):633-637.
    [78] A. A. Lacis, V. Oinas. A description of the correlated k-distribution model for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertical inhomogeneous atmospheres[J]. Journal of Geophysical Research, 1991, 96: 9027-9064.
    [79]张华,石广玉.一种快速高效的逐线积分大气吸收计算方法[J].大气科学, 2000, 24(1): 111-121.
    [80] S. Sch?fer, M. Mashni, J. Sneider, et al.Sensitive detection of methane with a 1.65μm diode laser by photoacoustic and absorption spectroscopy[J].Applied Physics B. 1998, 66(4): 511-516.
    [81]白长城,张海兴,方湖宝.红外物理[M].电子工业出版社, 1989.
    [82]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].科学技术文献出版社, 1994.
    [83] Liu Xianyong.Research on photoacoustic sensing of transformer fault gases[C].Proceedings of the SPIE- Advanced Materials and Devices for Sensing and Imaging II. 2005, 5633: 356-362.
    [84] J. Fischer, R. R. Gamache, A. Goldman, et al.Total internal partition sums for molecular species in the 2000 edition of the HITRAN database[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 82(4):401-412.
    [85] M. A. Gondal, A. Dastageer, M. H. Shwehdi. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries[J]. Talanta, 2004, 62(1):131-141.
    [86] H. Dahnke, J. Kahl, G. Schüler, et al. On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy[J]. Applied Physics B: Lasers and Optics, 2000, 70(2):275-280.
    [87]李月,杨宝俊.混沌振子检测引论[M].电子工业出版社. 2004.
    [88]张贤达.现代信号处理[M].清华大学出版社. 2002.
    [89]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉大学出版社, 2002.
    [90]王冠宇混沌振子微弱信号检测的理论研究与实践[D].浙江大学, 1998.
    [91] G. Wang, D. Chen, J. Lin, et al. The application of chaotic oscillators to weak signal detection[J]. IEEE Transactions on Industrial Electronics, 1999, 46(2): 440-444.
    [92] Hubertus F. von Bremen, Firdaus E. Udwadia, Wlodek Proskurowski. An efficient QR based method for the computation of Lyapunov exponents[J]. Physica D., 1997, 101(2):1-16.
    [93] Luca Diect, Robert D. Russell, and Erik S. Van vleck. On the computation of Lyapunov exponents for continuous dynamical systems[J]. Siam J. Numer. Anal., 1997, 34(1):402-423.
    [94]罗利军,李银山,李彤,等.李雅普诺夫指数谱的研究与仿真[J].计算机仿真, 2005, 22(12):285-287.
    [95] A. Wolf. Determining Lyapunov exponents from a time series[J]. Physics 16D, 1985, 285–317.
    [96] J. Zhang, K. C. Lamb, W. J. Yan, et al. Time series prediction using Lyapunov exponents in embedding phase space[J]. Computers & Electrical Engineering. 2004, 30(1):1-15.
    [97] N. H. Packard, J. P. Crutchfield, J. D. Farmers, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9): 712-716.
    [98] F. Takens. Detecting strange attractors in fluid turbulence. in Dynamical Systems and Turbulence[J]. Berlin Springer, 1981, 366-381.
    [99] H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, delay times and embedding windows[J]. Physica D, 1999, 127(1-2): 48-60.
    [100] M.T. Rosenstein, J.J. Collins, and C.J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D., 1993, 65:117-134.
    [101] D. L. Birx. Chaotic oscillators and CMFFNS for signal detection in noise environments[J]. IEEE International Joint Conference on Neural Networks, 1992, 2: 881-888.
    [102] C. Fishcher, E. Sorokin, I. T. Sorokina, et al. Photoacoustic monitoring of gases using a novel laser source tunable around 2.5μm[J]. Optics and Lasers in Engineering, 2005, 43(3-5): 573-582.
    [103] M.W. Sigrist. Trace gas monitoring by laser-photoacoustic spectroscopy[J]. Infrared Physics Technology, 1995, 36(1):415-425.
    [104]佟继春,陈伟根,陈荣柱.一种在线分析变压器故障特征气体的智能传感器[J].高压电器, 2004, 40(6):433-438.
    [105]林俊,章兢,佘致廷,等.基于BP网络的变压器油中溶解气体在线监测[J].电力系统自动化, 2001, 8: 56-58.
    [106]张永怀,刘君华,林继鹏. OGSA结合RBF网络数据融合技术在红外气体分析中的应用[J].仪器仪表学报, 2005, 26(1):67-70.
    [107] X.Y. Liu, F.J. Zhou, F.L. Huang. Research on on-line DGA using FTIR [power transformer insulation testing] [C]. International Conference on Power System Technology Proceedings, 2002, 3:1875-1880.
    [108] G.A. Zalesskaya, D.L.Yakovlev, D.I.. Baranovsky, et al. Photoacoustic measurements of air pollutant gases with a CO2 waveguide laser[C]. Proceedings of SPIE, 1996, 2773:142-146.
    [109] A.Thony, M.W. Sigrist. New developments in CO2-laser photoacoustic monitoring of trace gases[J]. Infrared Physics and Technology, 1995, 36(2):585-615.
    [110] Olsson Bo E.R., Davidsson, Jan, Hallquist Mattias, et al. Optoacoustic Lead-Salt Diode Laser Detection of Trace Species in a Flow System[J]. Applied Spectroscopy, 1995, 49(8):1067-1200.
    [111] Grossel Agnes, Zeninari Virginie, Joly Lilian, et al. New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers[J]. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63(5):1021-1028.
    [112] G.C Liang, H.H. Liu, A.H. Kung, et al. Photoacoustic spectroscopy and trace gas analysis using a pulsed PPLN optical parametric oscillator[C]. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 2000, 511-512.
    [113] Muller Frank, Popp Alexander, Schiller Stephan, et al. Cw-OPO based photoacoustic spectrometer for highly sensitive detection of ethane and other volatile organic compounds[J]. Progress in Biomedical Optics and Imaging, 2004, 5(9):138-144.
    [114] C. Fischer, M. W. Sigrist, Q. Yu, et al. Photoacoustic monitoring of trace gases by use of a diode-based difference frequency laser source[J]. Optics Letters, 2001, 26(20): 1609-1611.
    [115] Frank K Tittel, Dirk Richter, Alan Fried. Mid-infrared laser applications in spectroscopy[J]. Topics Appl. Phys. 2003, 89:445-516.
    [116] F. J. M. Harren.Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser[J]. Applied Physics B, 1990, B50(2):137-144.
    [117]于清旭,李红,林钧岫.基于泛频CO激光器的微量气体光声光谱仪[J].光电子·激光,2003, 14(7):669-671.
    [118]张国威.可调谐激光技术[M].国防工业出版社. 2002.
    [119] A. Selamet, N.S. Dickey, J.M. Novak. Theoretical computational and experimental investigation of Helmholtz resonators with fixed volume:lumped versus distributed analysis[J]. Journal of Sound and Vibration, 1995, 187(2): 358-367.
    [120] F. Liu, S. Horowitz, T. Nishida, et al. A multiple degree of freedom electromechanical Helmholtz resonator[J]. Journal of the Acoustical Society of America, 2007, 122(1):291-301.
    [121] M. Wolff, H. Harde. Photoacoustic spectrometer based on a DFB-diode laser[J]. Infrared Physics & Technology, 2000, 41(5): 283-286.
    [122] D.U. Schramm, M.S. Sthel, M.G. da Silva, et al. Application of laser photoacoustic spectroscopy for the analysis of gas samples emitted by diesel engines[J]. Infrared Physics & Technology, 2003, 44(4):263-269.
    [123] A. Karbach and P. Hess. Laser excitation of acoustic resonances in a spherical resonator[J]. Journal of Applied Physics. 1985, 58(10):3851-3855.
    [124]史强,胡水明,陈军.新型高性能激光光声光谱球形光声池理论和实验研究[J].化学物理学报, 1998, 11(1):20-25.
    [125] P. Hess. Resonant photoacoustic spectroscopy (in Topics in Current Chemistry) [M]. Springer Berlin/Heidelberg. 1983.
    [126] J.M. Rey, D. Marinov, D.E. Vogler, et al. Investigation and optimization of a multipass resonant photoacoustic cell at high absorption levels[J]. Applied Physics B: Lasers and Optics, 2005, 80(2):261-266.
    [127] S. Bernegger and M. W. Sigrist. Longitudinal resonant spectrophone for CO-laser photoacoustic spectroscopy[J]. Applied Physics B: Lasers and Optics. 1987, 44(2):125-132.
    [128]于清旭, Cornelia Fischer, Markus Sigrist.基于差频激光源的微量气体光声光谱检测系统[J].光电子?激光, 2001, 12(9): 923-926.
    [129] J. R?per,. G. Chen, P. Hess. Intracavity photoacoustic resonance spectroscopy of C2H4[J]. Applied Physics B Photophysics and Laser Chemistry, 1987, 43(1):57-59.
    [130] L.Y. Hao, J.X. H, S. Qiang, et al. A highly sensitive photoacoustic spectrometer for near infrared overtone[J]. Review of Scientific Instruments, 2000, 71(5):1975-1980.
    [131] A. Keller a, M. Rüegg, M. Forster, et al. Open photoacoustic sensor as smoke detector[J]. Sensors and Actuators B: Chemical, 2005, 104(1):1-7.
    [132] L. E. Kinster, A. R. Frey, A. B. Coppens, et al. Fundamentals of acoustics[M], John Wiley & Sons, 2001.
    [133] F.G.C. Bijnen, J. Reuss, F.J.M. Harren. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Review of Scientific Instruments, 1996, 67(8):2914-2923.
    [134]高晋占.微弱信号检测[M].清华大学出版社, 2004.
    [135] A. D. Wood, M. Camac, E. T. Gerry. Effect of 10.6-μlaser induced air chemistry on the atmospheric refractive index[J]. Applied Optics, 1971, 10(8): 1877-1884.
    [136] R. B. Bird, W. E. Stewart, E. N. Lightfoot. Transport phenomena[M], New York: John Wiley & Sons, 1960.
    [137] M. de Labachelerie, K. Nakagawa, and M. Ohtsu. Ultranarrow 13C2H2 saturated-absorption lines at 1.5 Mum[M]. Optics Letters, 1994, 19(11):840-842.
    [138] Ju Xin and Scott A. Reid. Zeeman quantum-beat spectroscopy of NO2: Eigenstate-resolved Land gF factors near dissociation threshold[J]. Journal of Chemical Physics, 2002, 116(2):525-531.
    [139] Stephan Briaudeau, Daniel Bloch, and Martial Ducloy. Sub-Doppler spectroscopy in a thin film of resonant vapor[J]. Physical Review A., 1999, 59(5):3723-3735.
    [140] M. Chevrollier, M. Oriá, J. G. de Souza, et al. Selective reflection spectroscopy of a resonant vapor at the interface with a metallic layer[J]. Physical Review E., 2001, 63(4).
    [141]魏木生.广义最小二乘问题的理论和计算[M].科学出版社, 2006.
    [142] M. A. Gondal, A. Dastageer, M. H. Shwehdi. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries[J]. Talanta, 2004, 62(1):131-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700