基于单开链单元的并联机器人机构学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于并联机构的支路单开链及序单开链两种结构组成原理,以单开链单元描述机构的拓扑结构,对并联机构的结构学、运动学、动力学理论进行了深入、系统的研究。揭示了并联机构拓扑结构与其运动学、动力学之间的内在联系,试图并初步实现了并联机器人机构学理论的系统化,为并联机构的创新设计提供了坚实的理论基础。
     首先,给出了支路单开链的约束度定义及计算公式,揭示了约束度与机构过约束性之间的定量关系。得出了完全对称的四、五自由度并联机构必为过约束机构的结论。提出了基于支路单开链单元的型综合方法。给出了3-6自由度无过约束并联机构所有可能的型综合方案。按对称性、机构耦合度、控制解耦性等拓扑结构特征对综合方案进行了分类。综合出了若干并联机构的新构型,其中包括一类含串联输入支路的并联机构。
     然后,基于序单开链结构组成原理,给出了并联机构正运动学分析一种新的数值方法——序单开链法。按有序单开链单元之间的约束关系建立了与机构拓扑结构相统一的机构位置、速度、加速度分析数学模型。无需技巧性降维即可得到维数最少,且恰等于机构耦合度的运动学方程。揭示了并联机构拓扑结构与运动学之间的内在联系。分析实例结果证明了方法的系统性及有效性,并表明具有分析过程简明,且物理意义明晰等优点。
     其次,基于序单开链结构组成原理,提出了并联机构逆动力学分析的序单开链法。按机构序单开链结构分解路线的逆序,应用牛顿-欧拉方程建立了动力学分析模型,该模型揭示了拓扑结构与动力学之间的内在联系。并与机构运动学分析模型相统一。该方法具有普遍的适用性,且可获得维数恰等于机构耦合度的最低维数的动力学方程。
     最后,用牛顿-欧拉法首次给出了并联机构逆动力学分析的一般方法。该方法数学模型推导过程比较简单,适用于具有不同结构的简单支路单开链并联机构,其数学模型含6维线性方程组,较序单开链法得出的方程维数高。
Based on the principle of the composing of sub-chain single-opened-chain and ordered single-opened-chain, this dissertation presents a profound and systematic research on parallel mechanism. By using the single-opened-chain unit to describe the topological structure of the mechanism, the dissertation reveals the essential relationship between topological structure and kinematics and dynamics of parallel mechanisms. The research intends to achieve the systematization of parallel manipulators theory and to provide a solid theoretic foundation for parallel mechanism innovation.
     Firstly, the definition and calculation formula for constraint degree of sub-chain single-opened-chain are presented to reveal the quantitative relationship between constraint degree and over-constraint of the mechanism, which indicates that a totally symmetrical mechanism with four or five degrees of freedom must be a over-constraint mechanism. And a topological structure synthesis method based on sub-chain single-opened-chain is proposed to demonstrate all possible topological structure types for a parallel mechanism with 3-6 degrees of freedom without over-constraint. These types are classified with topological characteristics such as symmetry, coupling degree, decoupling control of the mechanism. Some new topological structures of parallel mechanism are synthesized, of which includes a sub-chain with serial inputs.
     Then, a new numerical method named ordered single-opened-chain method for directed kinematics of parallel mechanism is presented based on the principle of composing of ordered single-opened-chain. Mathematical models for mechanism displacement, velocity and acceleration analysis are built on the base of constraint relationships between ordered single-opened-chain units, which are coherent with the mechanism topological structure. This method needs no skill in dimension reduction to obtain kinematics equations with least dimension that equals to the coupling degrees of the mechanism. The method reveals the essential relationship between the topological structure and kinematics of a parallel mechanism. The analysis results
引文
[1] D. Stewart. A Platform with Six Degrees of Freedom. IMechE, 1965, 180(15):371-386
    [2] Dasgupta B and Mruthyunjaya T S. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000(35):15-40
    [3] Hunt K H, Kinematic Geometry of Mechanisms, Oxford: Oxford University Press, 1978
    [4] 黄真,孔令富,方越法. 并联机器人机构学理论及控制. 北京:机械工业出版社, 1997
    [5] J. C. Hudgens, D. Tesar. A Fully-parallel Six Degree of Freedom Micro-manipulator: Kinematic Analysis and Dynamic Model. The 20th Biennial ASME Mechanisms Conference on Trends and Development in Mechanisms Machines and Robotics, 1988, 15(3):29-37
    [6] J. M. Hervé. The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design. Mechanism and Machine Theory, 1999, 34(5):719-730
    [7] J. P. Merlet. Optimal Design for the Micro Parallel Robot MIPS. IEEE International Conference on Robotics and Automation, Washington, 2002:1149-1154
    [8] 杨廷力. 机构学理论研究进展. 机械工程学报, 1995, 31(2): 1-25
    [9] 杨廷力. 机械系统基本理论——结构学、运动学、动力学. 北京:机械工业出版社,1996
    [10] 杨廷力.机器人机构拓扑结构学.北京:机械工业出版社, 2004
    [11] Pritschow G, Wurst K H, Systematic design of hexapods and other parallel link systems, Annals of the CIRP, 1997, 46(1): 291-295
    [12] Tsai L W, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, New York: Wiley-Interscience Publication, 1999
    [13] Tsai L W, The enumeration of a class of three-dof parallel manipulators, In: Proceedings of the 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 1999: 1121-1126
    [14] Tsai L W, Systematic enumeration of parallel manipulators, Parallel KinematicMachine: Theoretical Aspects and Industrial Requirement, Boer C R, Molinari-Tosatti L, Smith K S (Eds), New York: Springer, 1999: 33-49
    [15] Rey L, Clavel R, The Delta parallel robot, Parallel Kinematic Machine: Theoretical Aspects and Industrial Requirement, Boer C R, Molinari-Tosatti L, Smith K S (Eds), New York: Springer, 1999: 401-417
    [16] Gao F, Li W, Zhao X, et al, New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs, Mechanism and Machine Theory, 2002, 37: 1395-1411
    [17] 黄田,非对称空间 5 自由度混联机器人,中国发明专利,CN1524662A,2004,9
    [18] 黄田, 李蒙, 吴梦丽等. 可重构PKM模块的选型原则—理论与实践. 机械工程学报,2005,41(8)
    [19] 孙立宁,徐文军,安辉等.一种新型6一DOF并联机器人研究. 哈尔滨工业大学学报,1999,31(1):17-21
    [20] Hervé J M, The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mechanism and Machine Theory, 1999, 34: 719-730
    [21] J. M. Hervé, F. Sparacino. Structural Synthesis of Parallel Robots Generating Spatial Translation. 5th IEEE Int. Conference on Advanced Robotics, 1991, Pisa:808-813
    [22] M. Karouia, J. M. Hervé. A Family of Novel Orientational 3-dof Parallel Robots. Ro. Man. Sy 2002, 14th CISM-IFToMM Symposium, Udine, Italy, 2002:359-368
    [23] M Karouia, J M Hervé. Asymmetrical 3-dof spherical parallel mechanisms. European Journal of Mechanics, 2005,24:47-57
    [24] Angeles. J. The Qualitative Synthesis of Parallel Manipulators. ASME Journal of Mechanical Design,2004,126: 617-624
    [25] Q C Li, Z Huang, J M Herve. Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements. IEEE Transaction on Robotics and Automation, 2004,20(2):173-180
    [26] 李秦川,黄真. 少自由度并联机构的位移流形综合理论. 中国科学(E 辑),2004,34(9): 1011-1020
    [27] G F Liu, J Meng, J J Xu et al. Kinematic Synthesis of Parallel Manipulators: A Lie Theoretic Approach. Proceedings of the 2003 IEEE International Conference on Intelligent Robotics and Systems, Las Vegas, Nevada,2003: 2096-2100
    [28] 黄真 , 李秦川 . 少自由度并联机器人机构的型综合原理 . 中国科学 (E辑),2003,33(9): 813-819
    [29] Huang Z, Li Q C, General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators, The International Journal of Robotics Research, 2002, 21(2): 131-145
    [30] Huang Z, Wang J, Fang Y F, Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators, Mechanism and Machine Theory, 2002, 37(2): 229-240
    [31] Huang Z, Chen L H, Li Y W, The singularity principle and property of Stewart parallel manipulator, Journal of Robotic Systems, 2003, 20(4): 163-176
    [32] Huang Z, Li Q C, Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method, The International Journal of Robotics Research, 2003, 22(1): 59-79
    [33] Huang Z, Li S H, Zuo R G, Feasible instantaneous motions and kinematic characteristics of a special 3-DOF 3-UPU parallel manipulator, Mechanism and Machine Theory, 2004, 39(9): 957-970
    [34] Li Q C, Huang Z, Mobility analysis of a novel 3-5R parallel mechanism family, ASME Journal of Mechanical Design, 2004, 126: 79-82
    [35] Kong X W, Gosselin C M, Type synthesis of 3T1R 4-DOF parallel manipulators based on Screw Theory, IEEE Transactions on Robotics and Automation, 2004, 20(2): 181-190
    [36] Kong X W, Gosselin C M, Type synthesis of 3-DOF translational parallel manipulators based on Screw Theory, ASME Journal of Mechanical Design, 2004, 126: 83-92
    [37] Kong X W, Gosselin C M, Type synthesis of 3-DOF spherical parallel manipulators based on Screw Theory, ASME Journal of Mechanical Design, 2004, 126: 101-108
    [38] Fang Y F, Tsai L W, Structure synthesis of a class of 3-DOF rotational parallel manipulators, IEEE Transactions on Robotics and Automation, 2004, 20(1): 117-121
    [39] Yang T L. Structural analysis and number synthesis of spatial mechanisms. Proceedings of the 6th World Congress on the Theory of Machines andMechanisms, New Dehli,1983(1): 280-283
    [40] Yang T L. Structural synthesis of spatial multiloop chains with variable over-constraints. Proceedings of the 4th IFTOMM International Symposium on Linkages and Computer Aided Design Method, Bucharest, 1985(2): 447-456
    [41] Yang T L. Kinematic structural analysis and synthesis of overconstrainted spatial single-loop-chains. Proceedings of the 19th Biennial Mechanisms conference, Columbus, ASME paper 86-DET-189,1986
    [42] Yang T L. Structural character of planar complex mechanisms and simplified methods of kinematic and kinetostatic analysis by imaginary unknown parameters. Proceedings of the 19th Biennial Mechanisms conference, Columbus, ASME paper 86-DET-180,1986
    [43] Jin Q, Yang T L. Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators, ASME Journal of Mechanical Design, 2004, 126: 301-306
    [44] Jin Q, Yang T L. Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators, ASME Journal of Mechanical Design, 2004, 126: 625-639
    [45] Jin Q, Yang T L. Structure synthesis of 3-DOF (3-translation) parallel robot mechanisms based on single-opened-chain units. The 27th Design Automation Conference, Pittsburgh, ASME International DETC/DAC -21152,2001
    [46] Jin Q, Yang T L. Structure synthesis of a class five-DOF parallel robot mechanisms based on single-opened-chain units. The 27th Design Automation Conference, Pittsburgh, ASME International DETC/DAC -21153,2001
    [47] Jin Q, Yang T L. Synthesis and analysis of a group of 3 DOF (1T-2R) decoupled parallel manipulator. Proceedings of ASME 28th Design Automation Conference, Montreal, DETC/MECH-34240, 2002
    [48] 金琼, 杨廷力, 刘安心等. 基于单开链单元的三平移一转动并联机器人机构型综合. 解放军理工大学学报(自然科学版), 2001, 2(3):15-19
    [49] 杨廷力, 金琼, 刘安心等. 基于单开链单元的三平移并联机器人机构型综合及分类. 江苏石油化工学院学报, 2000, 12(4): 35-38
    [50] 杨廷力, 金琼, 刘安心等. 基于单开链单元的欠秩并联机器人机构型综合的一般方法.机械科学与技术, 2001, 20(3):321-325
    [51] 金琼, 杨廷力, 刘安心等. 基于单开链单元的三平移一转动并联机器人机构型综合及机构分类. 中国机械工程, 2001, 12(9): 1038-1043
    [52] 杨廷力, 金琼, 刘安心等. 基于单开链单元的三平移并联机器人机构型综合及其分类. 机械工程学报, 2002, 38(8):31-36
    [53] Huang Z. Modeling Formulation of 6-DOF Parallel Manipulators Part 2-Dymamic Modeling and Example, The 4th IFToMM Conference on Mechanisms and CAD, Bucharest , Romania, 1985
    [54] 曲义远, 黄真. 空间六自由度并联机构位置的三维搜索方法.机器人. 1989, 3(5):25~29
    [55] Innocenti C.and Castelli V P. Direct Position Analysis of the Stewart Platform Mechanism. Mechanism and Machine Theory,1990, 25(6): 611~621
    [56] Innocenti C.and Castelli V P. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: an Exhaustive Numerical Approach via a Mono-Dimensional-Search Algorithm. ASME Journal of Mechanical Design, 1993(115):932~937
    [57] 沈辉,吴学忠. 基于区间对分搜索法的并联机构位置正解问题求解. 机械科学与技术, 2004, 23(2): 185-188
    [58] 赵新华, 彭商贤. 一种分析并联机器人位置正解的高效算法. 天津大学学报, 2000,33(2):134-137
    [59] 孔宪文. 多环空间连杆机构运动分析理论研究:[博士学位论文]. 南京:东南大学,1994
    [60] Kong X W, Yang T L. Generation and forward displacement analysis of two new classes of analytic 6-SPS parallel robot. Proceedings of ASME Design Automatic Conference. Minne a polis, 1994,DE-Vol.72:293-300
    [61] Kong X W, Yang T L. A zero simple open chain approach to the displacement analysis of multi-loop general spatial linkages. Proceedings of the 9th World Congress on the Theory of Machines and Mechanisms, Milano,1995(2): 777-781
    [62] 刘安心,杨廷力. 求一般 6-SPS 并联机器人机构的全部位置正解. 机械科学与技术. 1996, 15(4):543-546
    [63] 杨廷力, 姚芳华. 多项式方程组的主项解耦消元法. 数学的实践与认识, 2002, 32(6): 1007-1015
    [64] 杭鲁宾. 机器人机构运动学研究—含非线性代数方程组消元法探讨: [博士学位论文]. 东南大学,2002
    [65] 梁崇高, 荣辉. 一种Stewart平台机械手位移正解. 机械工程学报. 1991,27(2): 26~30
    [66] Wen F A and Liang C G. Displacement Analysis of the 6-6 Stewart Platform Mechanisms. Mechanism and Machine Theory. 1994, 29(4): 547~557
    [67] Innocenti C.and Castelli V P. Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism. ASME Journal of Mechanical Design, 1993(115): 515~521
    [68] 苏海军,廖启征. 一种 5-5 型台体并联机器人机构的位置正解. 北京邮电大学学报. 1997, 20(3): 1-8
    [69] 赵铁石,黄真. 一种新型四自由度并联平台机构及其位置分析. 机械科学与技术. 2000, 19(6): 927-929
    [70] 沈惠平,马正华,金琼等. 一种新型解耦二腿三维平移并联机构及其运动分析. 江苏工业学院学报. 2003, 15(3):44-47
    [71] 金琼, 杨廷力. 一类新型三平移并联机器人机构的位置分析. 东南大学学报, 2001,31(5):33-38
    [72] 范守文,徐礼钜,周肇飞. 基于数学一符号法的空间 4 自由度并联机构位置正解. 机械工程学报. 2002, 38(9): 57-60
    [73] Geng Z and Haynes L. Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform. IEEE International Conference on Robotics and Automation, California,USA,1991
    [74] 宋伟刚, 张国伟. 基于径向基函数神经网络的并联机器人运动学正解问题. 东北大学学报, 2004, 25(4): 386-389
    [75] Han K, Hung Y, and Youm W Y. New Resolution Scheme of the Forward Kinematics of Parallel Manipulators Using Extra sensors. ASME Journal of Mechanical Design, 1996(118): 214-219
    [76] Bonev I A and Ryu J. A New Method for Solving the Direct Kinematics of General 6-6 Stewart Platform Using Three Linear Extra Sensors. Mechanism and Machine Theory. 2000, 35(1):423-436
    [77] Herve J M. The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design. Mechanism and Machine Theory, 1999(34): 719-730
    [78] Huang Z. Modeling Formulation of 6-DOF Multiloop Parallel Manipulators Part 1-Kinematic Influence Matrix. The 4th IFToMM Conference on Mechanisms andCAD, Bucharest, Romania, 1985
    [79] Thomas M,Tesar D. Dynamic Modeling of Serial Manipulator Arms. Journal of Dynamics System Measurment and Control. 1982, 104(9):218-227
    [80] 孔宪文. 空间连杆机构影响系数法的若干问题:[硕士学位论文]. 秦皇岛:燕山大学,1990
    [81] 赵永生,郑魁敬,李秦川等. 5-UPS/PRPU5 自由度并联机构运动学分析. 机械工程学报, 2004, 40(2): 12-16
    [82] 王洪波, 黄真. 六自由度并联机器人的拉格朗日方程. 机器人,1990, 90(1): 23~26
    [83] 黄真,孔宪文. 具有冗余度空间并联机构的运动分析. 机械工程学报, 1995, 31(3): 44-50
    [84] 方跃法, 黄真. 三自由度 3-RPS 并联机器人机构的运动分析. 机械科学与技术.1997, 16(1): 82-88
    [85] 林福泳. 3-RPS 并联机构运动分析. 机械科学与技术, 1998, 17(3): 408-409
    [86] 尹小琴, 马履中,杨廷力. 新型虚拟轴三维坐标测量机构 3-RRC 的运动分析. 中国机械工程, 2003, 14(13): 1147-1149
    [87] 夏富杰. 空间并联机构运动分析的限元法. 机械科学与技术. 1998, 17(1): 60-62
    [88] 黄田, 李江. 空间机构运动学的网络分析方法. 天津大学学报. 1995, 28(5): 600-604
    [89] R W Brockett. Robotic Manipulators and the Product of Exponentials Formula. Mathematical Theory of Networks and Systems. P. A. Fuhrman, Springer-Verlag, 1981:11-27
    [90] Murray R M, Li Z X and Sastry S S. A Mathematical Introduction to Robotic Manipulation. Florid,USA: CRC Press, 1994:51-92
    [91] Fichter E F. A Stewart Platform Based Manipulator: General Theory and Practical Construction. The International Journal of Robotics Research. 1986, 5(2):157-182
    [92] Dasgupta B. A General Strategy Based on the Newton-Euler Approach for the Dynamic Formulation of Parallel Manipulators. Mechanism and Machine Theory, 1999, 34(6): 801-824
    [93] 郭祖华,陈五一,陈鼎昌. 6-UPS 型并联机构刚体体动力学模型. 机械工程学报.2002, 38(11): 53-57
    [94] 孔令富, 张世辉, 肖文辉等. 基于牛顿-欧拉方法的 6-PUS 并联机构刚体动力学模型. 机器人. 2004, 26(5): 395-399
    [95] Li J F. Inverse Kinematic and Dynamic Analysis of 3-DOF Parallel Mechanism. Chinese Journal of Mechanical Engineering, 2003, 16(1): 54-58
    [96] 李剑峰,王新华,魏源迁等. 3-RSR 并联机构的微分运动学及动力学分析. 北京工业大学学报. 2003, 29(4): 418-423
    [97] Tsai K Y, and Kohli D. Modified Newton-Euler Computational Scheme for Dynamic Analysis and Simulation of Parallel Manipulators with Applications to Configuration Based on R-L Actuator. The ASME Design Engineering Technical Conferences, Irvine, USA, 1990
    [98] Tsai L W, The Mechanics of Serial and Parallel Manipulators, New York, US: John wiley&sons, Inc. Press,1999:424-437
    [99] Pang H and Shaingpoor M. Inverse dynamics of a parallel manipulator. Journal of Robotic System, 1994, 11(8):693-702
    [100] 白志富,韩先国,陈五一. 基于 Lagrnge 方程三自由度并联机构动力学研究. 北京航空航天大学学报, 2004, 30(1):51-54
    [101] Lee K M, Shah D K. Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE Journal of Robotics and Automation, 1988, 4(3): 361-367
    [102] Pendar H, Vakil M, Zohoor H. Efficient dynamic equations of 3-RPS parallel mechanism through Lagrange method. Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004: 1152-1157
    [103] Wang J G and Gosselin C M. A new approach for the dynamic analysis of parallel manipulators. Multibody System Dynamics, 1998(2): 317-334
    [104] Tsai L W. Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work. ASME Journal of Mechanical Design, 2000(122): 3-9
    [105] 杨志永, 赵学满, 黄田等. 并联机构动力学建模及伺服系统参数辨识,天津大学学报,2004, 37(6):475-479
    [106] Liu G F and Li Z X. A Unified Geometric Approach to Modeling and Control of Constrained Mechanical Systems. IEEE Transactions on Robotics andAutomation. 2002, 18(4): 574-587
    [107] Yiu Y K, Cheng H, Xiong Z H et al. On the Dynamics of Parallel Manipulators. The IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001
    [108] M. G. Mohamed, J. Duffy. A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators. Design Engineering Technology Conference, Cambridge, 1984, MA, 83-DET-114
    [109] 彭斌彬. 新型五自由度五轴数控并联卧式机床运动学设计方法研究,[燕山大学硕士学位论文]. 2002
    [110] Zamanov V B,Sotirov Z M, Parallel manipulators in robots. In IMACS/SICE Int. Symp. On Robotics,Mechatronics,and Manufacturig Systems, Kobe,September, 16-20,1992,409-418
    [111] Behi F, Kinematic analysis for a 6-dof 3-PRPS parallel mechanism. IEEE J. of Robotics and Automation,1988,4(5):561-565
    [112] Alizade R I, Tagiyev N R,A forward and reverse displacement analysis of a 6-dof in-parallel manipulator. Mechanism and Machine Theory,1994, 29(1): 115-124
    [113] Tanev T K. Forward displacement analysis of a three legged 4-dof parallel manipulator. In ARK,June 29-July 4,1998:147-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700