硅基微尺度燃烧器燃烧特性与结构失效的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于燃烧的微发电系统是一种新概念的电池,它将一个发电过程集成在数十立方厘米甚至数立方厘米的空间内,具有化学电池无法比拟的优越性,因此,成为目前世界各国关注和竞相研究的焦点和热点。本文以美国麻省理工学院研制的硅基六晶片微燃烧器为研究对象,采用数值计算的方法,开展小/微燃烧理论和技术,微燃烧器结构设计方面的应用基础性研究,主要包括如下内容:
     1、硅基六晶片微燃烧器燃烧特性的研究
     以氢气/空气为混合燃料,采用考虑了基元反应动力学机理燃烧程序的二维CFD数值分析方法,主要研究微尺度下燃料混合当量比、燃料流速、燃烧器壁墙传热系数对该尺度燃烧器燃烧特性的影响,重点探讨该燃烧器发生熄火、回燃的症结,并将所计算的结果与美国麻省理工学院的实验结果进行比较,以检验所使用方法的正确性。
     2、微燃烧器结构的虚拟装配技术的研究
     通过对目前微燃烧器结构设计方法的研究,提出利用机械虚拟装配技术完成微燃烧器的结构设计,主要研究利用基于特征的零件实体建模技术构建微燃烧器各个晶片的方法,研究利用虚拟装配技术模拟具体实际装配过程完成微燃烧器结构的方法、研究采用干涉检验技术、爆炸技术检查整个燃烧器结构正确性的方法,并将所研究的结果与新加坡高性能研究所构建微燃烧器的方法进行对比,以验证所研究方法的正确性、可行性和优越性。
     3、微燃烧器的结构失效的研究
     在上述燃烧器燃烧特性、结构设计的研究基础上,以硅基六晶片微燃烧器为研究对象,采用理论和数值计算相结合的方法,在不考虑微燃烧器加工过程中残余应力的前提下(由于实验经费、实验设备的缺乏),首先,在不发生回燃、发生回燃两种情形下,分别对微燃烧器结构进行应力、应变分析,然后引入机械模糊可靠性设计方法预测该燃烧器的结构寿命,并将所计算的结果与美国麻省理工学院的实验结果进行比较,以检验所使用方法的正确性。
     综上所述,本文提出利用二维CFD数值计算方法,在考虑多步基元化学反应机理的基础上,研究微尺度燃烧器燃烧特性及火焰的稳燃机理;提出利用机械虚拟装配技术构建微燃烧器的结构,并在此基础上,对处于运行过程中的微燃烧器结构进行应力、应变分析,最后,提出利用机械模糊可靠性设计方法估算微燃烧器的寿命,探索了一套研究微尺度燃烧器的新思路和新方法,为以后微尺度燃烧器性能优化打下坚实的基础。
The combustion-based micro-power device, such as a micro-gas turbine engine, is considered as a novel battery, because it can produce power in a volume less than from several cubic centimeters to dozens of cubic centimeters. It is its excellent advantages over other batteries that make itself attracted by all the countries around the world. Having analyzed the above, the objective of the thesis is to perform numerical simulations to analyse the performance of the micro-combustor under various conditions based on the prototype used in the MIT micro-gas turbine, such as its combustion behaviour, stress and strain condition as well as evaluating its fatigue life. The thesis is specifically intended to
     1) analyze the combustion behaviour of a six-wafer micro-combustor. In detail, firstly we performed a two-dimensional numerical simulation to investigate the effect of various conditions, say, the hydrogen/air ratio, the hydrogen/air mass flow rate and the heat loss through the outer wall of the micro combustor, and then we compared the computing results above with the experimental studies on the micro combustor from MIT in order to verify whether or not the approaches used in the thesis are right.
     2) assemble the micro-combustor based on virtual assembly techniques. Based on the prototype used in the MIT micro-gas turbine engine, an idea of creating its three-dimensional micro-combustor with virtual assembly technique was proposed after analyzing the traditional approaches of geometric modeling in the field of CFD. In detail, the theory and the process of virtual assembly techniques were firstly depicted, and then the three-dimensional micro-combustor was constructed to demonstrate the idea in SolidWorks with virtual design techniques, such as modeling techniques based on features, virtual assembly techniques and the exploded view. Lastly, the structure of a micro-combustor created in the thesis is compared with the one made in Singapore to verify whether or not the approaches used in the thesis are right.
     3) study the failure occurring on the micro-combustor. Based on the combustion behaviour of a micro-combustor, either theoretic or computational approaches were performed to study the failure on the micro-combustor without regard to the residual stress from the fabrication process. In detail, FEA was firstly performed to.investigate the structure of a micro-combustor either in non- burning in the recirculation jacket or burning in the recirculation jacket. And then fuzzy probability was employed to evaluate the fatigue life of the micro-combustor. Lastly, the computing results above is compared with the experimental studies on the micro combustor from MIT in order to verify whether or not the approaches used in the thesis are right.
     In general, a two-dimensional numerical simulation was performed to investigate the effect of various conditions in view of 19 reversible elementary reactions and nine species; an idea of creating the three-dimensional micro-combustor with virtual assembly techniques was proposed after analyzing the traditional approaches of geometric modeling in the field of CFD; either theoretic or computational approaches were performed to study the failure on the micro-combustor without regard to the residual stress from the fabrication process. The objective we try to do in the thesis is to seek a new approach to design a micro-combustor in order to build up a solid foundation to optimize the micro-combustor.
引文
[1]J.M.McMichael,M.S.Francis.Micro air vehicles- toward a new dimension in flight[J].USAF,DARPA TTO document.August 7,1997
    [2]吴宇怀,周兆英,熊沈蜀等.微型飞行器的研究现状及其关键技术[J].武汉科技大学学报(自然科学版),2000,23(2):170-174
    [3]H.Y.Wu,D.Sun,Z.Y.Zhou,et al.Micro air vehicle:configuration,analysis,fabrication,and test[J].IEEE/ASME Transactions on mechatronics,2004,9(1):108-117
    [4]Micro Air Vehicles.Themed Studies TS6.March,1999
    [5]D.Sun,H.Y.Wu,R.Zhu,et al.Development of micro air vehicle based on aerodynamic modeling analysis in tunnel tests[J].Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona,Spain,2005
    [6]Y.S.Lian,W.Shi,D.Viieru,B.N.Zhang.Membrane wing aerodynamics for micro air vehicles[J].Progress in Aerospace Sciences,2003,39:425-465
    [7]胡宇群.微型飞行器中的若干动力学问题研究[D].南京航空航天大学博士学位论文,2002,2-8
    [8]J.M.Grasmeyer,M.T.Keennon.Development of the black widow micro air vehicle[J].2001.AIAA Paper No.2001-0127.
    [9]张根煊.基于多孔介质内燃烧的微小型化学推进系统的数值模拟[D].中国科学技术大学博士论文,2006.5.
    [10]曹海量.微尺度燃烧特性及微能源系统的研制[D].中国科学技术大学博士论文,2007.5.
    [11]梅涛,伍小平.微机电系统[M].北京:化学工业出版社,2003,49-118
    [12]JIN S H,MENG W,Kurichi Kumar.Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers Part Ⅱ CFD analysis for a micro-combustor[J].Chemical Engineering Science 60,2005:3507-3515.
    [13]C.M.Spadaccini,A.Mehra,J.Lee.High Power Density Silicon combustion systems for micro gas turbine engines [J] . Journal of Engineering for Gas Turbines and Power, 2003 (7) : 709-719.
    [14] S. W. Janson, H. Helvajian. MEMS, Microengineering and aerospace systems [ J] . AIAA, 1999-3802
    
    [15] http://news.xinhuanet.com/mil/2004-03/03/content_1342982.htm
    [16] http://www.ultracellpower.com/pwp/apps_military.htm
    [17] A. Mehra, A. A. Ayon, I. A. Waitz, et al. Microfabrication of high-temperature silicon devices using wafer bonding and deep reactive ion etching [ J] . IEEE Journal of microelectromechanical systems, 1999, 8(2): 152-160
    [18] A. H. Epstein, S. D. Senturia, G.Anathasuresh, et al. Power MEMS and microengines [ J] . In: Proceeding of International Conference on Transducer' 97, Chicago, 1997,2:753-756
    [19] http://www.primidi.com/2005/08/27.html
    [20] http://www.ultracellpower.com/
    [21] X.L. Wang, et al. Micro-porous layer with composite caYbon black for PEM fuel cells [J] . Electrochimica Acta, 2006,11401 (in press)
    [22] http://www.neahpower.com/technology/stackperformance.shtml
    [23] T. Ito, M. Kunimatsu. Fabrication of a micro DMFCs array made of photosensitive glass [ J] . Electrochemistry Communications, 2006,8:91 -94
    [24] C.E. Shi, A. B. Yao, X. D. Tang. Micro-electro-mechanical systems (MEMS)-based micro-scaledirect methanol fuel cell development. Energy [J] , 2006,31:636-649
    [25] Y. Kawamura. Preparation of Cu/ZnO/Al2O3 catalyst for a micro methanol reformer [J] . Journal of Power Sources, 2005,150:20-26
    [26] G.Q. Lu, C.Y. Wang. Development of micro direct methanol fuel cells for high power applications [J] .Journal of Power Sources, 2005, 144: 141 -145
    [27] http://www.cwru.edu/cse/eche/people/faculty/wainright/index.html
    [28] http://www.engr.uconn.edu/~jmfent/CMU402.pdf
    [29] http://www.news.cornell.edu/releases/Oct02/cantilever.ws.html
    [30] http://www.newscientist.com/article.ns?id=dn2951
    [31] http://www.devicelink.com/mddi/archive/02/12/009.html
    
    [32] L. Sitzki, K. Borer, S. Wussow, et al, Combustion in microscale heat-recirculating burners [J] , In: The Third Asia-Pacific Conference on Combustion. Seoul, Korea, 2001,24-27
    [33] K. Muruta, K. Takeda, L. Sitzki, et al. Catalytic combustion in microchannel for MEMS power generation [ J] . The Third Asia-Pacific Conference on Combustion, Seoul, Korea, 2001,24-27
    [34] S. B. Schaevitz, A. J. Franz, K. F. Jensen, M. A. Schmidt. A combustion-based MEMS thermoelectric power generator. Transducers '01 [J], The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June 2001
    [35] C. Zhang, K. Najafi, L. P. Bernal, et al. A micromachined combustor and its application to micro thermoelectric power generation [J]. In: Proc. 2002 ASME Inernational Mechanical Engineering Congress and Exposition (IMECE), New Orleans, LA, 2002
    [36] K.Yoshida, K. Kobayashi, T. Nakajima, et al. Micro-thermoelectric generator using catalytic combustor. In: International Workshop on Power MEMS [ J] , Tsukuba, Japan, 2002
    [37] O. M. Nielsen, L. R. Arana, C. D. Baertsch, et al. A thermophotovoltaic micro-generator for portable power applications [J] . In: The 12th Int'l Conference on Solid-State Sensors and Actuators, Boston, MA, June 2003
    [38] W. M. Yang, S. K. Chou, C. Shu, et al. Combustion in micro-cylindrical combustors with and without a backward facing step [J] . Applied Thermal Engineering, 2002,22 :1777-1787
    [39] W. M. Yang, S. K. Chou, C. Shu, et al. Microscale combustion research for application to micro thermophotovoltaic systems [ J] . Energy Conversion and Management, 2003,44: 2625-2634
    [40] W.M. Yang, S.K. Chou, C. Shu, et al. Research on micro-thermophotovoltaic power generators [ J] . Solar Energy Materials & Solar Cells, 2003,80:95-104
    [41] H. Xue, W. M. Yang, S. K. Chou, et al. Microthermophotovoltaics power system for "portable MEMS devices [J] . Microscale thermophysical engineering, 2005,9:85-97
    [42] D. C. Walther, A. P. Pisano. MEMS rotary engine power system: project overview and recent research results [J] .In: Proc. 4th Intl Symposium on MEMS and Nanotechnology, Charlotte, NC, June 2003,227-234
    [43] K. Fu, A. Knobloch, F. Martinez, et al. Design and fabrication of a silicon-based MEMS rotary engine [J] . In: Proc. ASME 2001 International Mechanical Engineering Congress and Exposition (IMECE), New York, NY, November 2001
    [44] K. Isomura, M. Murayama, H. Yamaguchi et al. Feasibility study of a gas turbine at micro scale [J] . In: Proceedings of the ASME Turbo Expo 2003, Atlanta, Georgia, June 2003
    [45] K. Isomura, M. Murayama, H. Yamaguchi, et al. Development of microturbocharger and microcombustor for a three-dimensional gas turbine at microscale [J] .In: Proceedings of the ASME Turbo Expo 2002, Amsterdam, Netherlands, June 2002
    [46] K. Isomura, M. Murayama, T. Kawakubo. Feasibility study of a gas turbine at micro scale [ J] . In: Proceedings of the ASME Turbo Expo 2001, New Orleans, Louisiana, June 2001
    [47] S. Kang, J. P. Johnston, T. Arima, et al. Micro-scale radial-flow compressor impeller made of silicon nitride -manufacturing and performance. In: Proceedings of ASME Turbo Expo 2003, Atlanta, GA, June 2003
    [48] J. Peirs, D. Reynaerts, F. Verplaetsen. Development of an axial microturbine for a portable gas turbine generato [J] r. Journal of Micromechanics and Microengineering, 2003,13 : S190-S195
    [49] J. Peirs, D. Reynaerts, F. Verplaetsen, et al. Development of a micro gas turbine for electric power generation [J] . In: The 14th MicroMechanics Europe Workshop, Delft, the Netherlands. 2003,215-218
    [50] J. Peris, D. Reynaerts, F. Verplaetsen. A microturbine for electric power generation [ J] . Sensors and Actuators A:Physical,2004,113(1):86-93
    [51]C.C.Lin,R.Ghodssi,A.A.Ayon,et al.Fabrication of a micro turbine/bearing rig[J].In:Solid-State Sensor and Actuator Workshop at Hilton Head,1998
    [52]R.Khanna.MEMS fabrication perspectives form the MIT microengine Project[J].Surface and coatings Technology,2003,(163-164):273-280
    [53]A.P.London,A.A.Ayon,A.H.Epstein,et al.Microfabrication of a high pressure bipropellant rocket engine[J].Sensors and Actuators A,2001,92:351-357
    [54]张孝友,卫尧,吴勇军等.氢氧混合比对微型TPV燃烧器内燃烧的影响[J].河南科技大学学报(自然科学版),2005,26(2):18-21
    [55]张永生,周俊虎,杨卫娟等.T型微细管道内氢气空气预混燃烧实验研究[J].中国电机工程学报,2005,25(21):128-131.
    [56]G.de Soete,Stability and propagation of combustion waves in inert porous media[J].In:The 11~(th)Symposium(International)on Combustion,1967,959-966
    [57]V.V.Zamashchikov.Combustion of gases in thin-walled small-diameter tubes.Combustion[J],Explosion and Chock Waves,1995,31,20
    [58]V.V.Zamashchikov.Experimental investigation of gas combustion regimes in narrow tubes[J].Combustion and Flame,1997,108,357
    [59]V.V.Zamashchikov.An investigation of gas combustion regimes in narrow tub e[J].Combustion Science and Technology,2001,166,1
    [60]B.A.Cooley,D.C.Walther,A.C.Femandez-Pello.Exploring the limits of microscale combustion[J].In:Western States Section/The Combustion Institute,Fall Meeting,Oct 25,1999
    [61]J.Vican,B.F.Gajdeczko,F.L.Dryer,et al.Development of a microreactor as a thermal source for MEMS power generation[J],In:The 29~(th)Symposium(International)on Combustion,July,Sapporo,2002
    [62]G.Veser,G.Friedrich,M.Z.Freygang.A micro reaction tool heterogeneous catalytic gas phase reactions[J].In:The 12~(th)IEEE International Conference,1999,394
    [63]G.Veser.Experimental and theoretical investigation of H_2 oxidation in a high-temperature catalytic microreactor[J].Chemical Engineering Science,2001,56:1265-1273
    [64]钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(6):584-588
    [65]C.M.Spadaccini,A.Mehra,J.Lee,et al.High power density silicon combustion system for micro gas turbine engines[J].Journal of Engineering for Gas Turbines and Power,2003,125:709-719
    [66]C.M.Spadaccinia,X.Zhang,C.P.Cadou,et al.Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J].Sensors and Actuators A,2003,103:219-224
    [67]A.Mehra,X.Zhang,A.A.Ayon,et al.A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of microelectromechanical systems,2000,9(4):517-527
    [68]M.Wu,J.S.Hua,K.Kumar.An improved micro-combustor design for micro gas turbine engine and numerical analysis[J].Journal of Micromechanics and Microengineering,2005,15:1817-1823
    [69]X.C.Shan,Z.F.Wang,Y.F.Jin,et al.Studies on a micro combustor for gas turbine engines[J].Journal of Micromechanics and Microengineering,2005,15:S215-S221
    [70]胡国新,王明磊.微细通道内可燃气体预混燃烧实验与微型发动机燃烧方案[J].热能动力工程,2003,18(4):352-355
    [71]胡国新,王明磊,李艳红,谭书华.过量空气系数对微细腔内氢气预混燃烧效率的影响[J].上海交通大学学报,2004,38(7):1177-1180
    [72]李德桃,邓军,潘剑锋,杨文明,薛宏.微型发动机的数值模拟和数值模拟[J].燃烧科学与技术,2003,9(2):183-185
    [1]傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989,9-60.
    [2]张斌全.燃烧理论基础[M].北京:北京航空航天大学出版社,1990,151-168.
    [3]陈义良.燃烧原理[M].1990,234-250.
    [4]徐泰然.MEMS和微系统—设计和制造[M].北京:机械工业出版社,2005,210-213.
    [5]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004,1-12.
    [6]C.M.Spadaccini,A.Mehra,J.Lee,et al.High power density silicon combustion system for micro gas turbine engines[J].Journal of Engineering for Gas Turbines and.Power,2003,125:709-719。
    [7]Alan H.Epstein.MiLLIMETER-SCALE,MEMS GAS TURBINE ENGINES[J].Proceedings of ASME Turbo Expo 2003 Power for Land,Sea,and Air June 16-19,2003,Atlanta,Georgia,USA.
    [8]JIN S H,MENG W,Kurichi Kumar.Numerical simulation ofthe combustion of hydrogen-air mixture in micro-scaled chambers Part Ⅱ CFD analysis for a micro-combustor[J].Chemical Engineering Science 60,2005:3507-3515.
    [9]Amit Mehra,Xin Zhang,Arturo A.Ayon A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of MicroElectroMechanical Systems,2000(4):517-527.
    [1] JIN S H, MENG W, Kurichi Kumar. Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers Part II CFD analysis for a micro-combustor [J] .Chemical Engineering Science 60, 2005: 3507-3515.
    [2] JIN S H, MENG W, Kurichi Kumar. Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers. Part I Fundamental study [ J]. Chemical Engineering Science 60, 3497-3506.
    [3] Carlos Fernandez-Pello, A., 2002. Micro-power generation using combustion: issues and approaches [ J ] . Twenty-Ninth International Symposium on Combustion, The Combustion Institute, Sapporo, Japan, pp.353-361.
    [4] Chen, K.S., 1999. Materials characterization and structural design of ceramic microturbomachinery [D] , Massachusetts Institute of Technology.
    [5] Epstein, A.H., Senturia, S.D., Anathasuresh, G., 1997. Power MEMS and microengines [ J] . IEEE Transducers '97 Conference, Chicago, pp.753-756.
    [6] Glassman, I., 1996. Combustion [M] . Academic Press, California.
    [7] Lee, D.H., Kwon, S., 2002. Heat transfer and quenching analysis of combustion in a micro combustion vessel [J] . Journal of Micromechanics and Microengineering 12, 670-676.
    [8] Linan, A., Williams, F.A., 1993. Fundamental Aspects of Combustion [M] . Oxford University Press, New York.
    [9] Maruta, K., Park, J.K., OH, K.C., Fujimori, T., Maruyama, S., 2002. Model experiments on combustion in micro-channel. International Workshop on Power MEMS[J], Tsukuba, Japan, November 12-13.
    [ 10] Mehra, A., 2000. Development of a high power density combustion system for a silicon micro gas turbine engine [D] Massachusetts Institute of Technology.
    [11] Mehra, A., Waitz, I.A., 1998. Development of a hydrogen combustor for a microfabricated gas turbine engine [J] . Solid State Sensor and Actuator Workshop, 660-672.
    
    [12] Norton, D.G., Vlachos, D.G., 2003. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures [J] . Chemical Engineering Science 58,4871-4882.
    [13] Ono, S., Wakuri, Y., 1977. An experimental study on the quenching of flame by narrow cylindrical passage [J] . Bulletin of JSME 20 (147),1191-1198.
    
    [14] Spadaccini, C.M., Mehra, A., Lee, J., Zhang, X., Lukachko, S., Waitz,I.A., 2003. High power density silicon combustion system for micro gas turbine engines [J] . Journal of Engineering for Gas Turbines and Power 125,709-719.
    [15] Tien, J.H., Stalker, R.J., 2002. Release of chemical energy by combustion in a supersonic mixing layer of hydrogen and air [ J] . Combustion and Flame 130,329-348.
    [16] Waitz, I.A., Gauba, G., Tzeng, Y.S., 1998. Combustors for micro-gas turbine engines[J]. Journal of Fluids Engineering 120,109-117.
    
    [17] C.M. Spadaccini, A. Mehra, J. Lee. High Power Density Silicon combustion systems for micro gas turbine engines [J] . Journal of Engineering for Gas Turbines and Power, 2003 (7) : 709-719.
    
    [18] Amit Mehra, Xin Zhang, Arturo A. Ayon A six-wafer combustion system for a silicon micro gas turbine engine [J]. Journal of MicroElectroMechanical Systems, 2000 (4): 517-527.
    
    [19] Alan H. Epstein. MILLIMETER-SCALE, MEMS GAS TURBINE ENGINES [J] . Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air June 16-19, 2003, Atlanta, Georgia, USA.
    
    [20] Aghalayam, P., Bui, P.A., Vlachos, D.G., 1998. The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures [J] . Combustion Theory Modelling 2, 515-530.
    [21]Carlos Fernandez-Pello,A.,2002.Micro-power generation using combustion:issues and approaches[J].Twenty-Ninth International Symposium on Combustion,Sapporo,Japan,the Combustion Institute,pp.1-45.
    [22]Choi,K.H.,Na,H.B.,Lee,D.H.,Kwon,S.,2004.Numerical simulation of flame propagation near extinction condition in a micro-combustor[J].Microscale Thermophysical Engineering 8,71-89.
    [23]Deutschmann,O.,Shmidt,R:,Behrendt,F.,Warnatz,J.,1996.Numerical modelling of catalytic ignition[J].Twenty-Sixth Symposium(International)on Combustion,pp.174-1754.
    [24]Linan,A.,Williams,F.A.,1993.Fundamental Aspects of Combustion[M].Oxford University Press,New York.
    [25]Norton,D.G.,Vlachos,D.G.,2003.Combustion characteristics and flame stability at the microscale:a CFD study of premixed methane/air mixtures[J].Chemical Engineering Science 58,4871-4882.
    [26]Norton,D.G.,Vlachos,D.G.,2004.A CFD StUdy for propane/air microflame stability[J].Combust.Flame 138,97-107.
    [27]曹海量.微尺度燃烧特性及微能源系统的研制[D],合肥:中国科学技术大学[博士论文],2006.
    [28]王福军.计算流体动力学分析—CFD软件原理与应用[M]清华大学出版社,2004.
    [29]俞佐平.传热学[M].人民教育出版社,1982.
    [30]徐泰然.MEMS和微系统—设计与制造[M].机械工业出版社,2005.
    [31]Gambit建模使用手册[M].海基公司,2002.
    [32]Fluent使用手册[M].海基公司,2002.
    [33]王玉新.数字化设计技术[M].机械工业出版社,2003.
    [1]常洪龙.基于“Top—Down”的MEMS集成设计方法及关键技术研究[D],2002.
    [2]Epstein,A.H.,Senturia,S.D.,Anathasuresh,G.,1997.Power MEMS and microengines [J].IEEE Transducers '97 Conference,Chicago,pp.753-756.
    [3]JIN S H,MENG W,Kurichi Kumar.Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers Part Ⅱ CFD analysis for a micro-combustor[J].Chemical Engineering Science 60,2005:3507-3515.
    [4]王玉新.数字化设计技术[M].机械工业出版社,2003.
    [5]Amit Mehra,Xin Zhang,Arturo A.Ay6n A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of MicroElectroMechanical Systems,2000(4):517-527.
    [6]单学传,金玉丰,王振峰.基于硅材料的微型气体涡轮机中微型燃烧器的设计和加工[J].纳米技术与精密工程,2005(9):209-215.
    [7]濮良贵.机械设计[M].高等教育出版社,1989.
    [8]朱林、陈发、努尔夏提·朱马西等.机械虚拟设计中基于特征的零件实体建模技术[J].新疆农机化,2002(6):45-47.
    [9]徐泰然.MEMS和微系统—设计与制造[M].机械工业出版社,2005.
    [10]康建初,尹宝林,高鹏.支持MEMS的CAD—CAE系统结构研究[J].北京航空航天大学学报,1998(8):475-478.
    [11]王福军.计算流体动力学分析—CFD软件原理与应用[M]清华大学出版社,2004.
    [12]Jayaram S,Jayaram U,Wang Y,et al.VADE:a virtual assembly design environment[J].IEEE Computer Graphics and Applications,1999,19(6):44-50.
    [13]Carlos Fernandez-Pello,A.,2002.Micro-power generation using combustion:issues and approaches[J].Twenty-Ninth International Symposium on Combustion,The Combustion Institute,Sapporo,Japan.
    [14]Mehra,A.,2000.Development of a high power density combustion system for a silicon micro gas turbine engine[D],Massachusetts Institute of Technology.
    [15]Mehra,A.,Waitz,I.A,,1998.Development of a hydrogen combustor for a microfabricated gas turbine engine[J].Solid State Sensor and Actuator Workshop.
    [16]Spadaccini,C.M.,Mehra,A.,Lee,J.,Zhang,X.,Lukachko,S.,Waitz,I.A.,2003.High power density silicon combustion system for micro gas turbine engines[J].Journal of Engineering for Gas Turbines and Power 125,709-719.
    [17]Waitz,I.A.,Gauba,G.,Yzeng,Y.S:,1998.Combustors for micro-gas turbine engines[J].Journal of Fluids Engineering 120,109-117.
    [18]C.M.Spadaccini,A.Mehra,J.Lee.High Power Density Silicon combustion systems for micro gas turbine engines[J].Journal of Engineering for Gas Turbines and Power,2003(7):709-719.
    [19]Amit Mehra,Xin Zhang,Arturo A.AyGn A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of MicroElectroMechanical Systems,2000(4):517-527.
    [20]Alan H.Epstein.MILLIMETER-SCALE,MEMS GAS TURBINE ENGINES[J].Proceedings of ASME Turbo Expo 2003 Power for Land,Sea,and Air June 16-19,2003,Atlanta,Georgia,USA.
    [21]Gambit建模使用手册[M].海基公司,2002.
    [22]钟志华、周彦伟.现代设计方法[M].武汉理工大学出版社,2001.
    [23]Light R A,Gossard D C.Modification of geometic models through variational geometry [J].CAD,1982,14(4).
    [24]Boothroyd G,Alting L.Design for assembly and disassembly[J].Annals of the GIRP.1992,41(2):625-636.
    [25]Wynne H,Irene M.Current research in the conceptual design of mechanical products [J].Computer Aided Design,1998,30(7):377-389.
    [26]Gerard J.Case-based design for assembly[J].Computer Aided Design,1997,29(7):497-506.
    [27] A NDERL R, MENDGEN R, Parametric design and its impact on solid modeling application [J] . Symposium on solid modeling and application[C]. 1995:1-12
    [28] Sodhi R , Turner J U. Towards modeling of assemblies for product design [J] .CAD, 1994, 26(2):85-97.
    [29] Kimura F. Product and process modeling as a kernel for virtual manufacturing environment [J] .Annual of the CIRP, 1993, 42(1):85-93.
    [30] Boothroyd G, Alting L. Design for assembly and disassembly [ J]. Annals of the CIRP, 1992, 41(2):625-636.
    [31 ] Wynne H, Irene M. Current research in the conceptual design of mechanical products[J]. Computer Aided Design, 1998, 30(7):377-389.
    [32] Gerard J. Case-based design for assembly [J] . Computer Aided Design, 1997, 29(7):497-506.
    [33] A NDERL R, MENDGEN R, Parametric design and its impact on solid modeling application [J] . Symposium on solid modeling and application[C]. 1995:1-12.
    [34] SodhiR , Turner J U. Towards modeling of assemblies for product design [J] .CAD, 1994, 26(2):85-97.
    [35] Boothroyd G, Alting L. Design for assembly and disassembly. Annals of the CIRP [J], 1992, 41(2):625-636.
    [36] Molloy E, Yang H, Brown J. Design for assembly within concurrent engineering [J] . Annals of the CIRP, 1991, 40(l):107-110.
    [1]杨伦标,高英仪.模糊数学:原理及应用[M].广州,华南理工大学出版社,1993.
    [2]谌红,模糊数学在国民经济中的应用[M].武汉:华中理工大学出版社,1994.
    [3]刘扬松,李文方.机械设计的模糊学方法[M].北京:机械工业出版社,1996.
    [4]李洪兴,汪群,工程模糊数学方法及应用[M].天津:天津科学技术出版社,
    [5]董玉革,机械模糊可靠性设计[M].机械工业出版社,2000.
    [6]朱文予,机械概率设计与模糊设计[M].高等教育出版社,2001.
    [7]董玉革,机械模糊可靠性设计理论及其应用研究[博士学位论文][D].合肥:合肥工业大学机械与汽车工程学院,1998.
    [8]Kuo-shenchen,Arturo A,Xin Zhang.Effect of Process Parameters on the Surface Morphology and Mechanical Performance of Silicon Structures After Deep Reactive Ion Etching(DRIE)[J].JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,VOL.11,NO.3,2002(6):264-275.
    [9]E.H.Klaasen,K.Petersen,J.M.Noworolski,J.Logan,N.I.Maluf,J.Brown,C.Storment,W.McCulley,and G.T.A.Kovacs,"Siliconfusion bonding and deep reactive ion etching:A new technology formicrostructures,"[J].Sens.Actuators,vol.A52,pp.132-139,1996.
    [10]R.L.Bayt,A.A.Ayon,and K.S.Breuer,"A performance evaluation of MEMS-based micronozzles,"[J].in Proc.33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,Seattle,1997.
    [11]A.A.Ayon,K.S.Chen,K.A.Lohner,S.M.Spearing,H.H.Sawin,and M.A.Schmidt,"Deep reactive ion etching of silicon,"[J].Mater.Res.Soc.Syrup.Proc.,vol.546,pp.51-61,1999.
    [12]K.-S.Chen,A.A.Ayon,K.A.Lohner,M.A.Kepets,T.K.Melconian,and S.M.Spearing,"Dependence of silicon fracture strength and surface morphology on deep reactive ion etching parameters,"[J].in Mat.Res.Soc.Syrup.Proc.,vol.546,1999,pp. 21-26.
    [13] N. Miki, X. Zhangt, R. Khanna, A. A. AyonA A Study of Multi-Stack Silicon-Direct Wafer Bonding for MEMS Manufacturing [J] .2002 IEEE, 407-410.
    [14] JIN S H, MENG W, Kurichi Kumar. Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers. Part I Fundamental study [J] . Chemical Engineering.Science 60, 3497-3506.
    [15] Chen, K.S., 1999. Materials characterization and structural design of ceramic microturbomachinery [D] . Thesis, Massachusetts Institute of Technology.
    [16] Epstein, A.H., Senturia, S.D., Anathasuresh, G., 1997. Power MEMS and microengines [D] . IEEE Transducers '97 Conference, Chicago, pp.753-756.
    [17] Mehra, A., 2000. Development of a high power density combustion system for a silicon micro gas turbine engine [D] . Thesis, Massachusetts Institute of Technology.
    [18] J.D. Wu, C.Y. Huang, C.C. Liao. Fracture strength characterization and failure analysis [J] .Microelectronics Reliability 43 (2003) 269-277.
    [19] Lai DP, Hwang JG, Hwang TJ. The stress analysis of die bonding process parameters. IMAPS Taiwan, 2000. p. 216-219.
    [20] Henry Iksan, Kwang-Lung Lin, JAS Hsieh. Fracture analysis on die crack failure. IMAPS Taiwan, 2001. p. 35-43.
    [21] Mehra, A., Waitz, I.A., 1998. Development of a hydrogen combustor for a microfabricated gas turbine engine [J] . Solid State Sensor and Actuator Workshop.
    [22] Spadaccini, C.M., Mehra, A., Lee, J., Zhang, X., Lukachko, S., Waitz,I.A., 2003. High power density silicon combustion system for micro gas turbine engines [J] . Journal of Engineering for Gas Turbines and Power 125,709-719.
    [23] Waitz, I.A., Gauba, G., Tzeng, Y.S., 1998. Combustors for micro-gas turbine engines [J] . Journal of Fluids Engineering 120,109-117.
    [24] C. M. Spadaccini, A. Mehra, J. Lee. High Power Density Silicon combustion systems for micro gas turbine engines[J].Journal of Engineering for Gas Turbines and Power,2003(7):709-719.
    [25]Amit Mehra,Xin Zhang,Arturo A.Ayon A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of MicroElectroMechanical Systems,2000(4):517-527.
    [26]Alan H.Epstein.MILLIMETER-SCALE,MEMS GAS TURBINE ENGINES[J].Proceedings of ASME Turbo Expo 2003 Power for Land,Sea,and Air June 16-319,2003,Atlanta,Georgia,USA.
    [27]徐泰然.MEMS和微系统—设计与制造[M].机械工业出版社,2005.
    [28]王琪民.微型机械导论[M].中国科学技术大学出版社,2003.
    [29]Jorg Bagdahn,William N.Sharpe,Jr.,Member,Fracture Strength of Polysilicon at stress concentrations[J].JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,VOL.12,NO.3,2003(6):302-312.
    [30]W.Weibull,"A statistical distribution of wide applicability,"[M]J.Appl.Mech.,vol.18,pp.293-297,1951.
    [31]W.N.Sharpe,Jr.,"Mechanical properties of MEMS materials[J]" in The MEMS Handbook.Boca Raton,FL:CRC,2001,pp:3-1~3-33.
    [32]G.T.Johnson,P.T.Jones,and R.T.Howe,"Materials characterization for MEMS:A comparison of uniaxial and bending tests[J]," Proc.SPIE,vol.3874,pp.94-101,2000.
    [33]O.M.JADAAN,N.N.NEMETH,J.BAGDAHN.Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials[J].JOURNAL OF MATERIALS SCIENCE 38(2003)4087-4113.
    [34]W.WEIBULL,"A Statistical Theory of the Strength of Materials[J]" Ingenoirs Vetenskaps Akadanien Handlinger,No.151,1939.
    [35]A.FREUDENTHAL,"Statistical Approach to Brittle Fracture[,J]" Fracture,Vol.2:An Advanced Treatise,Mathematical Fundamentals,edited by H.Liebowitz(Academic Press,1968)p.591.
    [36]S.GLASS,D.LAVAN,T.BUCHHEIT and K.JACKSON,"Strength Testing and Fractography of MEMSMaterials[J]"Sandia No.2000-0081C.
    [37]P.JONES,G.JOHNSON and R.HOWE,"Statistical Characterization of Fracture of Brittle MEMS Materials[J]"in Proceedings SPIE 3880,2000,p.20.
    [38]S.BROWN,W.ARSDELL and C.MUHLSTEIN,"MaterialsReliability in MEMS Devices[J]"Transducers 1997,1997 International Conference on Solid-State Sensors and Actuators,1997.
    [39]石逸群,累積失效與可靠度關係之探討[硕士学位论文].台湾:国立中央大学机械工程研究所,中华民国八十九年.
    [40]单学传,金玉丰,王振峰.基于硅材料的微型气体涡轮机中微型燃烧器的设计和加工[J].纳米技术与精密工程,2005(9):209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700