周期荷载作用下岩石变形与损伤规律及其非线性特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石在复杂荷载路径与受荷历史下的变形和损伤特性是岩石力学研究的难点,周期荷载是其中最常见也是最简单的力学现象,并且其与岩石的单调荷载方式密切相关,因此,周期荷载可以作为复杂荷载路径与受荷历史下岩石力学研究的“突破口”。选择重庆地区常见的砂岩、灰岩作为研究对象,以砂岩为主,利用西南资源开发及环境灾害控制工程教育部重点实验室(重庆大学)的MTS815岩石力学试验机、16CHs SAMOS? System声发射测试系统、中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室的CT机专用加载试验设备对单调及周期荷载作用下岩石的宏观变形及损伤特性、岩石损伤破坏过程中的声发射特性及其CT细观损伤演化规律进行了实验研究,并结合损伤力学和非线性理论进行了有益的探讨,通过以上研究,在以下方面取得一些进展:
     1)提出了周期荷载作用下岩石损伤破坏的四阶段规律,并在AE实验、CT实验、以及突变、分形理论分析中进行了证明和进一步说明;
     2)本文实验表明:岩石在低周期荷载破坏过程中出现明显的Felicity效应, Felicity比有总体下降的趋势,而且Felicity比有明显的阶段性特征。本文研究同时发现:周期荷载作用下岩石损伤过程中,定义出现“明显”声发射的标准只要在合理的范围内,并不影响Felicity比的演化趋势;
     3)为研究卸载时岩石的AE特性,提出了AE卸载比的概念,无论轴向应力的还是轴向应变的AE卸载比曲线都印证了周期荷载作用下岩石损伤破坏具有阶段性特征;
     4)岩石的种类、构造和均匀程度是AE定位实验的主要影响因素。本次砂岩AE定位实验结果显示,AE源呈散漫分布于试样中部,两端没有明显的条带丛集现象,中部没有得到声发射定位事件的“空白区”。对于此类岩石,微破裂的空间分布对主破裂的空间位置并无明显的指示意义;
     5)采用中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室的CT机专用加载试验设备进行了多级(两级)循环荷载下岩石损伤实时CT细观实验,实验观察到了岩样损伤演化方式的转变过程,得到了岩石损伤破坏过程中CT数、密度和标准差等参数的演化过程;
     6)提出损伤突变的概念,建立了以累计AE能量代表损伤的尖点突变模型,运用这一模型进行了周期荷载破坏过程和单调加载破坏过程的损伤突变分析,进一步说明了本文提出的周期荷载作用下岩石损伤破坏的四阶段规律;
     7)通过对单调及周期荷载下岩石AE序列的关联维分析,说明在岩石破坏过程中,其AE序列存在降维的规律;
     8)对某矿山露天采场边坡位移序列的监测数据表明,该边坡位移序列具有分形和混沌特征,运用混沌系统时间序列状态空间最邻近点预测方法对该边坡位移序列进行了预测。
The deformation and damage of rock in the complex loading path and loading history is one of the most difficult study points on rock mechanics. Cyclic load is the most common and the simplest mechanical phenomenon, and it is related with its monotone loading manner closely. So, the study of rock under the cyclic load can be regared as‘important breakthrough jaws’of rock mechanical study in the complex loading path and loading history. This paper chooses sandstone and limestone that are common in Chongqing as study objects, mainly with sandstone, by using MTS815 Rock Mechanics Test System, 16CHs SAMOS? System and the specified loading equipment of the CT machine to do the experimental research on the deformation and damage properties, acoustic emission characteristics and CT micro-damage evolution in the process of rock damage and failure under monotonous load and cyclic load, meanwhile the paper is combined with damage mechanics and the nonlinear theory to do a hepful research. The main research work and results are as follow:
     1) Four phases law of rock damage failure under cyclic load have been proposed, and are proved and further explained by AE experiment, CT experiment, catastrophe theory, fractal theory;
     2) Experiment of this paper shows: There is obvious Felicity effect on process of rock failure under low cyclic load, the rate of Felicity is decreased in general, and the rate of Felicity has obvious characteristics of stage. The study on this paper also shows: on process of rock damage failure under cyclic load, there is no impact on the evolution trend of the rate of Felicity as long as the threshold(minimum) of obvious AE fall in a reasonable range;
     3) In order to study the AE Characteristics of rock during the process of unloading, this paper puts forward the concept of AE unload rate.whether AE unload rate of the axial stress or the axial strain confirm the phases character of rock damage failure under cyclic load;
     4) Rock types, structure and uniformity are all the main influence factors of AE location experiment. The results of Chongqing fine sandstone AE location experiment show that AE sources distribute in the central of sample, there is no obvious band and cluster grouping phenomenon on the two sides of sample, and no AE-location“blank areas”in the middle of sample. For such rock, the spatial distribution of micro-fracture is no apparent instructions significance to the spatial position of main rupture;
     5) By using the specified loading equipment of the CT machine from State Key Laboratory of Frozen Soil Engineering of the Chinese Academy of Sciences to do the multilevel cyclic load experimental research study, this paper observed the transformation process of rock sample damage evolution,and obtained CT number and density evolution on process of rock damage and failure under cyclic load;
     6) It puts forward the concept of damage mutation, establishes the cusp catastrophe model with cumulative AE energy represent damage, uses this model to analyze cusp catastrophe damage under the process of cyclic loading failure and monotonic loading failure, and further describs the four phases law of the rock damage failure under cyclic load in this paper;
     7) Through analyzing the correlative dimension of rock AE sequence under the monotonous load and cycle load, this paper shows that the dimension of AE sequence is decrease on the process of rock failure.
     8) This paper shows that the displacement sequence of this slope has characteristics of fractal and chaos by analyzing monitoring data of displacement sequence of a mine open pit slope. Using the way of the nearest neighbor of chaotic system time sequence state space, this paper forecasts the displacement sequence of this slope.
引文
[1]刘雄.岩石流变学[M].北京:地质出版社,1994.
    [2]许江,杨秀贵,王鸿,等.周期性载荷作用下岩石滞回曲线的演化规律[J].西南交通大学学报,2005.40(6):754-758.
    [3]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22 (10):1581-1585.
    [4]蒋宇.周期荷载作用下岩石疲劳破坏及变形发展规律[硕士学位论文][D].上海:上海交通大学,2003.
    [5]蔡美峰主编.岩石力学与工程[M].北京:科学出版社,2002.
    [6]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [7] S.C. Yuan, J.P. Harrison. A review of the state of the art in modelling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks[J].International Journal of Rock Mechanics & Mining Sciences,2006,(43) :1001-1022.
    [8]韦立德.岩石力学损伤和流变本构模型研究[博士学位论文][D].南京:河海大学,2003.
    [9]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1992.
    [10]刘红岩,王根旺,刘国振.以损伤变量为特征的岩石损伤理论研究进展[J].爆破器材,2004(6):25-29.
    [11] Krajcinovic D. Continuum Damage Theory of Brittle Meterials[J]. Appl. Mech. Rev.,1981,48(4):809 -815.
    [12] ORTIZ M. A constitutive theory for the inelastic behavior of concrete[J]. Mechanics of Materials,1985,4(1):67-93.
    [13] YAZDANI S,SCHREYER H L. An anisotropic damage model with dilatation for concrete[J]. Mech. Mater.,1988,7(3):231-244.
    [14] COSTIN L S. Damage mechanics in the post-failure regime[J]. Mech. Mater.,1985,4:149-160.
    [15] LU Y F,SHAO J F. Modelling of anisotropic damage in brittle rocks under compression dominated stresses[J]. Int. J. Numer. Anal. Meth. Geomech.,2002,26(2):230-247.
    [16]卢应发,刘德富,吴延春,等.岩石与水相互作用的正交各向异性损伤数值模拟[J].岩石力学与工程学报,2007,26(2):323-330.
    [17] Gurson A .L ..Theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile media[J].J. of Eng.Materials and Tech.,1977,Vol.99:2-15.
    [18] Horii H and Nemat-Nasser S. Overall modul of solids with microcracks: load-induced anisotropy[J]. J. Mech. Phys. So lids,1983,31:315-330.
    [19] Nemat-Nasser S and Obata M.. A microcrack model of dilatancy in britle materials[J]. Transaction of the A SME,1988,March,55:24-35.
    [20] Tu J.W and Lee X.. Micromechanical damage models for britle solids,part I Aensile loadings[J]. J. Engng. Mech.,1991,117(7):1495-1514.
    [21] Tu J. W and Lee X.. Micromechanical damage models for britle solids, part II:compressive loadings[J].J. Engng.Mech,1991,Vol.11 7,NO.7:1515-1536
    [22] Fang Z,Harrison JP. Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions[J]. Int J Rock Mech Min Sci, 2002,39:459-476.
    [23] Hazzard JF,Collins DS,Pettitt WS,Young RP. Simulation of unstable fault slip in granite using a bond-particle model[J]. Pure Appl Geophys,2002,159:221-45.
    [24] Katsman R , Aharonov E , Scher H. Numerical simulation of compaction bands in high-porosity sedimentary rock[J]. Mechanics of Materials,2005,37:143-162.
    [25]严春风.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999.
    [26]刘力.层状复合岩石损伤本构关系与断裂破坏准则及其工程应用[博士学位论文][D].重庆:重庆大学建筑工程学院,1999.
    [27] H.A.W.CORNELISSEN,Fatigue Failure of concrete in Tension[J]. HERSON,1984,29(4): 68.
    [28]林燕清.混凝土疲劳累计损伤与力学性能劣化研究[博士学位论文][D].哈尔滨建筑大学.1998.
    [29]林燕清,欧进萍.混凝土疲劳剩余寿命预测的变形演变决定法[J].工业建筑,1999,29(9): 46-52.
    [30]林燕清,欧进萍.混凝土多级等幅疲劳的变形发展规律试验研究[J].哈尔滨建筑大学学报,1999,32 (1):11-17.
    [31]山下秀,杉木文男,今井忠南,等.岩石蠕变及疲劳破坏过程和破坏极限研究[J].辽宁工程技术大学学报(自然科学版),1999,18(5):452-455.
    [32] McCall K R,Guyer R A. Equation of state and wave propagation in hysteretic nonlinear elastic material[J]. Journal of Geophysical Research,1994,99(B12):23-30.
    [33] Memery,Holcomb D J. Relaxation and microfracturing in dilatant rock[J]. Journal of Geophysical Research,1981,86(B7):6-11.
    [34] Tutuncu A N,Podio A L,Sharma M M. Nonlinear viscoelastic behavior of sedimentary rocks, Part II: Hysteresis effects and influence of type of fluid on elastic moduli[J].Geophysics,63, n 1,Jan-Feb,1998,p 195-203.
    [35]刘云平,席道瑛,张程远等.循环应力作用下大理岩砂岩的动态响应[J].岩石力学与工程学报,2001,20(2):216-219.
    [36]席道瑛,王春雷,田象燕.滞回曲线对应力振幅和频率的响应[J].物探化探计算技术, 2001,23(2):121-124.
    [37]陈运平,席道瑛,薛彦伟.循环载荷下饱和岩石的应力--应变动态响应[J].石油地球物理勘探,2003,38(4):409-413.
    [38]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报,2004,47(4):672-679.
    [39] Bagde.M.N.,Petros.V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences,v42,n2,February,2005. p237-250.
    [40]许江,王维忠,杨秀贵,等.细粒砂岩在周期性循环荷载作用下变形实验[J].重庆大学学报(自然科学版),2004,27(12):60-62.
    [41]许江,鲜学福,王鸿,等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(s.1):3040-3045.
    [42]周尚志,党发宁,陈厚群,等.岩石类材料疲劳破坏裂纹扩展分析的数值方法[J].岩土力学,2008,29(3):769-774
    [43]樊秀峰,简文彬.砂岩疲劳特性的超声波速法试验研究[J].岩石力学与工程学报,2008,27(3):557-563
    [44]王德玲,沈疆海,葛修润.岩石疲劳扰动模型的研究[J].水利与建筑工程学报,2006,4(2):32-33+58
    [45] ZHANG Ping,XU Jian-guang,LI Ning. Fatigue properties analysis of cracked rock based on fracture evolution process[J]. Journal of Central South University of Technology,2008,15(1):95?99
    [46] W. C. Kowalski .MECHANICAL FATIGUE OF ROCKS AND ATMOSPHERIC PRESSURE CHANGES[J]. Bulletin of Engineering Geology and the Environment,1993,48(1):77-82
    [47]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1818.
    [48]许江,李贺.对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J].力学与实践, 1986,8 (4) :16-21.
    [49]赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报,1992,11 (3) :284-294.
    [50]蒲传金,张志呈,郭学彬,肖正学.不耦合装药爆破对孔壁岩石损伤破坏的声波分析[J].中国钨业,2006,21(1):20-22.
    [51] Luong,Minh Phong. Infrared thermovision of damage processes in concrete and rock[J]. Engineering Fracture Mechanics,1990,35 (1-3) :291-301.
    [52] Ju Yang,Xie H. Applicability of Damage Variable Definition Based on Hypothesis of Strain Equivalence[J].J Coal Sci Eng,2000,6 (2):9-14.
    [53]潘华,邱洪兴.基于损伤力学的混凝土疲劳损伤模型[J].东南大学学报(自然科学版), 2006,36(4):605-608.
    [54]张明,李仲奎,杨强,冯夏庭.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,25(12):2493-2501.
    [55]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [56]谢强,张永兴,余贤斌,等.石灰岩在单轴压缩条件下的声发射特性[J].重庆建筑大学学报,2002,24 (1):19-22.
    [57] C Li,E Nordlund. Experimental verification of the Kaiser effect in rocks[J].Rock Mechanics and Rock Engineering,1993,26 (4) :333-351.
    [58]李元辉,袁瑞甫,赵兴东.岩石受载记忆的声发射实验研究[J].辽宁工程技术大学学报,2006,25(4):518-520.
    [59]张立杰,蔡美峰,来兴平,等.基于AE的深部复变环境下急斜特厚煤层开采动力失稳分析[J].北京科技大学学报,2007,29(1):1-4.
    [60]姜永东,鲜学福,许江.岩石声发射Kaiser效应应用于地应力测试的研究[J].岩土力学,2005,26(6):946-950.
    [61]赵奎,邓飞,金解放,等.岩石声发射Kaiser点信号的小波分析及其应用初步研究[J].岩石力学与工程学报,2006,25(s2):3854-3858.
    [62]许昭永,杨润海,王彬,等. Y形块体交界处交点大破裂的模拟实验研究[J].地球物理学报,2002,45 (增刊):214-224.
    [63]杨润海,许昭永,王彬,等.孕震类型与应变成核的实验研究[J].地震研究,2003,26 (4) : 332-337.
    [64]蒋海昆,马胜利,张流,等.雁列式断层组合变形过程中的声发射活动特征[J].地震学报,2002,24 (4) :385-396.
    [65]耿乃光. b值模拟实验的进展和我国b值模拟实验的开端[J].地震学报,1986,8 (3) :330-333.
    [66] YIN Xiang-chu,YIN can. The Precursor of Instability for Nonliner System and its Application to Earthquake Prediction[J]. Science in China,1991,34:977- 986.
    [67] YIN X C,Mora P,PENG K,et al. Load - Unload Response Ratio and Accelerating Moment/Energy Release Critical Region Scaling and Earthquake Prediction[J].PAGEOPH,2002,159: 2511-2523.
    [68]赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950.
    [69]崔中兴.基于CT实时观测的水-岩力学耦合机理研究[博士学位论文][D].西安:西安理工大学,2004.
    [70] Withjack,E.M.. Computed tomography for rock-property determination and fluid-flow visualization[J]. Society of Petroleum Engineers Formation Evaluation,v 3,n 4,Dec,1988, p 696-704.
    [71]黄树华.岩石力学研究中AE和CT装置的应用[J].岩土力学,1989,10(1):83-86.
    [72]杨更社,谢定义,张长庆,等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):48-54.
    [73]葛修润,任建喜,蒲毅彬,等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [74]任建喜,葛修润,蒲毅彬,等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19 (6):697-701.
    [75]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学, 2001,22(2):130-133.
    [76]仵彦卿,曹广祝,王殿武.基于X-射线CT方法的岩石小裂纹扩展过程分析[J].应用力学学报,2005,22(3):484-490
    [77]葛修润,任建喜,蒲毅彬,等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23 (2):191-195.
    [78]郑孝军,胡志军,刘倡清,等.裂隙岩石疲劳损伤变形规律CT试验初探[J].西安科技大学学报,2005,25(4):468-472.
    [79]郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报,1996,18(1):98-100.
    [80]朱旺喜.非线性科学在矿山灾害及控制研究中的应用——国家自然科学基金矿业学科资助项目分析[J].岩石力学与工程学报,2007,26(1):211-214.
    [81] Xie Heping,Chen Zhida. Fractal geometry and fracture of rock[J]. Acta Mechanica Sinica,1988,4(3):255-264.
    [82] Xie Heping. Studies on fractal models of the microfracture of marble[J]. Chinese Science Bullentin,1989,34(15):1292-1296.
    [83]谢和平.岩土介质的分形孔隙和分形粒子[J].力学进展,1993,23(2):145-164.
    [84]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [85]秦四清.初论岩体失稳过程中耗散结构的形成机制[J].岩石力学与工程学报,2000,19(3):265-269.
    [86]陈忠辉,徐小荷,唐春安.单轴压缩下岩石失稳破裂的突跳[J].东北大学学报,1994,15(5):476-480.
    [87]金龙,王锡朝.岩石材料渐变破裂的重正化群方法研究[J].石家庄铁道学院学报,2001,(4):47-50.
    [88]刘传孝.砂岩强度MTS试验及阶段特征的混沌动力学研究[J].岩土力学,2004,25(12):1910-1914.
    [89]尹光志,代高飞,万玲,等.岩石微裂纹演化的分叉混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639.
    [90]尹光志,黄滚,代高飞,等.基于CT数的煤岩单轴压缩破坏的分叉与混沌分析[J].岩土力学,2006,27(9):1465-1470.
    [91]尹光志,张东明,王浩.岩石损伤断裂的沙堆元胞自动机模拟[J].岩土力学,2005,26(6):986-989.
    [92]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    [93] Takayuki Hirata. Fractal structure of spatial distribution of microfracturing in rock[J]. Geophysics J. R. Austr. Sco.,1987,90:369-374.
    [94] Feng Xiating,Seto M. Fractal structure of the distribution of microfracturing in rocks[J]. Geophysical Journal International,1999,136:275-285.
    [95]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性——第二部分:时间分形分析[J].岩石力学与工程学报,2000,19(5):551-556.
    [96]郭少华.岩石类材料压缩断裂的实验与理论研究[博士学位论文][D].长沙:中南大学,2003.
    [97]江涛.基于细观力学的脆性岩石损伤-渗流耦合本构模型研究[博士学位论文][D].南京:河海大学,2006.
    [98]刘世奇.有侧向压力的花岗岩动态直接拉伸力学特性研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2007.
    [99]葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [100]葛修润.周期荷载作用下岩石疲劳破坏及变形发展规律研究[A].第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004.
    [101]章清叙,葛修润,黄铭,等.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [102]席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003,22(11):1807-1810.
    [103] Müller-Salzburg L,Ge X R. Studies on the mechanical behavior (deformation behavior) of jointed rock masses under cyclicload[A]. Proceedings of the 5 th Int Congress of the Society for RockMechanics[C]. Melbourne,Australia,1983,1:43-49.
    [104]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [105]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [106]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [107]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6): 787-791.
    [108]许江,李树春,刘延保.基于Drucker-Prager准则的岩石损伤本构模型研究[J].西南交通大学学报,2007,42(3):278-282.
    [109]殷有泉.岩石的塑性、损伤及其本构表述[J].地质科学,1995,30(1):64-70.
    [110]赵忠虎,鲁睿,张国庆.岩石失稳破裂的能量原理分析[J].金属矿山,2006,364(10): 17-20+37.
    [111]刘继国,曾亚武.岩石试件端面摩擦效应及参数敏感性研究[J].建筑技术开发,2005,32(3):69-71.
    [112]黄滚.岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[博士学位论文][D].重庆:重庆大学,2007.
    [113] Labuz J F,Bridell J M. Reducing frictional Constrain in Compression Testing through Lubrication[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(4):451-455.
    [114]杨明纬.声发射检测[M].北京:机械工业出版社,2005.
    [115] B.I.桑多尔.循环应力与循环应变的基本原理[M].北京:科学出版社,1985.
    [116]赵兴东,李元辉,袁瑞甫.花岗岩Kaiser效应的实验验证与分析[J].东北大学学报(自然科学版),2007,28(2):254-257
    [117] WU L X,CUI C Y,GENG N G,et al. Remote sensing rock mechanics (RSRM) and associated experimental studies[J]. Int. J. Rock Mech. Min. Sci.,2000,37(6):879-888.
    [118]吴立新.遥感岩石力学及其新近进展与未来发展[J].岩石力学与工程学报,2001,20(2):139-146.
    [119] WU L X,LIU S J,WU Y H,et al. Changes in infrared radiation with rock deformation[J]. Int. J. Rock Mech. and Min. Sci.,2002,39(4):825-831.
    [120]刘冬梅,蔡美峰,周玉斌,等.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报,2006,25(3):467-472.
    [121] TANG C A. Numerical simulation of progressive rock failure and associated seismicity[J]. Int.J. Rock Mech. Min. Sci.,1997,34(2):249-261.
    [122]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):507-508.
    [123]黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):468-471.
    [124] HOLCOMB D J,COSTIN L S. Detecting damage surfaces in brittle materials using acoustic emissions[J]. Journal of Applied Mechanics,1986,53:536-544.
    [125] LOCKNER D A,BYERLEE J D,KUKSENKO V,et al. Quasi-static fault growth and shear fracture energy in granite[J]. Nature,1991,350(7):39-42.
    [126] MANSUROV V A. Acoustic emission from failing rock behavior[J].Rock Mechanics and Rock Engineering,1994,27(3):173-182.
    [127] CHANG S H,LEE C I. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission[J]. Int. J. Rock Mech. Min. Sci.,2004,41(7):1 069-1 086.
    [128]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [129]赵兴东,唐春安,李元辉,等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,25(增2):3 673-3 678.
    [130] AEwin? SOFTWARE Installation,Operation and User’s Reference Manual[Z].Physical Acoustics Corporation,Princeton Jct.,New Jersey,USA,2004.
    [131] Gibowicz S J,Kijko A.矿山地震学引论[M].修济刚,徐平,杨心平译.北京:地震出版社,1998.
    [132]刘福顺.无损检测基础[M].北京:北京航空航天大学出版社,2002.
    [133]许江,李树春,唐晓军,等.单轴压缩下岩石声发射定位实验的影响因素分析[J].岩石力学与工程学报,2008,4(27):765-773.
    [134]刘立强,马胜利,马瑾,等.岩石构造对声发射统计特征的影响[J].地震地质,1999,21(4):377-386.
    [135] Lockner D,Byerlee J. Fault growth and acoustic emissions in confined granite[J]. Applied Mechanics Reviews,1992,45(3-2):165-173.
    [136] Lockner D. Role of acoustic emission in the study of rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):883-889.
    [137]蒋海昆,张流.岩石微破裂时空强分布特征及其动态演化过程的声发射研究进展[J].世界地震译丛,1998,5:1-10.
    [138] Lavrov A. The Kaiser effect in rocks: principles and stress estimation techniques[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(2):151.
    [139] Tang C A,Xu X H. Evolution and propagation of material defects and Kaiser effect function[J]. Journal of Seismological Research,1990,13(2):203.
    [140]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2): 913-396.
    [141]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):2-18.
    [142] Cnudde,V.; Masschaele,B.; Dierick,M.; Vlassenbroeck, J.; Hoorebeke,L. Van; Jacobs, P. Recent progress in X-ray CT as a geosciences tool[J].Applied Geochemistry, 2006,21(5): 826-832.
    [143] Hirono,Tetsuro; Takahashi,Manabu; Nakashima.In situ visualization of fluid flow image within deformed rock by X-ray CT[J]. Engineering Geology,v 70,n 1-2,October,2003,p 37-46.
    [144] Nakashima,Yoshito; Kamiya,Susumu.Mathematica programs for the analysis of three -dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data[J]. Journal of Nuclear Science and Technology,2007, 44(9):1233-1247.
    [145] Louis,Laurent; Wong,Teng-fong; Baud,Patrick; Tembe,Sheryl. Imaging strain localization by X-ray computed tomography:discrete compaction bands in Diemelstadt sandstone[J]. Journal of Structural Geology,v 28,n 5,May,2006,p 762-775.
    [146] Appoloni,C.R.; Fernandes,C.P.; Rodrigues,C.R.O. X-ray microtomography study of a sandstone reservoir rock. Nuclear Instruments and Methods in Physics Research,Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,v 580,n 1 SPEC. ISS.,Sep 21,2007,p 629-632.
    [147] Vinegar,H.J.; De Waal,J.A.; Wellington,S.L. CT studies of brittle failure in castlegate sandstone[J].International Journal of Rock Mechanics and Mining Sciences & Geo- mechanics Abstracts,v 28,n 5,Sep,1991,p 441-450.
    [148] Kawakata,H.; Cho,A.; Yanagidani,T.; Shimada, M. Observations of faulting in westerly granite under triaxial compression by X-ray CT scan[J]. International Journal of Rock Mechanics and Mining Sciences,v 34,n 3-4,Apr-Jun,1997,p 375.
    [149] Cho,S.H.; Kubota,T.S.; Ogata,Y.; Yokota,M.; Kaneko,K. Microscopic visualization of a granitic rock subject to dynamic tensile loading by using a micro X-ray CT system[J]. Science and Technology of Energetic Materials,v 66,n 4,July/August,2005,p 334-339.
    [150] Suzanne Raynaud,Dominique Ngan-Tillard,Jacques Desrues,etal. Brittle-to-ductiletransition in Beaucaire marl from triaxial tests under the CT-scanner[J]. International Journal of Rock Mechanics & Mining Sciences,45 (2008) 653-671.
    [151]仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报,2002,10 (1):93-97.
    [152] Ge,X.; Ren,J.; Pu,Y.; Ma,W.; Zhu,Y.. Real-in time CT test of the rock meso-damage propagation law[J]. Science in China, Series B: Chemistry,v 44,n 3,June,2001, p 328-336.
    [153] Feng , Xia-Ting; Chen , Sili; Zhou , Hui. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion[J]. International Journal of Rock Mechanics and Mining Sciences, v 41, n 2, February, 2004, p 181-192.
    [154] Ren,Jian-Xi. Real-time computerized tomography(CT) test of failure process of jointed granite under unloading in three gorges project(TGP)[J]. Journal of Coal Science and Engineering,v 10,n 2,December,2004,p 11-14.
    [155]李士勇.非线性科学与复杂性科学[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [156]申维.自组织理论和耗散结构理论及其地学应用[J].地质地球化学,2001,29(3):1-7.
    [157]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [158]黄润秋,许强.开挖过程的非线性理论分析[J].工程地质学报,1999,7(1):9-14.
    [159]许传华.岩体破坏的非线性理论研究及应用[博士学位论文][D].南京:河海大学,2004.
    [160]付成华,陈胜宏.基于突变理论的地下工程洞室围岩失稳判据研究[J].岩土力学,2008,29(1):167-172.
    [161]张明,李仲奎.准脆性材料破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,2006,25(6):1234-1239.
    [162]秦四清,王思敬.煤柱顶板系统协同作用的脆性失稳与非线性演化机制[J].工程地质学报,2005,13(4):437-446.
    [163]祝方才,曹伟军,邓建.岩石单轴压缩过程中的混沌行为研究[J].株洲工学院学报,2006,20(3):83-86.
    [164]郑颖人.岩土材料屈服与破坏及边(滑)坡稳定分析方法研讨—“三峡库区地质灾害专题研讨会”交流讨论综述[J].岩石力学与工程学报,2007,26(4):649-661.
    [165]杨圣奇,简荣林,张学民.岩石失稳破坏的理论研究[J].湘潭矿业学院学报,2002,17(4):72-76.
    [166]陈颙,陈凌.分形几何学[M].北京:地震出版社,2005.
    [167]吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [168]刘延柱,陈立群.非线性动力学[M].上海:上海交通大学出版社,2000.
    [169] Grassberger P,Scharrath C. Nonlinear time sequence analysis[J].Int. J. Bifur. Chaos,1987(1): 521-547.
    [170]郝柏林.混沌与分形[M].上海:上海科学技术出版社,2004.
    [171]盛昭瀚,马军海.非线性动力系统分析引论[M].北京:科学出版社,2001.
    [172]康玲,王乘.混凝土坝裂缝混沌特性的初步研究[J].水电能源科学,2000,18(1):19-21.
    [173]谢应齐,曹杰.非线性动力学数学方法[M].北京:气象出版社,2001.
    [174] Christian Merkwirth,Ulrich Parlitz,Immo Wedekind,et al. TSTOOL User Manual Version 1.11[Z],2002.
    [175]王东生,曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995.
    [176]焦明若,唐春安,张国民,等.细观非均匀性对岩石破裂过程和微震序列类型影响的数值试验研究[J].地球物理学报,2003,46(5):659-666.
    [177]秦四清,张倬元.地震孕育过程中的非线性动力学模型[J].中国地震,1994,10(3):223-229.
    [178] Huang J,Turcotte D L.Evidence for chaotic fault interaction in the seismicity of the San Andreas fault and Nakai trough[J]. Nature,1990,348:234-6.
    [179] Sato,K. (Muroran Inst of Technology,Muroran,Jpn); Isobe,T.; Mori,N.; Goto,T. MICROSEISMIC ACTIVITY ASSOCIATED WITH HYDRAULIC MINING[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,v 23,n 1,Feb,1986,p 85-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700