压电复合材料结构的复杂非线性动力学与控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料是航空航天工程中的一种新型功能材料,具有比强度高、比刚度大和抗疲劳性能好等优点,并且易于加工,适合作为作动器和传感器嵌入到工程结构中组成压电复合材料结构提高结构的可控性。压电复合材料结构近年来被广泛应用于航天器、大型空间站等工程领域。最新研究成果表明,压电复合材料同样可用于可变体结构,为结构的变形产生驱动力,例如可变体机翼等变形结构。在这种可变体机翼中,压电复合材料板结构有可能产生大振幅的振动,导致压电复合材料板结构的非线性振动,从而降低结构的稳定性和可控性能。因此,研究压电复合材料结构的非线性振动、分叉和混沌动力学行为具有极为重要的理论和工程应用价值。本论文主要采用理论推导与数值计算相结合的方法对在参数激励和横向激励联合作用下压电复合材料层合梁和压电复合材料层合板的非线性振动、分叉和混沌动力学特性进行研究。论文的研究内容主要有以下几个方面。
     (1)研究了简支压电复合材料层合梁在轴向、横向载荷共同作用下的非线性动力学、分叉和混沌动力学。基于von Karman理论和Reddy高阶剪切变形理论,推导出了压电复合材料层合梁的非线性动力学方程。利用Galerkin法离散偏微分方程,得到二个自由度非线性控制方程,并且利用多尺度法得到了得到了具有1:9内共振关系的平均方程。基于平均方程,研究了压电层合梁系统的动态分叉,分析了系统各种参数对倍周期分叉的影响及变化规律。结果表明,压电复合材料层合梁周期运动的稳定性和混沌运动对外激励的变化非常敏感,通过控制压电激励,可以控制压电复合材料层合梁的振动,保持系统的稳定性,即控制系统产生倍周期分叉解,从而阻止系统通过倍周期分叉进入混沌运动,并给出了控制分叉图。
     (2)首次分析了简支压电复合材料层合板的非线性动力学。基于von Karman理论和Reddy高阶剪切变形理论,考虑压电载荷的作用,利用Hamilton原理推导了压电复合材料层合板的非线性动力学方程。采用Galerkin法对偏微分方程进行离散,得到包含外激励和参数激励的二自由度控制方程。考虑1:1,1:2,1:3内共振和主参数共振-1/2亚谐共振的情况,利用多尺度法得到压电复合材料层合板的四维平均方程。基于平均方程,采用数值方法研究了系统动态响应随面内激励和横向激励变化时的动态分叉图,分析了面内激励、横向激励与压电激励对系统分叉和混沌动力学的影响。结果表明压电复合材料层合板是存在周期和混沌运动
     (3)基于四边简支压电复合材料层合板的非线性动力学方程,利用Galerkin法对系统偏微分方程进行三阶模态离散,得到带有外激励和参数激励的三自由度控制方程。考虑1:2:3, 1:2:4内共振和主参数共振-1/2亚谐共振情况,利用多尺度法进行摄动分析得到六维平均方程。采用数值仿真方法分析横向激励、面内激励与压电激励对压电复合材料层合板的非线性振动、分叉与混沌动力学行为的影响。
     (4)基于建立的压电复合材料层合板的非线性动力学方程,选取四阶模态,用Galerkin法对其进行离散,考虑1:2:9:9内共振和主参数共振-1/2亚谐共振情况,用多尺度法进行摄动分析得到八维的压电复合材料层合板的平均方程。基于平均方程研究了压电复合层合板的分叉与混沌动力学,采用数值仿真方法分析了横向激励、面内激励与压电激励对系统的分叉与混沌动力学的影响。结果表明压电复合材料层合板的低阶模态响应幅值大于高阶模态响应幅值。通过分析系统分叉图可知当系统的响应随着激励参数的变化而变化时,系统发生分叉并导致混沌,结果表明压电激励幅值是影响压电复合材料层合板结构运动形式的重要控制参数。
     (5)首次利用全局摄动方法研究了压电复合材料层合板的全局分叉和Shilnikov型混沌动力学。在压电复合材料层合板四维平均方程的基础上,利用规范形理论对平均方程进行简化,得到了在一对双零特征值和一对纯虚特征值情况下压电复合材料层合板平均方程的规范形。在此基础上,利用Kovacic和Wiggins提出的全局摄动方法研究了压电复合材料层合板的Shilnikov型单脉冲同宿轨道和混沌动力学,理论分析表明在压电复合材料层合板中存在着Pitchfork分叉和Shilnikov型单脉冲同宿轨线,从而证明了在压电复合材料层合板系统中存在着由Shilnikov型单脉冲同宿轨线导致的Smale马蹄意义下的混沌。数值模拟进一步验证了理论分析的结果。
Piezoelectric materials, which include piezoelectric lead-zirconate-titanate (PZT) and piezoelectric polyvinylidene fluoride (PVDF), are new functional materials in engineering applications. Because of its properties of high strength, stiffness and durability, such materials can be used as the actuators and sensors in various engineering structures. For instance, composite laminated piezoelectric plates have been widely adopted in aerospace engineering over the last two decades, including the structural elements of the aircraft, large space station and shuttle. Besides, the morphing structures or morphing wings may be composed of laminated piezoelectric materials, which can undergo large oscillations of motion under the external excitations. These oscillating systems are thus nonlinear in nature. Research on the nonlinear dynamics of composite laminated piezoelectric plates plays a vital role in engineering applications. Heretofore, a few studies on the bifurcation and chaotic motions of composite laminated piezoelectric plates have been conducted. To the author’s best knowledge, it is the first-known solutions to reveal the bifurcation and chaotic motions of a simply supported symmetric cross-ply composite laminated piezoelectric beam and rectangular plate having the transverse and in-plane excitations. The global perturbation method is used to investigate the periodic and chaotic motions of composite laminated piezoelectric plates.
     The major research scope and the innovative outcome of this dissertation are briefly summarized as follows:
     (1) The nonlinear oscillation, bifurcation and chaotic dynamics of a simply supported laminated composite piezoelectric beam are analyzed. The beam with piezoelectric materials is forced by the axial and transverse loads. In accordance with the von Karman-type equations and Reddy’s third-order shear deformation plate theory, the nonlinear equations of motion for the laminated composite piezoelectric beam are derived. The Galerkin approach is employed to transform the governing partial differential equations to two-degree-of-freedom ordinary differential equations. Consider the resonant cases of 1:9 internal resonance and principal parametric resonance-1/2 subharmonic resonance, the method of multiple scales is applied to yield the four-dimensional averaged equations. Making use of the averaged equations herein, the bifurcation and chaotic motions of the laminated composite piezoelectric beam are studied. The periodic and chaotic motions of beams are found by using the numerical simulation. It is concluded that the chaotic responses are sensitive to the piezoelectric excitations. By changing the piezoelectric excitations, we can control the nonlinear oscillation of laminated composite piezoelectric beams.
     (2) The nonlinear dynamics of a simply supported symmetric cross-ply composite laminated piezoelectric rectangular plate having the transverse and in-plane excitations are studied. Based on Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the composite laminated piezoelectric rectangular plate are derived by Hamilton’s principle. The excitation loaded by piezoelectric layers is considered. The Galerkin approach is employed to deduce a two-degree-of-freedom nonlinear system under the combination of the parametric and external excitations from the governing partial differential equations. Consider the resonant cases of 1:1, 1:2 and 1:3 internal resonance and principal parametric resonance-1/2 subharmonic resonance, the method of multiple scales is utilized to form the four-dimensional averaged equation of composite laminated piezoelectric rectangular plates. Numerical method is implemented to study the bifurcation and chaotic dynamics of composite laminated piezoelectric rectangular plates. The numerical results show the existence of the periodic and chaotic motions in the averaged equation. It is observed that the chaotic responses are especially sensitive to the forcing and parametric excitations. The influence of the transverse, in-plane and piezoelectric excitations on the bifurcation and chaotic behavior of composite laminated piezoelectric rectangular plates is investigated numerically.
     (3) Based on Hamilton’s principle, the governing nonlinear equations of motion for composite laminated piezoelectric rectangular plates are derived, Selecting the appropriate mode functions satisfies the boundary conditions of composite laminated piezoelectric rectangular plates, the Galerkin approach is employed to reduce the partial differential governing equations to a three-degree-of-freedom nonlinear system under the combination of the parametric and external excitations. Consider the resonant cases of 1:2:3 and 1:2:4 internal resonance and principal parametric resonance-1/2 subharmonic resonance, the method of multiple scales is utilized to obtain the six-dimensional averaged equation of composite laminated piezoelectric rectangular plates. Numerical method is implemented to study the bifurcation and chaotic dynamics of composite laminated piezoelectric rectangular plates. The influence of the transverse, in-plane and piezoelectric excitations on the bifurcation and chaotic behavior of composite laminated piezoelectric rectangular plates is investigated numerically.
     (4) By virtue of Hamilton’s principle, the governing nonlinear equations of motion for the composite laminated piezoelectric rectangular plate are derived, Selecting the appropriate mode functions satisfies the boundary conditions of composite laminated piezoelectric rectangular plates, the Galerkin approach is employed to turn the partial differential governing equations into a four-degree-of-freedom nonlinear system under the combination of the parametric and external excitations. Consider the resonant cases of 1:2:9:9 internal resonance and principal parametric resonance-1/2 subharmonic resonance, the method of multiple scales is utilized to achieve the eight-dimensional averaged equation of composite laminated piezoelectric rectangular plates. Numerical method is implemented to study the bifurcation and chaotic dynamics of composite laminated piezoelectric rectangular plates. The influence of the transverse, in-plane and piezoelectric excitations on the bifurcation and chaotic behavior of composite laminated piezoelectric rectangular plates is investigated numerically.
     (5) Global bifurcation and Shilnikov type chaotic dynamics of composite laminated piezoelectric rectangular plates are primitively probed by means of the global perturbation method. According to the four dimensional averaged equations of composite laminated piezoelectric rectangular plates, the theory of normal form is applied to further reduce the explicit formulas to the simple one. The global perturbation method proposed by Kovacic and Wiggins are generalized herein to study the Shilnikov type single-pulse homoclinic orbit and chaotic dynamics of composite laminated piezoelectric rectangular plates. Theoretical analysis is not only to demonstrate the existence of Pitchfork bifurcation and Shilnikov type single-pulse homoclinic orbit, but also reveals the chaotic motion of the Smale horseshoe in the system. The numerical simulation of the multi-pulse orbits is presented to verify the analytical solutions.
引文
1.李东旭,大型挠性结构分散化振动控制,国防科技大学出版社,长沙,2002.
    2.张景绘,李宁,李新民,李智明,一体化振动控制,北京,2005.
    3.栾桂冬,张金铎,王仁乾,压电换能器和换能器陈,北京,北京大学出版社,2005.
    4. S.铁摩辛柯, D. H.杨, W.小韦孚著,胡人礼译,工程中的振动问题,人民铁道出版社, 1978.
    5. J. N. Reddy, Mechanics of laminated composite plates and shells, New York, 2004.
    6. J. M. Rextuccio, C. M. Krousgrill and A. K. Bajaj, Nonlinear non-planar dynamics of a parametrically excited inextensional elastic beam, Nonlinear Dynamics 2, p263-289, 1991.
    7. G. Suire and G. Cederbaum, Periodic and chaotic behavior of viscoelastic nonlinear (elastica) bars under harmonic excitations, International Journal of Mechanical Sciences 37, p753-772, 1995.
    8. A. H. Nayfeh and W. Lacarbonara, Nonlinear normal modes of buckled beam: three-to-one and one-to-one internal resonances, Nonlinear Dynamics 18, p253-273, 1999.
    9. B. Sun and D. Huang, On the feedback control gain of smart laminated beams, plates and shells, 61th International Conference on Composite Engineering (ICCE/6), p859-860, 1999.
    10. D. Huang and B. Sun, Approximate analytical solutions of smart composite mindlin beams, Journal of Sound and Vibration 244, p379-394, 2001.
    11. D. Halim and S. O. R. Moheimani, Spatial resonant control of flexible structures-application to a piezoelectric laminate beam, IEEE Transactions on Control Systems Technology 9, p37-53, 2001.
    12. K. Yagasaki, Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: Chaotic free vibrations of an undamped, buckled beam, Physics Letters A, 285, p55-62, 2001.
    13.冯志华,胡海岩,内共振条件下直线运动梁的动力稳定性,力学学报34, p389-400, 2002.
    14. H. Waisman and H. Abramovich, Variation of natural frequencies of beams using the active stiffening effect, Composites Part B: Engineering 33, p415-424, 2002.
    15. M. Abolghasemi and M. A. Jalali, Attractors of a rotating viscoelastic beam, International Journal of Non-Linear Mechanics, 38, p739-751, 2003.
    16. W. Zhang, F. X. Wang and J. W. Zu, Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam, Journal of Sound and Vibration, 37, p949-974, 2004.
    17.陈树辉,黄建亮,佘锦炎,轴向运动梁横向非线性振动研究,动力学与控制学报2, p40-45, 2004.
    18.董兴建,孟光,压电悬臂梁的动力学建模与主动控制,振动与冲击24, p54-57, 2005.
    19. R. Heuer and C. Adam, Piezoelectric vibrations of composite beams with interlayer slip, Acta Mechanica 140, p247-263, 2005.
    20. H. ?ztürk and M. Sabuncu, Stability analysis of a cantilever composite beam on elastic supports, Composites Science and Technology 65, p1982-1995, 2005.
    21. S. R. Marur and T. Kant, On the angle ply higher order beam vibrations, Computational Mechanics 40, p25-33, 2007.
    22. L. Angelo and D. E. Angelo, Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam, Non-linear Dynamics of Structures and Mechanical Systems 84, p1596-1605, 2006.
    23. D. X. Cao and W. Zhang, Studies on bifurcation and chaos of a string-beam coupled system with two degrees-of-freedom, Nonlinear Dynamics 45, p131-147, 2006.
    24.李晓军,陈立群,轴向运动简支-固支梁的横向振动和稳定性,机械强度28, p654-657, 2006.
    25. F. S. M. Jarrara and M. N. Hamdan, Nonlinear vibrations and buckling of a flexible rotating beam: A prescribed torque approach, Mechanism and Machine Theory, 42, p919-939, 2007.
    26. A. Y. T. Leung and J. J. Zheng, Closed form stress distribution in 2D elasticity for all boundary conditions, Applied Mathematics and Mechanics 28, p1629-1642, 2007.
    27. F. S. Barbosa and M. C. R. Farage, A finite element model for sandwich viscoelastic beams: Experimental and numerical assessment, Journal of Sound and Vibration 317, p91-111, 2008.
    28. S. A. Emam and A. H. Nayfeh, Postbuckling and free vibrations of composite beams, Composite Structures 20, p10-16, 2008.
    29. Y. Fridman and H. Abramovich, Enhanced structural behavior of flexible laminated composite beams, Composite Structures 82, p140-154, 2008.
    30. W. Zhang, F. X. Wang and J. W. Zu, Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam, Journal of Sound and Vibration 278, p949-974, 2004.
    31. W. Zhang, F. X. Wang and J. W. Zu, Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation, Chaos, Solitons and Fractals 24, p977-998, 2005.
    32. W. Zhang, F. X. Wang and M. H. Yao, Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Nonlinear Dynamics 40, p251-279, 2005.
    33. M. H. Yao and W. Zhang, Multipulse Shilnikov orbits and chaotic dynamics for nonlinear nonplanar motion of a cantilever beam, International Journal of Bifurcation and Chaos 15, p3923-3952, 2005.
    34. M. H. Yao and W. Zhang, Shilnikov-type multipulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate, International Journal of Bifurcation and Chaos 17, p851-875, 2007.
    35. W. Zhang, B. Hu, D. X. Cao, M. H. Yao and J. H. Fan, Experimental investigation of nonplanar chaotic vibrations in a cantilever beam with vertical base excitation, ASME DETC2007 5, p1647-1651, 2008.
    36. W. Zhang, Z. G. Yao, L. H. Chen and X. L. Yang, Periodic and chaotic oscillations of laminated composite piezoelectric rectangular plate with 1:3 internal resonance, ASME IMECE 2007 9, p1893-1901, 2008.
    37. W. Zhang, J. H. Zhang and M. H. Yao, Multi-pulse chaotic motion for a non-autonomous buckled plate by using the extended Melnikov method, ASME IMECE 2007, p1903-1909, 2008.
    38. W. Zhang, Z. G. Yao and M. H. Yao, Bifurcations and chaos of composite laminated piezoelectric rectangular plate with one-to-two Internal resonance, Science in China Series E: Technological Sciences 52, p731-742, 2009.
    39. J. T. P. Yao, Concept of structure control, ASCE Journal of Structure Division 98, p1567-1574,1972.
    40. Y. Y. Yu, On the Ordinary, Generalized, and Pseudo-variational equations of motion in nonlinear elasticity, piezoelectricity, and classical plate theories, ASME Journal of Applied Mechanics 62, p471-478, 1995.
    41. D. Schaeffer and M. Golubitsky, Boundary conditions and mode jumping in the buckling of a rectangular plate, Communications in Mathematical Physics 69, p209-236, 1979.
    42. E. K. Dimitriadis, C. R. Fuller and C. A. Roger, Piezoelectric actuators for distributed noise and vibration excitation of thin plates, Proceeding of ASME Failure Prevent and Reliability Conference, p223-233, 1989.
    43. J. Aboudi, G. Cederbaum and I. Elishakoff, Dynamic stability analysis of viscoelastic plates by Lyapunov exponents, Journal of Sound and Vibration 139, p459-467, 1990.
    44. C .K. Lee, Theory of laminated piezoelectric plates for the design of distributed sensors/actuator. Part I:Governing equations and reciprocal relationships, Journal of Acoustical Society of American 87, p1144-1158, 1990.
    45. P. F. Pai and A. H. Nayfeh, A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors, International Journal of Solids and Structures 30, p1603-1630, 1993.
    46. H. S. Tzou and M. Gadre, Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls, Journal of Sound and Vibration 132, p433-450, 1989.
    47. E. F. Crawley and K. B. Lazarus, Induced strain actuation of isotropic and anisotropic plates, American Institute of Aeronautics and Astronautics 29, p944-951, 1991.
    48. E. F. Crawley and K. B. Laarus, Induced Strain Actuation of Isotropic and Anisotropic Plants, AIAAJ 29(6), p345-353, p1991.
    49. H. S. Tzou, Distributed modal identification and vibration control of continua: theory and application, Journal of Dynamics systems, measurement, and Control 113, p484-499, 1991.
    50. H. S. Tzou, A new distributed sensation and control theory for intelligent shells, Journal of Sound and Vibration, 152, p1776-1784, 1992.
    51. H. S. Tzou and J. P. Zhong, Electro mechanics and vibrations of piezoelectric shell distributed systems. Journal of Dynamics systems, measurement, and Control 115, p506-517, 1993.
    52. A. Rossi, C. Liang and C.A. Roger, Impedance modeling of piezoelectric driven systems: an application to cylindrical ring structure, the 34th IAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics and Materials Conference, AIAA/ASME adaptive Structures Forum, p3618-624, 1993.
    53. D. L. Prabhakara and P. K. Datta, Vibration and static stability characteristics of rectangular plates with a localized flaw, Computers and Structures 49, p825-836, 1993.
    54. D. Touati and G. Cederbaum, Dynamic stability of nonlinear viscoelastic plates, International Journal of Solids and Structures 31, p2367-2376, 1994.
    55. J. R. Pratt and A. H. Nayfeh, Design and modeling for chatter control, Nonlinear Dynamics 19, p49-69, 1999.
    56. T. R. Tauchert, F. Ashida, N. Noda, S. Adali, and V. Verijenko, Developments inthermopiezoelasticity with relevance to smart composite structures, Composite Structures 48, p31-38, 2000.
    57. J. Awrejcewicz and V. A. Krysko, Feigenbaum scenario exhibited by thin plate dynamics, Nonlinear Dynamics 24, p373-398 2001.
    58. L. Q. Chen and C. J. Cheng, Controlling chaotic oscillations of viscoelastic plates by the linearization via output feedback, Applied Mathematics and Mechanics 20, p1324-1330, 2006.
    59. J. Jia and C. A. Rogers, Formulation of a laminated shell theory incorporating embedded distributed actuators, Journal of Mechanical Design 112, p596-604, 1990.
    60. C. N. Della and D. Shu, Vibration of delaminated composite laminates: A Review, Applied Mechanics Reviews 60, p1-20, 2007.
    61. M. Ishihara, and Noda, Nonlinear dynamic behavior of a piezothermoelastic laminated plate with anisotropic material properties, Acta Mechanica 166, p103-106, 2003.
    62. M. Ishihara and N. Noda, Control of mechanical deformation of a laminate by piezoelectric actuator taking into account the transverse shear, Archive of Applied Mechanics 74, p16-28, 2004.
    63. D. Halim and S. O. R. Moheimani, An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate, Mechatronics 13, p27-47, 2003.
    64. S. Behrens, S. O. R. Moheimani and A. J. Fleming, Multiple mode current flowing passive piezoelectric shunt controller, Journal of Sound and Vibration 266, p929-942, 2003.
    65. C. K. Lee and F. C. Moon, Modal sensors actuators, Journal of Applied Mechanics 57, p434-441, 1990.
    66. T. Bailey and J. Hubbard, Distributed piezoelectric polymer active vibration control of a cantilever beam, Journal of Guidance Control and Dynamics 8, p605-611, 1985.
    67. C. K. Lee, W. W. Chang and T. C. Sullivan, Piezoelectric modal sensor actuator pairs for critical active damping vibration control, Journal of the Acoustical Society of America 90, p374-384, 1991.
    68. N. Mallik and M. C. Ray, Exact solutions for the analysis of piezoelectric fiber reinforced composites as distributed actuators for smart composite plates. International Journal of Mechanics and Materials in Design 2, p81-97, 2005.
    69. S. J. Lee and J. N. Reddy, Nonlinear finite element analysis of laminated composite shells with actuating layers, Finite Elements in Analysis and Design 43, p1-21, 2006.
    70. R. A. Arciniega and J. N. Reddy, Large deformation analysis of functionally gradedshells, International Journal of Solids and Structures 9, p1-17 2006,
    71. H. Santos and J. N. Reddy, A finite element model for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators, Composite Structures 75, p170-178, 2006.
    72. J. N. Reddy, An overview of the relationships between solutions of the classical and shear deformation plate theories. Composites Science and Technology 60, p2327-2335, 2000.
    73. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press. Boca Raton, 2004.
    74. J. N. Reddy, Analysis of laminated adaptive plate structures using layerwise finite element models. Computers and Structures 82, p1939-1959, 2004.
    75.任兴仑,童昕,压电类智能层合结构的力学和计算模型综述,噪声与振动控制22, p27-30, 2002
    76. S. J. Lee and J. N. Reddy, Nonlinear deflection control of laminated plates using third-order shear deformation theory, International Journal of Mechanics and Materials in Design 65, p33–61, 2004
    77. J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Oxford, UK, 2004.
    78. Y. S. Shih and P. T. Blotter, Non-linear vibration analysis of arbitrarily laminated thin rectangular plates on the elastic foundation, Journal of Sound and Vibration 167, p433-459, 1993.
    79. P. F. Pai and A. H. Nayfeh, A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors, International Journal of Solids and Structures, 30, p1603-1630, 1993
    80. M. C. Ray and J. N. Reddy, Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites, Composites Science and Technology 65, p1226-1236, 2005.
    81. A. Abe, Y. Kobayashi and G. Yamada, Two-mode response of simply supported rectangular laminated plates, International Journal of Non-Linear Mechanics 33, p675-690, 1998.
    82. A. Abe, Y. Kobayashi and G. Yamada, Three-mode response of simply supported, rectangular laminated plates, JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing 41, p51-59, 1998.
    83. H. S. Turkmen, Nonlinear structural response of laminated composite plates subjected to blast loading, AIAA Journal 37, p1639-1647. 1999.
    84. P. Ribeiro and M. Petyt, Geometrical non-linear, steady-state, forced, periodic vibration of plate, part I: model and convergence study, Journal of Sound and Vibration 226, p955–983, 1999.
    85. P. Ribeiro and M. Petyt, Non-linear free vibration of isotropic plates with internal resonance, International Journal of Non-Linear Mechanics 35, p263–278, 2000.
    86. M. Ganapathi, T. K. Varadan and B. S. Sarma, Nonlinear flexural vibrations of laminated orthotropic plates, Computers & Structure 39, p685–688,1991.
    87. M. Ganapathi and B. P. Patel, Non-linear dynamic stability characteristics of elastic plates subjected to periodic in-plane load, International Journal of Non-Linear Mechanics 35, p467-480, 2000.
    88. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration 239, p1013-1036, 2001.
    89. P. Yu and W. Zhang, Vibration analysis on a thin plate with the aid of computation of normal forms, International Journal of Non-Linear Mechanics 36, p597-627, 2001.
    90. B. Harras, R. Benamar and R. G. White, Geometrically non-linear free vibration of fully clamped symmetrically laminated rectangular composite plates, Journal of Sound and Vibration 251, p579-619, 2002.
    91. J. Awrejcewicz and V. A. Krysko, Some problems of analysis and optimization of plates and shells, Journal of Sound and Vibration 264, p343-376, 2002.
    92. J. Awrejcewicz, Bifurcations of a thin plate-strip excited transversally and axially. Nonlinear Dynamics, 32, p187-209, 2003.
    93. J. Awrejcewicz, Complex parametric vibrations of flexible rectangular plates, Meccanica, 39, p221-244, 2004.
    94. A. Messina and K. P. Soldatos, A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses, International Journal of Solids and Structures 39, p617-635, 2002.
    95. R. Gilat and J. Aboudi, The Lyapunov exponents as a quantitative criterion for the dynamic buckling of composite plates, International Journal of Solids and Structures 39, p467-481, 2002.
    96. P. Yu, W. Zhang and Q. S. Bi, Vibration analysis on a thin plate with the aid of computation of normal forms, International Journal of Non-Linear Mechanics 36, p597-627, 2001.
    97.姚明辉,张伟,含参数激励的薄板的多脉冲轨道和混沌动力学分析,首届航空航天力学会议,2004.
    98. M. H. Yao, W. Zhang and J. H. Fan, Many pulses heteroclinic orbits with a Melnikovmethod and chaotic dynamics of a parametrically and externally excited thin plate, The Second International Conference on Dynamics, Vibration and Control, Beijing, China, August, 2006.
    99. J. H. Zhang and W. Zhang, Global bifurcation and chaotic dynamics for a non-autonomous buckled thin plate, Journal of Dalian University of Technology 46, p1-6, 2006.
    100. J. H. Zhang, W. Zhang and M. H. Yao, Global dynamics for non-autonomous buckled plate with parametrically and externally excitations, Proceedings of the Fifth International Conference on nonlinear Mechanics, Shanghai, China, 2007.
    101. M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics of a parametrically and externally excited thin plate, International Journal of Bifurcations and Chaos 17, p1-25, 2007.
    102. W. Zhang, J. H. Zhang and M. H. Yao, Multi-pulse chaotic motion for a non-autonomous buckled plate by using the extended Melnikov method, Proceedings of the ASME 2007 International Mechanical Engineering Conferences and Exposition, Seattle, Washington, USA, November 11-15, 2007.
    103.姚明辉,张伟,利用广义Melnikov方法研究薄板的多脉冲混沌运动,第八届全国非线性动力学和运动稳定性学术会议, 2007.
    104. S. Wiggins, Global Bifurcations and Chaos, Spring-Verlag, New York, 1988.
    105. G. Kovacic and S. Wiggins, Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D 57, p185-225, 1992.
    106. G. Kovacic, Hamiltonian dynamics of orbits homoclinic to a resonance band, Physics Letters A 167, p137-142, 1992.
    107. G. Kovacic, Dissipative dynamics of orbits homoclinic to a resonance band, Physics Letters A 167, p143-150, 1992.
    108. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, Journal of Dynamics and Differential Equations 5, p559-597, 1993.
    109. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems, SIMA Journal of Mathematical Analysis 26, p1611-1643, 1995.
    110. K. Yagasaki, The method of Melnikov for perturbations of multi-degree-of-degree Hamiltonian systems, Nonlinearity 12, p799-822, 1999.
    111. K. Yagasaki, Horseshoe in two-degree-of-freedom Hamiltonian systems withsaddle-centers, Archive for Rational Mechanics and Analysis 154, p275-296, 2000.
    112. K. Yagasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of freedom Hamiltonian systems with saddle centers, Nonlinearity 16, p2003-2012, p2003.
    113. R. Camassa, On the geometry of an atmospheric slow manifold, Physica D 84, p357-397, 1995.
    114. Z. C. Feng and K. M. Liew, Global bifurcations in parametrically excited systems with zero-to-one internal resonance, Nonlinear Dynamics 21, p249-263, 2000.
    115. B. Sandstede, S. Balasuriya, C. K. R. T. Jones and P. Miller, Melnikov theory for finite-time vector fields, Nonlinearity 13, p1357-1377, 2000.
    116. S. Balasuriya, C. K. R. T. Jones and B. Sandstede Viscous perturbations of vorticity-conserving flows and separatrix splitting, Nonlinearity 11, p47-77, 1998.
    117. N. Malhotra and N. Sri Namachchivaya, Chaotic dynamics of shallow arch structures under 1:2 resonance, Journal of Engineering Mechanics 6, p612-619, 1997.
    118. N. Malhotra and N. Sri Namachchivaya, Chaotic motion of shallow arch structures under 1:1 internal resonance, Journal of Engineering Mechanics 6, p620-627, 1997.
    119. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators, Nonlinear Dynamics 20, p319-359, 1999.
    120. Kazuyuki and Yagasaki, Horseshoe in two-degree-of-freedom Hamiltonian systems with saddle-centers, Arch Rational Mech Anal 154, p275-296, 2000.
    121. P. C. Xu and Z. J. Jing, Silnikov’s orbit in coupled Duffing’s systems, Chaos, Solitons and Fractals 11, p853-858, 2000.
    122. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration 239, p1013-1036, 2001.
    123. W. Zhang and Y. Tang, Global dynamics of the cable under combined parametrical and external excitations, International Journal of Non-linear Mechanics 37, p505-526, 2002.
    124. W. Zhang and P. Yu, Degenerate bifurcation analysis on a parametrically and externally excited mechanical system, International Journal of Bifurcation and Chaos 11, p689-709, 2001.
    125. W. Zhang and X. Y. Wang, Chaotic dynamics of perturbed Sine-Gordon equation, The Fourth International Conference on Nonlinear Mechanics, Shanghai, August, 2002.
    126.W. Zhang and D. X. Cao, Local and global bifurcations of L-mode to H-mode transition near plasma edge in Tokamak, Chaos, Solitons and Fractals 29, p223-232, 2006.
    127.W. Zhang and M. H. Yao, Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, Chaos, Solitons and Fractals 28, p42-66, 2006.
    128.W. Zhang, Y. Chen and D. X. Cao, Computation of normal forms for eight-dimensional nonlinear dynamical system and application to a viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation 7, p35-58, 2006.
    129.W. Zhang, C. Z. Song and M. Ye, Further studies on nonlinear oscillations and chaos of a rectangular symmetric cross-by laminated plate under parametric excitation, International Journal of Bifurcation and Chaos 16, p325-347, 2006.
    130.W. Zhang, M. H. Yao and X. P. Zhan, Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness, Chaos, Solitons and Fractals 27, p175-186, 2006.
    131.M. Ye, Y. H. Sun and W. Zhang, X. P. Zhan and Q. Ding, Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate under parametric excitation, Journal of Sound and Vibration 287, p723-758, 2005.
    132.M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics in nonlinear nonplanar motion of a cantilever beam, International Journal of Bifurcation and Chaos 15, p3923-3952, 2005.
    133.W. Zhang and X. P. Zhan, Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness, Nonlinear Dynamics 41, p331-359, 2005.
    134.W. Zhang, Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Chaos, Solitons and Fractals 26, p731-745, 2005.
    135.M. Ye, J. Lu, W. Zhang, and Q. Ding, Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate, Chaos, Solitons and Fractals 26, p195-213, 2005.
    136.M. H. Yao and W. Zhang, Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation 6, p37-46, 2005.
    137.L. H. Chen, W. Zhang and Z. H. Yao, Research on low-velocity impact response of laminated composite plate with multiple delaminations, International Journal of Nonlinear Sciences and Numerical Simulation 6, p55-62, 2005.
    138.D. X. Cao and W. Zhang, Analysis on nonlinear dynamics of a string-beam coupled system, International Journal of Nonlinear Sciences and Numerical Simulation 6, p47-54, 2005.
    139.W. Zhang and J. Li, Global analysis for a nonlinear vibration absorber with fast and slow modes, International Journal of Bifurcation and Chaos 11, p2179-2194, 2001.
    140.J. Li, D. Wang and W. Zhang, General forms of the simplest normal forms of Bogdanov-Takens singularities, Dynamics of Continuous, Discrete and Impulsive Systems 8, p519-530, 2001.
    141.W. Zhang and P. Yu, Degenerate bifurcation analysis on a parametrically and externally mechanical system, International Journal of Bifurcation and Chaos 11, p689-709, 2001.
    142.W. Zhang, Z. M. Liu and P. Yu, Global dynamics of a parametrically and externally excited thin plate, Nonlinear Dynamics 24, p245-268, 2001.
    143.W. Zhang and P. Yu, A study of the limit cycles associated with a generalized codimension-3 Lienard oscillator, Journal of Sound and Vibration 231, p145-173, 2000.
    144.L. H. Chen, W. Zhang and Y. Q. Liu, Modeling of nonlinear oscillations for viscoelastic moving belt using generalized Hamilton’s principle, Journal of Vibration and Acoustics 129, p128-132, 2007.
    145.J. Li., S. F. Miao and W. Zhang, Analysis on bifurcations of multiple limit cycles for a parametrically and externally excited mechanical system, Chaos, Solitons and Fractals 31, p960-976, 2007.
    146.陈祎,张伟,六维非线性动力系统三阶规范形的计算,动力学与控制学报2, p31-35, 2004.
    147.张伟,温洪波,姚明辉,参数激励粘弹性传动带1:3内共振时的周期运动和混沌动力学,力学学报36, p443-454, 2004.
    148.姚明辉,张伟,柔性悬臂梁非线性非平面运动的多脉冲轨道分析,动力学与控制学报2, p11-14, 2004.
    149.W. Zhang, X. Y. Wang and M. H. Yao, Study on chaotic dynamics of perturbed sine-Gordon equation,北京工业大学学报30, p134-138, 2004.
    150.叶敏,吕敬,丁千,张伟,复合材料层合板1:1参数共振的分岔研究,力学学报36, p64-71, 2004.
    151.张海燕,张伟,电磁轴承-转子系统的全局分岔和混沌动力学,力学学报增刊, p131-134, 2002.
    152.张伟,柔性梁的非线性动力学和分叉,北京工业大学学报27, p400-405, 2001.
    153.A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700