混沌系统控制及参数辨识的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌运动是自然界中客观存在的、最终有界的、有一定随机规则的、非常复杂的运动形式。它广泛地存在于自然界。近十几年来,混沌科学与其它科学互相渗透,无论是在生物学、物理学、心理学、数学、物理学、电子学、信息科学,还是在天文学、气象学、经济学,甚至在音乐、艺术等领域都得到了广泛的应用,混沌控制与混沌同步控制成为了非线性科学中的研究热点。但整个混沌控制及同步理论仍然不够完善,许多混沌控制及同步方法有待进一步发掘,如何设计简单实用的控制器需要进一步研究。而且现有的混沌控制及同步控制方法在面对实际混沌系统时,待解决问题还有许多,如往往不能得到混沌系统的全部状态变量、实际混沌系统的参数往往是部分未知或全部未知的、系统参数存在着扰动等。本文针对混沌系统的控制(包括同步控制)及其未知参数辨识中的一些问题进行了深入的研究,主要包括以下几个方面:
     根据Lorenz系统族本身的参数结构,利用最佳Lyapunov函数思想,严格地证明了可以利用最简单的线性反馈控制,实现Lorenz系统族平衡位置的全局指数稳定、全局渐近稳定,;改进和推广了一些现有文献中仅仅限于局部稳定的结果,而且得到了比现有文献更尽可能简洁、更少保守较小的条件和尽可能好的结论。
     根据微分方程稳定性理论和一类混沌系统的结构,得出了一类混沌系统PC同步和基于单变量控制同步较简单的充分条件;讨论了在驱动系统存在参数扰动和外界扰动的情况下(分参数已知和未知两种情形)同步控制器的设计,实现了存在扰动情况下一类混沌系统的鲁棒同步;在参数未知的情况下,研究了在一类混沌系统中,维数相同但结构不同混沌系统的同步问题,给出了相应的参数自适应律和控制器的设计方法。
     研究了基于部分状态变量混沌系统的同步控制。根据微分方程的稳定性理论以及Liu混沌系统、广义Lorenz混沌系统(四维)和一个新超混沌系统的具体结构,利用驱动系统单个状态变量或部分状态变量设计了合适的控制器实现了分别实现了两个完全相同的Liu混沌系统、广义Lorenz混沌系统(四维)和一个新超混沌系统的同步。
     研究了基于未知参数观测器混沌系统的参数辨识问题。根据状态观测器思想和微分方程的稳定性理论,将混沌系统的未知参数看成系统的状态变量,以关新平等人的工作为基础,提出了选择增益函数和构造相应的辅助函数的一般方法,对混沌系统的任一未知参数设计了未知参数观测器,并给出了相关的五个推论,较大地扩展了未知参数观测器的应用范围。
     借鉴自适应控制同步参数辨识的思想,利用Lyapunov稳定性理论和LaSalle不变原理,提出了同步参数观测器的概念,给出了同步参数观测器中控制器的设计和参数自适应律设计的一般方法,在混沌系统模型已知的情况下,利用同步参数观测器对混沌系统的未知参数进行了辨识,在模型未知的情况下,利用同步参数观测器对混沌系统的模型结构和参数进行了辨识,并给出了相应的数值仿真。
     讨论了基于极值点的混沌系统的参数辨识估计问题。在已知系统结构模型的情况下,根据混沌信号具有多极值点的特点,利用函数在极值点导数为零的知识和最小二乘法,提出了基于极值点的混沌系统参数估计方法,使用该方法对Lorenz混沌系统和Chen超混沌系统的参数进行了估计,以Lorenz混沌系统为例,并对该方法抗噪声干扰能力进行了测试。
     最后对全文工作进行了总结,指出了下一步需要进行的工作。
Chaos is a very complex motion with definite stochastic rules and a final bound in nature. In recent years, chaos is widely applied to biology, psychology, mathematics, physics, electronics, information science, astronomy, aerography, economics, and even to music and art. The control and synchronization of chaos become a hot issue of study in nonlinear science. However, the theories of control and synchronization for chaos systems are not perfect enough. The methods for the control and synchronization of chaos systems need to be ulteriorly investigated, so do the designs of simple and effective controllers. Moreover, when the existing methods of control and synchronization are applied in real chaos systems, many problems remain solving. For example, sometimes the parameters of real chaos systems are partially or fully unknown and disturbed. In this thesis, some problems in control and parameter identification of chaos systems are studied thoroughly. The main work and research results are as follows:
     According to the intrinsic parameter structure of Lorenz system family, by using optimal Lyapunov function, it is strictly proved that the simplest linear feedback control can realize the globally exponentially stable and asymptotically stable of the equilibrium point. It improves and extends the results in existing literature that is merely locally stable. Moreover, the conditions adopted in our theorems are more succinct, less conservative than those of previous results, and more general conclusions are obtained.
     According to the stability theory of differential equation and the structure of a class of chaos systems, simple sufficient conditions are obtained for PC synchronization and single state-based synchronization. When there are disturbances from parameters and environment, the design of synchronization controllers are discussed and the robust synchronization of a class of chaos systems is realized under two cases whether the parameters of driving system are known or unknown. Moreover, the synchronization of two different chaos systems with the same dimensions in the class is studied and the adaptive law of parameters and controllers are designed.
     The synchronization of chaos systems based on partial states is studied. According to the stability theory of differential equation and the structure of Liu chaos system, generalized Lorenz chaos system and a novel hyperchaos system, the synchronization of two identical Liu chaos systems, generalized Lorenz systems and novel hyperchaos systems are realized using single state or partial states.
     Parameter identification of chaos system based on unknown parameter observer is discussed. According to observer idea and stability theory of differential equation, taking unknown parameters of chaotic system as state variables, general methods to choose an appropriate gain function and construct corresponding auxiliary function are proposed based on the work of Guan Xinping et al. The design of unknown parameter observer for any unknown parameter of chaos is achieved and five correlative corollaries are obtained. The application field of unknown parameter observer is extended.
     According to the idea of adaptive synchronization-based parameter identification, Lyapunov stability theory and LaSalle invariable principle, the synchronization-based parameter observer is proposed and general methods for design of controller and parameter adaptive laws are given. When the model is known, the unknown parameters of chaos system are identified by means of synchronization-based parameter observer. When the model is unknown, the unknown model structure and parameters are identified. The corresponding simulations are given.
     Parameter identification of continuous chaos system based on extremum point is discussed. When the system model is known, a new parameter estimation approach of continuous chaos system is proposed according to the characteristic that state variables of continuous chaos system present many extremum points, and the values and positions of these extremum points are stochastic, and the derivative of a variable at extremum equals zero. By means of this new method, unknown parameters of Lorenz system and hyperchaotic Chen system are estimated. Finally, anti-disturbance performance of this new method is tested.
     Finally, a summary is given and some problems are pointed out for further research.
引文
[1] Ott E., Grebogi C., Yorke J. A. Controlling chaos. Phys. Rev. Lett., 1990, 64(11): 1196-1199
    [2] Pecora L. M., Carroll T. L. Synchronization in chaotic system. Phys. Rev. Lett., 1990, 64(8): 821-824
    [3] Chen G., Dong X. From chaos to order: Methodologies, perspectives and applications. Singapore: World scientific, 1998
    [4]关新平,范正平,陈彩莲等.混沌控制及其在保密通信中的应用.北京:国防工业出版社, 2002
    [5]赵耿,郑德玲,方锦清.混沌保密通信的最新进展.自然杂志, 2001, 23(2): 97-106
    [6]赵耿,方锦清.现代信息安全与混沌保密通信应用研究的进展.物理学进展, 2003, 23(2): 212-255
    [7]陈关荣,吕金虎. Lorenz系统族的动力学分析、控制与同步.北京:科学出版社, 2003
    [8]王东生,曹磊.混沌、分形及应用.合肥:中国科学技术大学出版社, 1995
    [9] Lorenz E. N. Deterministic nonperiodic flow. J. Atoms Sci., 1963, 20(1): 130-141
    [10]张化光,王智良,黄玮.混沌系统的控制理论.沈阳:东北大学出版社, 2003
    [11] Li T. Y., Yoyke J. A. Period 3 Implies Chaos. Amer. Math. Monthly, 1975, 82: 985-992
    [12] May R. M. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459-467
    [13] Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 1978, 19(1): 25-52
    [14] Feigenbaum M. J. The universal metric properties of nonlinear transformations. J. Stat. Phys., 1979, 21(6): 669-706
    [15]黄润生.混沌及应用.武汉:武汉大学出版社, 2000
    [16] Chen G., Yu X., Hill D. Chaos and Bifurcation Control: Theory and Applications, PartⅠ: Chaos Control, PartⅡ: Bifurcation Control. Heideberg: Springer-Verlag, 2003
    [17] Devaney R. L. An introduction to chaotic dynamical systems. Benjimin/Cummings: Menlo Park, CA, 1985
    [18] Ditto W. D., Rauseo S. N., Spano M. L. Experimental control of chaos. Phys. Rev. Lett., 1990, 65(26): 3211-3214
    [19] Hunt E. R. Stabilizing high periodic orbits in a chaotic system: The diode resonator. Phys. Rev. Lett., 1991, 67(15): 1953-1955
    [20] Huberman B. A., Lumer E. L. Dynamics of adaptive system. IEEE Trans. on CAS., 1990, 37(4): 547-550
    [21] Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 1992, 170: 421-428
    [22] Pyragas K. Experiment control of chaos by delayed self-controlling feedback. Phys. Lett. A, 1993, 180: 99-102
    [23] Bleich M. E., Socolar J. E. S. Stability of periodic orbits control of chaos. Phys. Lett. A, 1996, 210(1): 87-94
    [24]刘锋,穆肇骊,蔡远利等.一类混沌系统的非线性反馈控制.控制与决策, 2000, 15(1): 15-18
    [25] Hwang C. C., Hsieh J. Y., Lin R. S. A linear continuous feedback control of Chua's circuit. Chaos, Solitons and Fractals, 1997, 8(9): 1507-1515
    [26] Chen G., Dong X. On feedback control of chaotic nonlinear dynamic system. Int. J. of Bifurcation and Chaos, 1992, 2: 407-411
    [27] Hegazi A., Agiza H. N., El-Dessoky M. M. Controlling chaotic behaviour for spin generator and Rossler dynamical system with feedback control. Chaos, Solitons & Fractals, 2001, 12: 631-658
    [28] Fuh C. C., Tung P. C. Controlling chaos using differential geometric method. Phys. Rev. Lett., 1995, 75(16): 2952-2955
    [29] Isidori A. Nonlinear control systems. New York: Springer, 1995.
    [30] Fuh, C C., Tsai H. H. Control of discrete-time chaotic system via feedback linearization. Chaos, Solitons and Fractals, 2002, 13: 285-294
    [31]闵富红,徐振源,须文波.利用x|x|控制混沌系统.物理学报, 2003, 52(6): 1360-1364
    [32] LüJ. H., Zhou T. S., Zhang S. C. Controlling the Chen attractor using linear feedback based on parameter identification. Chinese Physics, 2002, 11(1): 12-16
    [33]王兴元,段朝锋.用非线性控制混沌R?ssler系统到达任意目标.世界科技研究与发展, 2005, 27(6): 17-21
    [34]刘向东,黄文虎.混沌系统延迟反馈控制理论与实践研究.力学发展, 1997, 31(1): 401-405
    [35] Bielawski S., Derozier D., Glorieux P. Controlling unstable period orbits by a delay self-controlling feedback. Phys. Rev. E, 1994, 49(2): 971-974
    [36] Hikihara T., Kawagoshi T. An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos. Phys. Lett. A, 1996, 211: 26-36
    [37] Konishi K., Kokane H. Control of chaotic systems using an online trained linear neural controller. Physics D, 1997, 100(3-4): 423-438
    [38] Chen G., Yu X. On time delayed feedback control of chaotic systems. IEEE Trans. on CAS. 1999, 46(6): 767-772
    [39] Tian Y. P. Delayed feedback control of chaos in a switched arrival system. Phys. Lett. A, 2005, 339: 446-454
    [40] Park J. H., Kwon O. M. A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos, Solitons and Fractals, 2005, 23: 495-501
    [41] Morgül ?. On the stability of delayed feedback controllers for discrete time systems. Phys. Lett. A, 2005, 335: 31-42
    [42] Ushio T. Limitation of delayed feedback control in nonlinear discrete-time system. IEEE Trans. on CAS., 1996, 143(9): 815-816
    [43] Nakajima H. On analytical properties of delayed feedback control of chaos. Phys. Lett. A, 1997, 232: 207-210
    [44] Sinha S., Ramaswamy R., Rao J. S. Adaptive control in nonlinear dynamics. Physica D, 1990, 43: 118-128.
    [45] Vassiliadis D. Parametric adaptive control and parameter identification of low-dimensional chaotic systems. Physica D: Nonlinear Phenomena, 1994, 71(3): 319-341
    [46] Mascolo S., Grassi G. Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua's circuit. Int. J. of Bifurcation and Chaos, 1999, 9(7): 1425-1434
    [47] Kwan C., Lewis L. Robust backstepping control of nonlinear system using neural networks. IEEE Trans. on SMC., 2000, 30(6): 753-765.
    [48] Lu J., Wei R., Wang X. et al. Backstepping control of discrete-time chaotic systems with application to Henon system. IEEE Trans. on Circuits Syst.Ⅰ, 2001, 48(11): 1359-1363
    [49] Harb A. M., Harb B. A. Chaos control of third-order phase-locked loops using backstepping nonlinear controller. Chaos, Solitons and Fractals, 2004, 20: 719-723
    [50] Yang T., Chua L. O. Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int. J. of Bifurcation and Chaos, 1997, 7(3): 645-664
    [51] Xie W., Wen C., Li Z. Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A, 2000, 275: 67-72
    [52] Zhang Y., Sun J. Controlling chaotic Lu system using impulsive control. Phys. Lett. A, 2005, 342: 256-262
    [53] Konishi K., Hirai M., Kokame H. Sliding mode control for a class of chaotic system. Phys. Lett. A, 1998, 245: 511-517
    [54] Yu X. Variable struvture control approach for controlling chaos. Chaos, Solitons and Fractals, 1997, 8(9): 1577-1586
    [55] Yan J. J., Shyu K. K., Lin J. S. Adaptive variable struvture control for uncertain chaotic systems containing dead-zone nonlinearity. Chaos, Solitons and Fractals, 2005, 25: 347-355
    [56] Guo H., Lin S., Liu J. A radial basis function sliding model controller for chaotic Lorenz system. Phys. Lett. A, 2006, 351: 257-261
    [57] Tanaka K., Ikeda T., Wang H. O. A unified approach to controlling chaos via an LMI based fuzzy control system design. IEEE Trans. on Circuit and Systems, 1998, 45(10): 1021-1040
    [58] Oscar C., Julyan H. E. Cartwright. Fuzzy control of chaos. Int. J. of Bifurcation and Chaos, 1998, 8(8): 1743-1747.
    [59]关新平,陈彩莲,范正平.基于backstepping方法的混沌系统自适应模糊控制.物理学报, 2002, 51(4): 753-758
    [60] Lin C. T., Jou C. P. Controlling chaos by GA-based reinforcement learning neural network. IEEE Trans. on Neural Networks, 1999, 10(4): 846-859
    [61] Kim K. B., Park J. B., Choi Y. H. et al. Control of chaotic dynamical systems using radial basis function network approximators. Information Sciences, 2000, 130: 165-183
    [62] Wen Y. Passive equivalence of chaos in Lorenz system. IEEE Trans. on Circuit and Systems, 1999, 46(7): 876-878
    [63] Tian Y., Tade M., Levy D. Constrain control of chaos. Phys. Lett. A, 2002, 296(2-3): 87-90
    [64] Ogorzalek M. J. Taming chaos.Ⅰ.Synchronization. IEEE Trans. on Circuits and SystemsⅠ, 1993, 40(10): 693-699
    [65] Rosenblum M. G., Pikovsky A. S., Kurths J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 1996, 76(11): 1804-1807
    [66] Rosenblum M. G., Pikovsky A. S., Kurths J. From phase to lag synchronization incoupled chaotic oscillators. Phys. Rev. Lett., 1997, 78(22): 4193-4196
    [67] Rulkov N. F., Sushchik M. M., Tsimring L. S. et al. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. Lett., 1992, 51(2): 980-994
    [68] Tang D. Y., Dykstra R., Hamilton M. W. et al. Stages of chaotic synchronization. Chaos, 1998, 8(3): 697-701
    [69] Brown R., Kocarev L. A unifying definition of synchronization for dynamical systems. Chaos, 2000, 10(2): 344-349
    [70] Pecora L. M., Carrol. T. L. Driving systems with chaotic signals. Phys. Rev. A, 1991, 44: 2374-2383.
    [71] Murali K., Lakshmanan M. Drive-response scenario of chaos synchronization in identical nonlinear systems. Phys. Rev. E, 1994, 49(6): 4882-4885
    [72] Guemez J., Matias M. A. On the synchronization of identically driven chaotic systems. Phys. Lett. A, 1998, 246(3): 289-292
    [73]王胜远,刘玉怀,路轶群等.和混沌系统的两驱动一响应同步研究.量子电子学报, 1998, 15(5): 460-464
    [74] Kocarev L., Parlitz U. General Approach for Chaotic Synchronization with Applications to Communication. Physical Review Letters, 1995, 74(25): 5028-5031
    [75] Sushchik M. M., Jr. Rulkov N. F., Abarbanel H. D. I. Robustness and stability of synchronized chaos: an illustrative model. IEEE Trans. on Circuit and SystemsⅠ, 1997, 44(10): 867-873
    [76] Ali M. K., Fang J. Q. Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions. Phys. Rev. E, 1997, 55(5): 5285-5290
    [77] Jiang G. P., Tang K. S. A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. Int. J. of Bifurcation and Chaos, 2002, 12(10): 2239-2253
    [78] Jiang G. P., Chen G., Tang K. S. A new criterion for chaos synchroniation using linear feedback contgrol. Int. J. of Bifurcation and Chaos, 2003, 13(8): 2343-2351
    [79] Yassen M. T. Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos, Solitons and Fractals, 2005, 26: 913-920
    [80] Tao C. H. Dislocated feedback synchronization of Lorenz chaotic system. Phys. Lett. A, 2006, 348: 201-209
    [81] Wang F. Q., Liu C. X. A new criterion for chaos and hyperchaos synchronization using linear feedback control. Phys. Lett. A, 2006, 360: 274-278
    [82] Liao X., Chen G. On feedback-controlled synchronization of chaotic systems. Int. J. of Systems Science, 2003, 34(7): 453-461
    [83] Curran P. F., Chua L.O. Absolute stability theory and the synchronization problem. Int. J. of Bifurcation and Chaos, 1995, 5(4): 567-562
    [84] Nijmeijer H., Mareels I. M. Y. An observer looks at synchronization. IEEE Trans. on CAS., 1997, 44(4): 882-890
    [85] Grassi G., Mascolo S. Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans. on CAS., 1997, 44(10): 1011-1014
    [86] Liu F., Ren Y., Shan X. et al. A linear feedback synchronization theorem for a class of chaotic systems. Chaos, Solitons & Fractals, 2002, 13: 723-730
    [87]宋本祥,蒋丽娜,孙鹏.混沌同步化的非线性反馈方法.鞍山钢铁学院学报, 1996, 19(5): 45-48
    [88]方天华.用非线性反馈函数法研究蔡电子线路的混沌同步.原子能源科学技术, 1997, 31(6): 488-492
    [89] Parmananda P. Synchronization using linear and nonlinear feedbacks: a comparision. Phys. Lett. A, 1998, 240(1): 55-59
    [90]高金锋,罗先觉,马西奎等.控制与同步连续时间混沌系统的非线性反馈方法.物理学报, 1999, 48(9): 1618-1627.
    [91] Agiza H. N., Yassen M. T. Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A. 2001, 278: 191-197
    [92] Ho M. C., Hung Y. C. Synchronization of two different systems by using generalized active control. Phys. Lett. A, 2002, 301: 424-428
    [93] Yassen M. T. Chaos synchronization between two different chaotic systems using active control. Chaos, Solitons & Fractals, 2005, 23(4): 131-140
    [94]王智良,张化光.基于非线性反馈控制的高维混沌系统同步.东北大学学报, 2002, 32(2): 126-129
    [95]任晓林,胡光锐,谭政华.离散混沌系统的非线性反馈控制同步方法.上海交通大学学报, 2001, 35(1): 105-107
    [96] Johnson C. R., Thorp J. S. An adaptive calibration algorithm for synchronized chaos. IEEE Signal processing letters, 1994, 1(12): 194-195
    [97] Fradkov A. L., Pogromsky A.Yu. Speed gradient control of chaotic continuous-time systems. IEEE Trans. on Circuit and SystemsⅠ, 1996, 43(11): 907-913
    [98] Fradkov A. L., Markov A. Yu. Adaptive synchronization of chaotic systems based on speed gradient method and passification. IEEE Trans. on Circuit and SystemsⅠ, 1997, 44(10): 905-912
    [99] Fujimura T., Desaki C., Sakakibara C. ea al. Design of synchronization based on adaptive observer using an augmented error. in: Proceedings of the 2002 IEEE International Symposium on Industrial Electronics. Italy: vol. 2, 2002. 483-488
    [100] Liao T. L. Adaptive synchronization of two Lorenz systems. Chaos, Solitons and Fractals, 1998, 9(9): 1555-1561
    [101] Hong Y., Qin H., Chen G. adaptive synchronization of chaotic systems via state or output feedback control. Int. J. of Bifurcation and Chaos, 2001, 11(4): 1149-1158
    [102] Lian K. Y., Liu P., Chiang T.S. et al. Adaptive synchronization design for chaotic systems via a scalar driving signal. IEEE Trans. on CIrcuit and SystemsⅠ, 2002, 49: 17-27
    [103] Elabbasy E. M., Agiza H. N., El-Dessoky M. M. Adaptive synchronization of Lüsystem with uncertain parameters. Chaos, Solitons & Fractals, 2004, 21(3): 657-667
    [104] Chen S., LüJ. Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys. Lett. A, 2002, 299(4): 353-358
    [105] Lu J., Cao J. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos, 2005, 15: 043901
    [106] Fotsin H. B., Daafouz J. Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Physics Letters A, 2005, 339(3-5): 304-315
    [107] Bowong S., McClintock P. V. E. Adaptive synchronization between chaotic dynamical systems of diferent order. Phys. Lett. A, 2006, 358: 134-141
    [108] Wang Y. W., Wen C. Y., Chai S. Y. et al. Adaptive control and synchronization for a class of nonlinear chaotic systems using partial system states. Phys. Lett. A, 2006, 351: 79-84
    [109] Moukam Kakmeni F. M., Bowong S., Tchawoua C. Nonlinear adaptive synchronization of a class of chaotic systems. Phys. Lett. A, 2006, 355: 47-54
    [110] Bowong S., Temgoua Kagou A., Moukam Kakmeni F. M. Adaptive observer-based exact synchronization of mismatched chaotic systems. Int. J. of Bifurcation and Chaos, 2006, 16(9): 2681-2688
    [111] Elabbasy E. M., Agiza H. N., El-Dessoky M. M. Adaptive synchronization for four-scroll attractor with fully unknown parameters. Phys. Lett. A, 2006, 349: 187-191
    [112] Zhang H., Huang W., Wang Z. et al. Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett. A, 2006, 350: 363-366
    [113] Chen Y. S., Chang C. C. Simple adaptive synchronization of chaotic systems with random componenets. Chaos, 2006, 16: 023128
    [114] Zhou J. Chen T., Xiang L. Adaptive synchronization of coupled chaotic delayed systems based on parameter identification and its applications. Int. J. of Bifurcation and Chaos, 2006, 16(10): 2923-2933
    [115] Wang C., Ge S. S. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons & Fractals, 2001, 12: 1199-2006
    [116] Wang C., Ge S. S. Synchronization of two uncertain chaotic systems via adaptive backstepping Int. J. of Bifurcation and Chaos, 2001, 11(6): 1743-1751
    [117]高金锋,梁占红.通用标量混沌信号同步系统及其控制器的backstepping设计.物理学报, 2004, 53(8): 2454-2460
    [118]高金锋,梁占红,廖旎焕.连续时间标量(超)混沌信号同步控制的Backstepping方法.系统工程与电子技术, 2004, 26(12): 1856-1859
    [119] Feki M. Synchronization of chaotic systems with parametric uncetainties using slide observers. Int. J. of Bifurcation and Chaos, 2004, 14(7): 2467-2475
    [120] Yan J. J., Chang W. D., Lin J. S. et al. Adaptive chattering free variable structurecontrol for a class of chaotic systems with unknown bounded uncertainties. Phys. Lett. A, 2005, 335: 274-281
    [121] Etemadi S., Alasty A., Salarieh H. Synchronization of chaotic systems with parameter uncrtainties via variable structure control. Phys. Lett. A, 2006, 357: 17-21
    [122] Itoh M., Yang T., Chua L. O. Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. of Bifurcation and Chaos, 2001, 11(2): 551-560
    [123] Wang Y. W., Guan Z. H., Xiao J. W. Impulsive control for synchronization of a class of continuous systems. Chaos, 2004, 14(1): 199-203
    [124] Ji Y., Wen C. Y., Li Z. G. Impulsive synchronization of chaotic systems via linear matrix inequalities. Int. J. of Bifurcation and Chaos, 2006, 16(1): 221-227
    [125] Lian K. Y., Chiu C. S., Chiang T. S. et al. LMI-based fuzzy chaotic synchronization and communication. IEEE Trans. Fuzzy Syst., 2001, 9(4): 539-553
    [126] Kim J.-H., Park C.-W., Kim E. et al. Fuzzy adaptive synchronization of uncertain chaotic systems. Physics Letters A, 2005, 334(4): 295-305
    [127] Lam H. K., Leung F. H. F. Synchronization of uncertain chaotic systems based on the fuzzy-model-based approach. Int. J. of Bifurcation and Chaos, 2006, 16(5): 1435-1444
    [128] Liao X. X., Chen G. R., Xu B. J. et al. On global exponential synchronization of Chua's circuits. Int. J. of Bifurcation and Chaos, 2005, 15(7): 2227-2234
    [129] Liao X. X., Yu P. Analysis on the globally exponent synchronization of Chua's circuit using absolute stability theory. Int. J. of Bifurcation and Chaos, 2005, 15(2): 3867-3881
    [130] Liao X. X., Yu P. Study of globally exponential synchronization for the family of Rosller systems. Int. J. of Bifurcation and Chaos, 2006, 16(8): 2395-2406
    [131] Tamasevicius A., Cenys A. . Synchronizing hyperchaos with a single variable. Phys. Rev. E, 1997, 55(1): 297-299
    [132] Itoh M., Chua L.O. Rescontruction and synchronization of hyperchaotic circuits via one state variable. Int. J. of Bifurcation and Chaos, 2002, 12(10): 2069-2085
    [133] Yassen, M. T. Adaptive control and synchronization of a modified Chua's circuit system. Applied Mathematics and Computation, 2003, 135: 113-128
    [134]王建根,赵怡.系统和一类统一混沌系统的同步控制.电路与系统学报, 2004, 9(6): 57-60
    [135] Wang Y. W., Guan Z. H., Wang H. O. Feedback and adaptive control for the synchronization of Chen system via a single variable. Phys. Lett. A, 2003, 312: 34-40
    [136] Lu J., Wu X., Han X. et al. Adaptive feedback synchronization of a unified chaotic system. Phys. Lett. A, 2004, 329: 327-333
    [137] Huang D., Guo R. Identifying parameter by identical synchronization between different systems. Chaos, 2004, 14(1): 152-159
    [138] Feng J., Chen S., Wang C. Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification. Chaos, Solitons & Fractals, 2005, 26: 1163-1169
    [139] Tao C., Zhang Y., Du G. et. al. Estimating model parameters by chaos synchronization. Physical Review E, 2004, 69: 036204.
    [140] Yang Y., Ma X.-K., Zhang H. Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control. Chaos, Solitons and Fractals, 2006, 28(1): 244-251
    [141] Huang L., Wang M., Feng R. Parameters identification and adaptive synchronization of chaotic systems with unknown parameters. Physics Letters A, 2005, 342(4): 299-304
    [142] Fotsin H. B., Woafo P. Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification. Chaos, Solitons and Fractals, 2005, 24(5): 1363-1371
    [143]王兴元,武相军.不确定Chen系统的参数辨识与自适应同步.物理学报, 2006, 55(2): 605-609
    [144] Ge Z. M., Leu W. Y. Chaos synchronization and parameter identification for loudspeaker systems. Chaos, Solitons and Fractals, 2004, 21(5): 1231-1247
    [145] Ge Z. M., Lee J. K. Chaos synchronization and parameter identification for gyroscope system. Applied Mathematics and Computation, 2005, 163(2): 667-682
    [146] Frietas U. S., Macau E. E. N., Grebogi C. Using geometeric control andsynchronization to estimation an unknown model parameter. Phys. Rev. E, 2005, 71: 047203
    [147] Chen C., Feng G., Guan X. Parameter identification based synchronization for a class of chaotic systems with offset vectors. Physics Letters A, 2004, 330(1-2): 65-74
    [148] Parlitz U., Junge L., Kocarev L. Synchronization-based parameter estimation from time series. Physical Review E, 1996, 54(6): 6253-6259
    [149] Sakaguchi H. Parameter evaluation from time sequences using chaos synchronization. Phys. Rev. E, 2002, 65: 027201
    [150] Konnur R. Synchronization-based approach for estimating all model parameters of chaotic systems. Physical Review E, 2003, 67(2): 027204
    [151] Konnur R. Estimation of all model parameters of chaotic systems from discrete scalar time series measurements. Phys. Lett. A, 2005, 346: 275-280
    [152] Marino I. P., Miguez J. Adaptive approximation method for joint parameter estimation and identical synchronization of chaotic systems. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(5): 057202
    [153] Marino I. P., Miguez J. On a recursive method for the estimation of unknown parameters of partially observed chaotic systems. Physica D: Nonlinear Phenomena, 2006, 220(2): 175-182
    [154] Marino I. P., Miguez J. An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems. Physics Letters A, 2006, 351(4-5): 262-267
    [155] Maybhate A., Amritkar R. E. Dynamic algorithm for parameter estimation and its applications. Physical Review E, 2000, 61(6): 6461-6470
    [156]关新平,彭海朋,李丽香等. Lorenz混沌系统的参数辨识与控制.物理学报, 2001, 50(1): 26-29
    [157] LüJ. H., Zhang S. C. Controlling Chen's chaotic attractor using backstepping design based on parameters identification. Phys. Lett. A, 2001, 286: 148-152
    [158] Feng J., Xu C., Tang J. Controlling Chen's chaotic attractor using two different techniques based on parameter identification. Chaos, Solitons & Fractals, 2007,32(4): 1413-1418
    [159] Wu X. Q., Lu J. A. Parameter identification and backstepping control of uncertain Lüsystem. Chaos, Solitons & Fractals, 2003, 18: 721-729
    [160] Lu J. A., Tao C. H., LüJ. H. et al. Parameter identification and tracking of a unified system. Chin. Phys. Lett. 2002, 19(5): 632-635
    [161] Liu J., Chen S., Xie J. Parameter identification and control of uncertain unified chaotic system via adaptive extending equilibrium manifold approach. Chaos, Solitons & Fractals, 2004, 19(3): 533-540
    [162] Baker G. L., Gollub P. J., Blackburn J. A. Inverting chaos: Extracting system parameters from experimental data. Chaos, 1996, 6(4): 528-533
    [163] Pisarenko V. F., Sornette D. Statistical methods of parameter estimation for deterministically chaotic time series. Physical Review E, 2004, 69: 036122
    [164] Chang W.-D. Parameter identification of Rossler's chaotic system by an evolutionary algorithm. Chaos, Solitons & Fractals, 2006, 29(5): 1047-1053
    [165] Li L., Yang Y., Peng H. et al.. Parameters identification of chaotic systems via chaotic ant swarm. Chaos, Solitons & Fractals, 2006, 28(5): 1204-1211
    [166]戴栋,马西奎,李富才等.一种基于遗传算法的混沌系统参数估计方法.物理学报, 2002, 51(11): 2459-2462
    [167]高飞,童恒庆.基于改进型粒子群优化算法的混沌系统参数估计方法.物理学报, 2006, 55(2): 577-582
    [168] Parlitz U. Estimating model parameters from time series by autosynchronization. Phys. Rev. Lett., 1996, 76(8): 1232-1235
    [169] Maybhate A., Amritkar R. E. Use of synchronization and adaptive control in parameter estimation from a time series. Physical Review E, 1999, 59(1): 284-293
    [170] Palaniyandi P., Lakshmanan M. Estimation of system parameters and predicting the flow function from time series of continuous dynamical systems. Phys. Lett. A, 2005, 338: 253-260
    [171] Palaniyandi P., Lakshmanan M. Estimation of systems in discrete dynamical systems from time series. Phys. Lett. A, 2005, 342: 134-139
    [172] Suarez-Castanon M. S., Aguilar-Ibanez C., Flores-Ando F. Reconstructing the statesand parameters of Chua's system based on successive integrations of the output. Phys. Lett. A, 2003, 317: 265-274
    [173] Chen G., Ueta T. Yet another chaotic attractor. Int. J. of Bifurcation and Chaos, 1999, 9: 1465-1466
    [174] LüJ., Chen G. A new chaotic attractor coined. Int. J. of Bifurcation and Chaos, 2002, 12(3): 659-661
    [175]关新平,范正平,彭海朋等.陈氏混沌系统的自适应控制.物理学报, 2001, 50(11): 2108-2111
    [176]陶朝海,陆君安.统一混沌系统的控制.物理学报, 2003, 52(2): 281-284
    [177] Liao, X. X. Absolute Stability of Nonlinear Control Systems. Norwell, MA: Kluwer, 1993
    [178]陈茂银,韩正之. Genesio混沌系统的非线性同步及其在保密通信中的应用.电子学报, 2002, 30(10): 1477-1480
    [179]陈茂银,韩正之.混沌系统的广义同步.信息与控制. 2003, 32(1): 73-76
    [180] Feki M. Observer-based exact synchronization of idea and mismatched chaotic systems. Phys. Lett. A, 2003, 309: 53-60
    [181]刘扬正,费树岷. Genesio-Tesi和Coullet混沌系统之间的非线性反馈同步.物理学报, 2005, 54(8): 3486-3490
    [182]吴立刚,王常虹,曾庆双. Terminal滑模自适应控制实现一类不确定混沌系统的同步.控制与决策, 2006, 21(2): 229-232
    [183] Park J. H. Synchronization of Genesio chaotic system via backstepping approach. Chaos, Solitons & Fractals, 2006, 27: 1369-1375
    [184] Genesio R., Tesi A. A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica, 1992, 28: 531-548
    [185] Liu C. X., Liu T., Liu L. etc. A new chaotic attractor. Chaos, Solitons & Fractals, 2004, 22: 1031-1038
    [186]陈盛强,孙克辉,张泰山. Liu混沌系统的非线性同步控制.物理学报, 2005, 54(6): 2580-2583
    [187]单梁,梁彦,李军等. Liu混沌系统的模糊耦合同步.复杂系统与复杂性科学, 2006, 3(1): 85-92
    [188]单梁,李军,王执铨.参数不确定Liu混沌系统的自适应同步.动力学与控制学报, 2006, 4(4): 338-343
    [189]王发强,刘崇新.线性反馈控制变形Liu混沌系统同步.重庆邮电学院学报, 2006, 18(6): 793-795
    [190] Yassen M. T. Adaptive chaos control and synchronization for uncertain new chaotic dynamical system. Phys. Lett. A, 2006, 350: 36-43
    [191] Ho M. C., Hung Y. C., Liu Z. Y. et al. Reduced-order synchronization of chaotic systems with parameters unknown. Phys. Lett. A, 2006, 348: 251-259
    [192] Perez G., Cerdeira H. A. Extracting Messages masked by chaos. Phys. Rev. Lett., 1995, 74(11): 1970-1973
    [193] Chen Z. Q., Yang Y., Qi G. Y. et al.. A novel hyperchaos system only with one equilibrium. Phys. Lett. A, 2007, 360: 696-701
    [194]韩曾晋.自适应控制.北京:清华大学出版社, 1995
    [195] R?ssler O. E. An equation for hyperchaos. Phys. Lett. A, 1979, 71: 155-157
    [196]李言俊,张科.系统辨识理论及应用.北京:国防工业出版社, 2003
    [197] LI Y., Tang W .K. S., Chen G. Generating hyperchaos via state feedback control. Int. J. of Bifurcation and Chaos, 2005, 15(10): 3367-3375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700