基于冷原子系综的非经典关联光子源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息技术是实现未来安全通信和高速计算的主要途径,其物理实现将导致现有信息科学模式的重大变革,并且深化我们对客观世界规律的理解。建立广域量子通信网络的关键问题是实现对纠缠资源进行交换传递和纯化的量子中继器,其第一步是要能制备纠缠光子对,并利用光子与更长相干保持时间媒介之间的相互作用,实现纠缠信息的远距离传输。由于冷原子体系具有的优越性,现有的中继器实验方案大都寻求在冷原子系综上实现。
     本文的主体分为以下部分:
     第一章绪论部分介绍了激光冷却原子的基本原理,冷原子的发展与应用,量子中继器方案和利用原子系综制备纠缠光子对等背景知识,阐述了本文工作的目的。
     然后是我们开展的一系列实验工作。
     第二章,为了得到制备纠缠光子对所必需的冷原子团,我们构建了磁光阱系统,包含了超高真空腔体,磁光阱光路,背景磁场和监视装置等,另外为了保证后续实验的完成,我们实现了可调谐外腔式半导体激光器的稳频移频技术和周期性关断磁场和光路的时序控制电路,在具备了以上条件的前提下,先后制得了稳定的~(85)Rb和~(87)Rb原子团。在获得冷原子团之后,利用荧光法和吸收法对冷原子团的基本参数进行了测量,通过增大冷却光强、囚禁光尺寸,改进铷单质释放源,选择合适的磁场梯度、冷却光频率失谐量等方法提高了冷原子团的光学厚度,为进一步的实验提供了基础。
     第三章,冷原子的四波混频。模式匹配的好坏是制各非经典关联光子对方案的关键。在弱光探测条件下难以实现一对散射光空间方向的直接选择,因此我们利用双Λ能级结构原子中的四波混频过程搭建了可用于拉曼散射光子对探测的光路,实验证实混频效率最大时也即最优的拉曼散射光空间匹配情况。我们测量了冷Rb原子的吸收光谱,利用Λ型结构原子在不同基态上的相干布居效应,观察到电磁诱导透明现象,再联合与不同激发态能级共振的控制光场,在共线和非共线情形下,分别制备了较强的四波混频光场,测定了冷原子中三阶非线性极化的能量转换效率,分析了影响混频效率的因素。
     第四章,非经典关联光子对的制备和检验。在撤去耦合光场,探测光频率锁定于一定失谐位置后,在原来的混频光位置上可以收集到向相反方向发射的单光子量级的拉曼散射光。通过对这样一对方向上的Stokes和反Stokes光子进行符合探测后我们发现其归一化交叉关联函数与自关联函数可以违背Cauchy-Schwartz不等式,证明它们之间存在非经典关联性。我们分别改变了探测光频率失谐量,探测光强,控制光强以及前后向散射光收集光路上的偏振片方向,测量了关联度与以上实验参数的关系,并与理论计算作了比较。
     第五章,单光子与原子系综激发态的关联。同时作用的探测光和控制光还不能表明原子中一定产生相应的原子激发。我们错开控制光与探测光的作用次序,时序控制的写光脉冲在原子中激发出反Stokes光子被收集,经过一段可控延迟后的读光脉冲使冷原子团中的集体自旋激发态还原为沿反向传播的Stokes光子,我们对这两种光子进行符合测量,发现在一定延迟时间下仍然可以满足对Cauchy-Schwartz不等式的违背,这表明这种非经典关联性在原子系综中被保持,或者可以说写光激发的反Stokes光子与原子中的集体自旋激发态具备了非经典关联性。
     另外本文还包含了一些理论工作,第六章提出了两种利用原子系综和线性光学方法几率性制备GHZ态的方案,该方案具有对位相涨落不敏感的优点,更易于在实验上被实现。
     本文的创新点在于研究了利用自发四波混频制备非经典关联光子对过程中写光失谐等参数对获得的二阶关联函数的影响,实验结果和理论预言作了比较,为选择合适的写光参数最大程度优化关联光子对提供了基础。在原子团具有一定光学厚度和收集光子具有固定的耦合传输损失率条件下,增大探测光失谐量和减小探测光强以降低写光对基态原子的激发几率,是提高二阶互关联度的方法,但两者都会伴随单路光子计数率的下降,从而增加背景噪声的影响,如何选择合适的激发光参数,是保证关联或纠缠资源得到最大利用的关键。
Building the quantum repeater for entanglement swapping,transmission and purification is a key point to realize long distance communication.First step is achieving effective transformation of the entanglement from the photon carrier to other media in which coherent information could be preserved much longer,that is, quantum memory.For some advantages,most of the schemes are based on atomic ensembles.
     In this article,the design of the whole experimental setup for cooling and trapping the atoms is described,which consists of the ultra-high vacuum system,the light path and background magnetic field for the MOT,the monitor system for real time observation,especially,the frequency stabilization and frequency shift of the diode lasers,which is very important to obtain a stable cold atomic cloud.
     The fluorescence intensity and absorption rate is measured to know how many atoms are trapped in the cloud.The optical depth,which is of great importance of the subsequent experiments,is greatly improve by replacing the Rb source with a better one,increasing the intensity and diameter of the trapping beams and choosing proper frequency detuning of the light.
     Spatial mode coupling is important for the generation and collection of non-classical correlated photon pairs.But it is difficult to achieve mode coupling in actual experiments as the scattering light is very weak.So we establish a stimulated Raman scattering set-up via four-wave mixing process in a double A-type atomic ensemble.Subsequent experiments verify the relation between spatial mode coupling and the efficiency of the wave mixing.As the probing and coupling beams are applied on the atoms simultaneously,the electromagnetically induced transparency signal is observed due to the coherent population trapping effects.The mixing light is collected and measured while the third pumping field exists,both in the collinear and non-collinear situation.
     While the coupling field is removed and the frequency of the probing light is locked to off resonance.The weak anti-Stokes signal forward and the Stokes signal backward are collected by single photon diode detectors.The coincidence detecting of them indicates non-classical correlation and violation of the Cauchy-Schwartz inequality.The experimental parameters,such as the intensity and frequency of the input field,the polarization angles,are varied to see their influence on the correlation, which is compared with the theoretic predictions.
     The writing and reading light are modulated to pulses by temporal sequence signal.The read pulse is delayed for several hundred nanoseconds.The normalized cross-correlation function of Stokes and anti-Stokes signal is measured and we find non-classical correlation still exists between them,that is,we establish the non-classical correlation between the anti-Stokes photon and the stimulated collective spin excitation mode in the cold atoms.
     Some other theoretic work is involved is this article.A scheme of probabilistic and robust preparation of a GHZ-type state via atomic ensembles and linear optics is proposed.
     There are some innovations in this article.Non-classical correlated Raman scattering photon pairs are generated in a noncollinear configuration and the influence of the experimental parameters such as the frequency detuning of the writing light on the cross-correlation function is investigated,both in experimental analysis and theoretic calculations.If the optical depth of the atomic cloud and the transmission efficiency of the generated photons cannot be improved a lot,a suitable choice of the parameters is of great importance to the non-classical property of the correlation source.
引文
[1]曾谨严,龙桂鲁,裴寿镛.2003.量子力学新进展:第三辑[M].北京:清华大学出版社.
    [2]王义道.2007.理论物理专辑:原子的激光冷却与陷俘[M].北京:北京大学出版社.
    [3]王育竹,王笑鹃.1993.激光冷却原子新机制[J].物理,22:16.
    [4]Chu S,Hollberg L,Bjorkholm J E et al.1985.Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J].Phys Rev Lett,55:48.
    [5]Lebedew P.1901.Testings on the Compressive Force of Light[J].Ann Phys(Leipzig),6:433.
    [6]Einstein A.1909.Zum gegenw(a|¨)rtigen Stand des Strahlungsproblems[J].Z Phys,10:185.
    [7]Frisch O R.1933.Experimenteller Nachweis des Einsteinschen Strahlungsr(u|¨)ckstoβes[J].Z Phys,86:42.
    [8]Ashkin A.1970.Acceleration and Trapping of Particles by Radiation Pressure[J].Phys Rev Lett,24:156
    [9]Haensch T W and Schawlow A L.1975.Cooling of gases by laser radiation[J].Opt Commun,13:68.
    [10]Phillips W D,Prodan J V and Metcalf H J.1985.Laser Cooling and Electromagnetic Trapping of Neutral Atoms[J].J Opt Soc Am B,2:1761.
    [11]Lett P D,Watts R N,Westbrook CI et al.1988.Observation of Atoms Laser Cooled below the Doppler Limit[J].Phys Rev Lett,61:169.
    [12]Lett P D,Phillips W D,Rolston S L et al.1989.Optical Molasses[J].J Opt Soc Am B,6:2084.
    [13]Dalibard J and Cohen-Tannoudji C.1989.Laser cooling below the Doppler limit by polarization gradients:simple theoretical models[J].J Opt Soc Am B,6:2023.
    [14]Ketterle W et al.1992.Slowing and Cooling Atoms in Isotropic Laser Light[J].Phys Rev Lett,69:2483.
    [15]Raab E L,Prentiss M,Cable A et al.1987.Light Traps Using Spontaneous Forces[J].Phys Rev Lett,59:2631.
    [16]Anderson M H et al.1995.Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[J].Science,269:198.
    [17]Clairon A et al.1995.A cesium fountain frequency standard:preliminary results[J].IEEE Instrum.& Measur,44:128
    [18]Kasevich M and Chu S.1991.Atomic interferometry using stimulated Raman transitions [J].Phys Rev Lett,67:181.
    [19]Wang C Y,Chen Y F,Lin S C et al.2006.Low-light-level all-optical switching [J].Opt Lett,31:2350.
    [20]Scully M O and Zubairy M S.1997.Quantum Optics [M].Cambridge,U.K.:Cambridge University Press.
    [21]Lukin M D.2003.Colloquium:Trapping and manipulating photon states in atomic ensembles [J].Rev Mod Phys,75:457.
    [22]Ashkin A et al.1986.Observation of a single-beam gradient force optical trap for dielectric particles [J].Opt Lett,11:288.
    [23]Chen C Y,Li Y M,Bailey K et al.1999.Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap [J].Science,286:1139.
    [24]Hansel W,Hommelhoff P,Hansch T W et al.2001.Bose-Einstein condensation on a microelectronic chip [J].Nature,413:498.
    [25]Nielsen M A and Chuang I L.2000.Quantum Computation and Quantum Information [M].Cambridge,U.K.:Cambridge University Press.
    [26]Ekert A K.1991.Quantum cryptography based on Bell's theorem [J].Phys Rev Lett,67:661.
    [27]Einstein A,Podolsky B and Rosen N.1935.Can quantum-mechanical description of physical reality be considered complete? [J].Phys Rev,47:777.
    [28]Bennett C H,Brassard G,Crepeau C et al.1993.Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels [J],Phys Rev Lett,70:1895.
    [29]Olmschenk S,Matsukevich D N,Maunz P et al.2009.Quantum Teleportation between Distant Matter Qubits [J].Science,323:486.
    [30]Bennett C H,Brassard G,Popescu S et al.1996.Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels [J].Phys Rev Lett,76:722.
    [31]Briegel H J,Dür W,Cirac J I & Zoller P.1998.Quantum repeaters:The role of imperfect local operations in quantum communication [J].Phys Rev Lett,81:5932.
    [32]Zukowski M,Zeilinger A,Home M A & Ekert A.1993.“Event-ready-detectors” Bell experiment via entanglement swapping [J].Phys Rev Lett,71:4287.
    [33]Liu C,Dutton Z,Behroozi C H & Hau L V.2001.Observation of coherent optical information storage in an atomic medium using halted light pulses [J].Nature,409:490.
    [34]Duan L M et al.2001.Long-distance quantum communication with atomic ensembles and linear optics [J].Nature,414:413.
    [35]Enk S J,Cirac J I & Zoller P.1998.Photonic channels for quantum communication [J].Science,279:205.
    [36]Bose S,Knight P L et al.1999.Proposal for teleportation of an atomic state via cavity decay [J].Phys Rev Lett,83:5158.
    [37]Duan L M,Cirac J I et al.2000.Quantum communication between atomic ensembles using coherent light [J].Phys Rev Lett,85:5643.
    [38]Hald J,Sorensen J L et al.1999.Spin squeezed state:A macroscopic entangled ensemble created by light [J].Phys Rev Lett,83:1319.
    [39]Zhao B,Chen Z B,Chen Y A et al.2007.Robust long-distance quantum communication with atomic ensembles and linear optics [J].Phys Rev Lett,98:240502.
    [40]Yuan Z S,Chen Y A,Zhao B et al.2008.Experimental demonstration of a BDCZ quantum repeater node [J].Nature,454:1098.
    [41]van-der-Wal C H,Eisaman M D,Andre A et al.2003.Atomic Memory for Correlated Photon States [J].Science,301:196.
    [42]Kuzmich A,Bowen W P,Boozer W D et al.2003.Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles [J].Nature,423:731.
    [43]Kolchin P,Du S W,Belthan G et al.2006.Generation of Narrow-Bandwidth Paired Photons:Use of a Single Driving Laser [J].Phys Rev Lett,97:113602.
    [44]Duan L M,Cirac J I & Zoller P.2002.Three-dimensional theory for interaction between atomic ensembles and free-space light [J].Phys Rev A,66:023818.
    [45]Braje D A,Balic V,Goda S et al.2004.Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms [J].Phys Rev L,93:183601.
    [46]Balic V,Braje D A,Kolchin P et al.2005.Generation of Paired Photons with Controllable Waveforms [J].Phys Rev L,94:183601.
    [47]Chaneliere T,Matsukevich D N,Jenkins S D et al.2005.Storage and retrieval of single photons transmitted between remote quantum memories [J].Nature,438:833.
    [48]Eisaman M D,Andre A,Massou F et al.2005.Electromagnetically induced transparency with tunable single-photon pulses [J].Nature,438:837.
    [49]Chou C W,de Riedmatten H,Felinto D et al.2005.Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].Nature,438:828.
    [1]Wieman C,Flowers G.1995.Inexpencive laser cooling and trapping experiment for under-graduate laboratories[J].Am J Phys,63:317.
    [2]王瑾.1999.Rb原子的激光冷却与囚禁[D]:[博士].合肥:中科院安徽光学精密机械研究所,45-65.
    [3]Ashkin A and Gordon J P.1983.Stability of Radiation-pressure Particle Traps:An Optical Earnshaw Theorem[J].Opt Lett,8:511.
    [4]付军贤,王义道.2000.磁光阱中冷原子的实验特性[J].物理,29.156.
    [5]江开军,李可,王瑾,詹明生.2006.Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系[J].物理学报,55:125.
    [6]MacAdam K B,Steinbach A & Wieman C.1992.A narrow-band tunable diode laser system with grating feedback,and a saturated absorption spectrometer for Cs and Rb[J].Am J Phys,60:1098.
    [7]韩燕旭,王波,马杰等.2007.冷原子EIT介质的原子数目和温度的测量[J].量子光学学报,13:30.
    [8]付军贤,李义民,陈徐宗等.2000.一种测量磁光阱中冷原子密度和温度的新方法[J].光学学报,21:414.
    [9]Ye J,Swartz S,Jungner P & Hall J L.1996.Hyperfine structure and absolute frequency of the ~(87)Rb 5P_(3/2) state[J].Opt Lett,21:1280.
    [10]Siddons P,Adams C S et al.2008.Absolute absorption on rubidium D lines:comparison between theory and experiment[J].J Phys B:At Mol Opt Phys,41:155004.
    [11]Brozozowski T M,Maczynska M,Zawada M et al.2002.Time-of-flight Measurement of the Temperature of Cold Atoms for Short Type-probe Beam Distances[J].J opt B,4:62.
    [12]Lin Y W,Chou H C,Dwivedi P P et al.2008.Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density[J].Opt express,16:3753.
    [1]付军贤,王义道.2000.磁光阱中冷原子的实验特性[J].物理,29:156.
    [2]Tabosa J W R,Chen G,Hu Z et al.1991.Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap[j].Phys Rev Lett,66:3245.
    [3]Lounis B,Courtois J Y,Verkerk.P et al.1992.Measurement of the friction coefficient in 1D corkscrew optical molasses by stimulated Rayleigh spectroscopy[J].Phys Rev Lett,69:3029.
    [4]Lukin M D and Imamoglu A.2001.Controlling photons using electromagnetically induced transparency[J].Nature,413:273.
    [5]Lukin M D.2003.Colloquium:Trapping and manipulating photon states in atomic ensembles [J].Rev Mod Phys,75,457.
    [6]Boiler K,Imamoglu A and Harris S E.1991.Observation of electromagnetically induced transparency[J].Phys Rev Lett,66:2593.
    [7]Hau L V,Harris H E,Dutton Z et al.1999.Light speed reduction to 17 metres per second in an ultracold atomic gas[J].Nature,397:594.
    [8]Kash M M,Sautenkov V A,Zibrov A S et al.1999.Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas[J].Phys Rev Lett,82:5229.
    [9]Fleischhauer M and Lukin M D.2000.Dark-State Polaritons in Electromagnetically Induced Transparency[J].Phys Rev Lett,84:5094.
    [10]Liu C,Dutton Z,Behroozi C H & Hau L V.2001.Observation of coherent optical information storage in an atomic medium using halted light pulses[J].Nature,409:490.
    [11]Chen Y F,Liu Y C,Tsai Z H et al.2005.Beat-note interferometer for direct phase measure-ment of photonic information[J].Phys Rev A,72:033812.
    [12]Chaneliere T,Matsukevich D N,Jenkins S D et al.2005.Storage and retrieval of single photons transmitted between remote quantum memories[J].Nature,438:833.
    [13]叶佩弦.2007.理论物理专辑:非线性光学物理[M].北京:北京大学出版社.
    [14]C.W.Thiel.Four-wave mixing and its applications[EB/OL].http://www.physics.montana.edu/students/thiel/docs/FWMixing.pdf.
    [15]Harris S E,Yamamoto V.1998.Photon Switching by Quantum Interference[J].Phys Rev Lett,81:3611.
    [16]Harris S E,Hau L V.1999.Nonlinear Optics at Low Light Levels[J].Phys Rev Lett,82:4611.
    [17]Braje D A,Bali(?) V,Goda S et al.2004.Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms[J].Phys Rev L,93:183601.
    [1]Burnham D C and Weinberg D L.1970.Observation of Simultaneity in Parametric Production of Optical Photon Pairs [J].Phys.Rev.Lett,25:84.
    [2]Kwiat P,Mattle K,Weinfurter H et al.1995.New High-Intensity Source of Polarization-Entangled Photon Pairs [J].Phys Rev Lett,75:4337.
    [3]Shi B S and Tomita A.2004.Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer [J].Phys Rev A,69:013803.
    [4]Shi B S,Wang F Y,Zhai C & Guo G C.2008.An ultra-bright two-photon source with a type-Ⅰ bulk periodically poled potassium titanyl phosphate [J],Opt Commun,281:3390.
    [5]Duan L M et al.2001.Long-distance quantum communication with atomic ensembles and linear optics [J].Nature,414:413.
    [6]Ou Z Y and Lu Y J.1999.Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons [J].Phys Rev Lett,83:2556.
    [7]Wang F Y,Shi B S and Guo G C.2008.Observation of time correlation function of multimode two-photon pairs on a rubidium D_2 line [J].Opt Lett,33,-2191.
    [8]Kuzmich A,Bowen W P,Boozer W D et al.2003.Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles [J].Nature,423:731.
    [9]Balic V,Braje D A,Kolchin P et al.2005.Generation of Paired Photons with Controllable.Waveforms [J].Phys Rev L,94:183601.
    [10]Du S,Kolchin P,Belthangady C et al.2008.Subnatural Linewidth Biphotons with Controllable Temporal Length [J].Phys Rev Lett,100:183603.
    [11]Chen Q F,Shi B S,Feng Min et al..2008.Non-degenerated nonclassical photon pairs in a hot atomic ensemble [J].Opt Express,16,21708.
    [12]Matsukevich D N and Kuzmich A.2004.Quantum State Transfer Between Matter and Light [J].Science,306:663.
    [13]Duan L M,Cirac J I & Zoller P.2002.Three-dimensional theory for interaction between atomic ensembles and free-space light [J].Phys Rev A,66:023818.
    [14]Kolchin P.2007.Electromagnetically-induced-transparency-based paired photon generation [J].Phys Rev A,75:033814.
    [15]Chou C W,Polyakov S,Kuzmich A & Kimble H.2004.Single-Photon Generation from Stored Excitation in an Atomic Ensemble [J].Phys Rev Lett,92:213601.
    [1]Kuzmich A,Bowen W P,Boozer W D et al.2003.Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles [J].Nature,423:731.
    [2]Chou C W,Polyakov S,Kuzmich A & Kimble H.2004.Single-Photon Generation from Stored Excitation in an Atomic Ensemble [J].Phys Rev Lett,92:213601.
    [3]Chen S,Chen Y A,Strassel T et al.2006.Deterministic and Storable Single-Photon Source Based on a Quantum Memory [J].Phys Rev Lett,97:173004.
    [4]Chuu C S,Strassel T,B.Zhao et al.2008.Quantum Memory with Optically Trapped Atoms [J]Phys Rev Lett,101:120501.
    [5]Zhao B,Chen Y A,X H Bao et al.2009.A millisecond quantum memory for scalable quantum networks [J].Nature physics,5:95.
    [6]Lukin M D.2003.Colloquium:Trapping and manipulating photon states in atomic ensembles [J].Rev Mod Phys,75:457
    [7]Harris S E,Hau L V.1999.Nonlinear Optics at Low Light Levels [J].Phys Rev Lett,82:4611.
    [8]Chen Q F,Shi B S,Zhang Y S et al.2008.Entanglement of the orbital angular momentum states of the photon pairs generated in a hot atomic ensemble [J].Phys Rev A,78:053810.
    [1]Bell.J.S.1964.On the Einstein Podolsky Rosen paradox [J].Physics (Long Island City,N.Y.),1:195.
    [2]Bennett C H,Brassard G,Crepeau C et al.1993.Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels [J].Phys Rev Lett,70:1895.
    [3]Bouwmeester D,Pan J W,Mattle K et al.1997.Experimental quantum teleportation [J].Nature(London),390:575.
    [4]Zukowski M,Zeilinger A,Home M A et al.1993.'Event-ready-detectors' Bell experiment via entanglement swapping [J].Phys Rev Lett,71:4287.
    [5]Ekert A K.1991.Quantum cryptography based on Bell's theorem [J].Phys Rev Lett,67:661.
    [6]Deutsch D and Jozsa R.1992.Rapid solution of problems by quantum computation [J].Proc R Soc London Ser.A,439:553.
    [7]Bollinger J J,Itano W M,Wineland D J & Heinzen D J.1996.Optimal frequency measurements with maximally correlated states [J].Phys Rev A,54:R4649.
    [8]Greenberger D M,Home M A,Shimony A & Zeilinger A.1990.Bell's Theorem without inequalities [J].Am J Phys,58:1131.
    [9]Mermin N D.1990.Extreme quantum entanglement in a superposition of macroscopically distinct states [J].Phys Rev Lett,65:1838.
    [10]Buzek V and Hillery M.1996.Quantum copying:Beyond the no-cloning theorem [J].Phys Rev A,54:1844.
    [11]Walther P,Pan J W,Aspelmeyer M et al.2004.De Broglie wavelength of a non-local four-photon state [J].Nature (London),429:158.
    [12]Kwiat P G,Mattle K,Weinfurter H & Zeilinger A.1995.New High-Intensity Source of Polarization-Entangled Photon Pairs [J].Phys Rev Lett,75:4337.
    [13]Zhao Z,Chen Y A,Zhang A N et al.2004.Experimental demonstration of five-photon entanglement and open-destination teleportation [J].Nature (London),430:54.
    [14]Xiang G Y,Huang Y F,Sun F W et al.2006.Demonstration of Temporal Distinguishability in a Four-Photon State and a Six-Photon [J].Phys Rev Lett,97:023604.
    [15]Rauschenbeutel A,Nogues G,Osnaghi S et al.2000.Step-by-Step Engineered Multiparticle Entanglement [J].Science,288:2024.
    [16]Sackett C A,Kielpinski D,King B E et al.2000.Experimental entanglement of four particles [J].Nature (London),404:256.
    [17]Duan L.M.2002.Entangling Many Atomic Ensembles through Laser Manipulation [J]. Phys Rev Lett,88:170402.
    [18]Sorensen A,Duan L M,Cirac J I & Zoller P.2001.Many-particle entanglement with Bose-Einstein condensates [J].Nature (London),409:63.
    [19]Matsukevich D N and Kuzmich A.2004.Quantum State Transfer Between Matter and Light [J].Science,306:663.
    [20]de Riedmatten H,Laurat J,Chou C W et al.2006.Direct Measurement of Decoherence for Entanglement between a Photon and Stored Atomic Excitation [J].Phys Rev Lett,97:113603.
    [21]Jiang L,Taylor J M and Lukin M D.2007.Fast and robust approach to long-distance quantum communication with atomic ensembles [J].Phys Rev A,76:12301.
    [22]Zhao B,Chen Z B,Chen Y A et al.2007.Robust long-distance quantum communication with atomic ensembles and linear optics [J].Phys Rev Lett,98:240502.
    [23]Hong C K,Ou Z Y and Mandel L.1989.Measurement of subpicosecond time intervals between two photons by interference [J].Phys Rev Lett,59:2044.
    [24]Chen S,Chen Y A,Zhao B et al.2007.A Robust Atom-Photon Entanglement Source for Quantum Repeaters [EB/OL].http://arxiv.org/pdf/0706.2327v 1.
    [25]Bose S,Vedral V and Knight P L.1998.Multiparticle generalization of entanglement swapping [J].Phys Rev A,57:822.
    [26]Murao M,Plenio M B,Popescu S et al.1998.Multiparticle entanglement purification protocols [J].Phys.Rev.A,57:R4075.
    [27]Miyake A and Briegel H.1998.Distillation of Multipartite Entanglement by Complementary Stabilizer Measurements [J].Phys Rev Lett,95:220501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700