浒苔硫酸多糖对NaCl胁迫下植物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过外源物质增强植物的抗盐能力,对于合理开发和利用盐碱地,增加粮食产量,具有重要意义。许多研究表明,浒苔硫酸多糖是一种具有多种生物活性的物质,但是对于其在农业方面的研究和应用还未见报道。本文使用微波辅助降解的方法制备了不同分子量的浒苔硫酸多糖,并对其提高植物的抗盐性方面进行了研究,通过各种生理生化指标及分子生物学方法对其增强植物抗盐性的效果进行了比较,初步揭示了部分浒苔硫酸多糖提高植物抗盐作用机理。本研究对浒苔硫酸多糖增强植物抗盐性进行了有益的探索同时也为“绿潮”藻的高值利用提供了新思路。获得主要结论如下:
     1.化学组成分析显示浒苔硫酸多糖(EP)为高分子量杂多糖,总糖含量为52.83%,硫酸根含量和糖醛酸含量分别达到21.98%和26.46%,。鼠李糖和葡萄糖是主要的单糖组分(含量为1:1),同时还含有木糖,少量的甘露糖和半乳糖以及痕量的岩藻糖。红外光谱显示,在842和1248以及1642cm-1有典型的C-O-S键以及S=O和C=O键吸收峰。以EP为原料,通过微波辅助等技术制备了不同分子量的浒苔硫酸多糖DEP-1、DEP-2和DEP-3,分子量分别为234KDa、19.1KDa和5.1KDa,理化分析显示,DEP-1、DEP-2和DEP-3与EP的硫酸根含量和糖醛酸含量基本相同,单糖组成基本相似,暗示降解过程只是破坏了糖苷键,没有对多糖的重要化学基团产生影响。
     2.研究了EP对NaCl胁迫下玉米和小麦的影响,结果表明:1mg/mL EP可以提高100mmol/L NaCl胁迫条件下玉米、小麦幼苗地上部分和根系生长,减少MDA含量,降低细胞膜透性。活性氧清除酶系SOD、CAT、POD和APX的活性都有不同程度增加,增强了活性氧清除能力,避免氧化胁迫对玉米和小麦幼苗的损伤。同时,还降低了叶绿素的分解,能够保护叶绿体,增强盐胁迫下的光合作用。
     3.不同分子量浒苔硫酸多糖对于NaCl胁迫下玉米、小麦的影响表明:在盐胁迫条件下,与EP相比,1mg/L的DEP-1、DEP-2和DEP-3具有更好的促进玉米、小麦幼苗生及根生长,提高生物量积累的作用。通过对快速叶绿素荧光动力学曲线及K点相对可变荧光、PSⅡ最大光化学效率以及光合性能指数PI等测定,证明浒苔硫酸多糖能够减少盐胁迫时PSⅡ的损伤,保持光合机构正常状态。推测浒苔硫酸多糖缓解NaCl的胁迫机理可能是减轻了光抑制作用。
     4.不同分子量浒苔硫酸多糖在盐胁迫下对拟南芥的作用表明:0.2mg/mL,1mg/mL以及5mg/mL EP、DEP-1、DEP-2和DEP-3对于诱导拟南芥抗盐胁迫均具有一定作用,但是1mg/mL的效果较明显。浓度相同时,低分子量浒苔硫酸多糖DEP-1与DEP-3对于提高拟南芥抗盐性效果较好。1mg/mL EP、DEP-1、DEP-2、DEP-3处理拟南芥后,拟南芥中抗盐胁迫相关基因SOS1与rd29A的表达均有不同程度上调,其中DEP-1与DEP-3处理后,SOS1基因表达分别是对照的1.23倍和1.22倍,rd29A基因表达分别是对照的5.6倍和2.5倍,说明DEP-1与DEP-3可增强拟南芥抗盐能力,推测浒苔硫酸多糖可以通过增强Na+区隔化以及渗透调节能力来增强植物抗盐性。
Efficient foreign substances could improve salt tolerance in plants. That was very meaningfulfor increasing grain yields and utilizing of saline-alkali land efficiently. Many study resultsshowed that sulfated polysaccharides from Enteromorpha prolifera was a kind of bioactivesubstances, however there were little work in the literature is related to the agricultural uses ofthem. We obtained sulfated polysaccharides from E. prolifera with different molecular weights bymicrowave-assistance. Using some physiological and biochemical methods, we estimated theefforts of sulfated polysaccharides from E. prolifera on salt tolerance of plants and wanted toinvestigate the related mechanism. Our studies not only had significant meaning to improve thesalt tolerance in plants with foreign substances but also gave a way for potential use of ‘green tideseaweed’. The conclusions are as below:
     1. The chemical compositions showed EP was a kind of heteropolysaccharide with huge Mwand the content of total sugar was52.83%. The contents of sulfate and uronic acid in sulfatedpolysaccharide from E. prolifera (EP) were respectively21.98%and26.46%. The majorproportions of monosaccharide were rhamnose and glucose (almost1:1) and there were also smallamounts of xylose, mannose and galactose and trace amounts of fucose. The characteristicabsorption of EP in the FT-IR suggested that typical absorptions at842,1248and1642cm-1werecontributed to the stretching vibration of C-O-S, S=O and C=O respectively. A method wasestablished to degrade EP with microwave-assistance acid hydrolysis and prepared EPs withdifferent Mws. DEP-1、DEP-2and DEP-3were prepared and their Mws were234KDa,19.1KDaand5.1KDa respectively. Analysis of chemical compositions and FT-IR spectra indicated that thecontents of sulfate and uronic acid in DEP-1、DEP-2and DEP-3were similar to EP. The resultindicated that only glycosidic linkages were cleft psecially and the significant structural units inEP were not broken.
     2. We investigated the influences of EP on maize and wheat under slat stress and the resultshowed:1mg/mL EP could increase plant and rootstock height both in maize and wheat under100mmol/L NaCl stress. The contents of MDA and the membrane pemeability decreased.Compared to NaCl stress, the SOD, CAT, POD and APX activity were stimulated to higher levelsunder both EP and NaCl treatment. Those free radical scavenging enzymes could avoid thedamage by accumulation of reactive oxygen species in maize and wheat. Also the degradation ofchlorophyll was declined which implied the using of EP could protect chloroplast functions andsustain photosynthesis under salt stress.
     3. We also studied the changes of salt tolerance in maize and wheat after being treated withdifferent Mws samples:1mg/L DEP-1, DEP-2and DEP-3could increase more plant and rootstockheight than EP both in maize and wheat under100mmol/L NaCl stress. We got the same result onbiomass accumulation. We investigated chlorophyll a fluorescence transient and some importantparameters such as Wk%, φPoand PI. Results showed that EP, DEP-1, DEP-2and DEP-3couldprotect PSⅡ from severely damage and keep photosynthetic apparatus maintain normal functionunder slat stress. It also implied that the possible mechanism may relate to alleviating effect onphotoinhibition.
     4. EP, DEP-1, DEP-2and DEP-3with concentrations of0.2mg/mL,1mg/mL or5mg/mLcould improve salt tolerance in arabidopsis thaliana while the samples of1mg/mL had moresignificant effort. Compared to EP, DEP-1and DEP-3had better efforts under the sameconcentration. The plants showed upregulation of SOS1and rd29A after treated with1mg/mL EP,DEP-1, DEP-2, and DEP-3by RT-PCR. Compared to CK, SOS1upregulated to1.23and1.22times after treated with DEP-1and DEP-3, while rd29A upregulated to5.6and2.5timesrespectively. Results showed that DEP-1and DEP-3increased salt tolerance well in Arabidopsisthaliana. We concluded that the EPs could increase intracellular compartmentation of Na+andosmotic adjustment to improve slat tolerance in arabidopsis thaliana.
引文
[1]章文华.植物的抗盐生理和盐害的防治[J].植物生理学通讯,1997,33(6):479-479.
    [2]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005:14.
    [3]罗斌,王金亭.我国的盐碱化土地与治理技术[J].林业科技通讯,1994,(3):8-10.
    [4] Levitt J. Responses of plants to environmental stresses. Volume II. Water, radiation, salt, andother stresses[M]. Academic Press.,1980:15.
    [5]秦雪峰,高扬帆,张育平.盐胁迫对玉米种子萌发和幼苗生长的影响[J].上海农学院学报,1998,16(3):209-212.
    [6]刘志伟,黄冠华.氯化钠不同浓度对夏玉米生长和吸氮的影响[J].植物营养与肥料学报,2004,10(2):132-136.
    [7] Morabito D, Jolivet Y, Prat D, et al. Differences in the physiological responses of two clonesof Eucalyptus microtheca selected for their salt tolerance[J]. Plant Science,1996,114(2):129-139.
    [8] Munns R, Termaat A. Whole-plant responses to salinity[J]. Functional Plant Biology,1986,13(1):143-160.
    [9] Cramer G R, Epstein E, L uchli A. Effects of sodium, potassium and calcium on salt-stressedbarley[J]. Physiologia Plantarum,1991,81(2):197-202.
    [10] Oertli J. Extracellular salt accumulation, a possible mechanism of salt injury in plants[J].Agrochimica,1968,12:461-469.
    [11] Smith T A. Polyamines[J]. Annual Review of Plant Physiology,1985,36(1):117-143.
    [12]裴真明,汤章城.盐胁迫对高粱根质膜离子通道通透性的影响[J].植物学报,1995,37(1):41.
    [13]刘友良,汪良驹,余叔文等.植物对盐胁迫的反应和耐盐性[J].植物生理与分子生物学,1998,3:752-769.
    [14] Elstner E F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology,1982,33(1):73-96.
    [15]龚明,丁念诚,贺子义.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [16]谈建康,安树青,王铮峰,等.NaCl,Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,1998,15(增刊)82-86.
    [17]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,4(1):7.
    [18] Foyer C, Descourvieres P, Kunert K. Protection against oxygen radicals: an importantdefence mechanism studied in transgenic plants[J]. Plant, Cell&Environment,1994,17(5):507-523.
    [19] Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguieraparviflora: Differential changes of isoforms of some antioxidative enzymes[J]. Journal ofPlant Physiology,2004,161(5):531-542.
    [20]王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应[J].作物学报,2005,31(2):264-266.
    [21] Ke Y Q, Pan T G. Effects of salt stress on the ultrastructure of chloroplast and the activitiesof some protective enzymes in leaves of sweet potato[J]. Acta Phytophysiologica Sinica,1999,25:229-233.
    [22] Carter D, Cheeseman J. The effects of external NaCl on thylakoid stacking in lettuce plants[J].Plant, Cell&Environment,1993,16(2):215-222.
    [23] Jeanjean R, Matthijs H C, Onana B, et al. Exposure of the cyanobacterium SynechocystisPCC6803to salt stress induces concerted changes in respiration and photosynthesis[J]. Plantand cell physiology,1993,34(7):1073-1079.
    [24]朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [25] Ball M, Anderson J. Sensitivity of photosystems II to NaCl in relation to salinity tolerance.Comparative studies with thylakoids of the salt tolerant mangrove, Avicennia marina, and thesalt-sensitive pea, Pisum sativum[J]. Functional Plant Biology,1986,13(5):689-698.
    [26] Blatt M R, Thiel G. Hormonal control of ion channel gating[J]. Annual Review of PlantBiology,1993,44(1):543-567.
    [27] Walker R, Blackmore D, Sun Q. Carbon dioxide assimilation and foliar ion concentrations inleaves of lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4[J]. Functional PlantBiology,1993,20(2):173-185.
    [28] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual review ofplant physiology,1980,31(1):149-190.
    [29] Rodriguez H G, Roberts J K, Jordan W R, et al. Growth, water relations, and accumulation oforganic and inorganic solutes in roots of maize seedlings during salt stress[J]. Plantphysiology,1997,113(3):881-893.
    [30] Volkmar K, Hu Y, Steppuhn H. Physiological responses of plants to salinity: a review[J].Canadian journal of plant science,1998,78(1):19-27.
    [31] Leidi E, Saiz J. Is salinity tolerance related to Na accumulation in upland cotton (Gossypiumhirsutum) seedlings?[J]. Plant and Soil,1997,190(1):67-75.
    [32]赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J].应用与环境生物学报,2000,6(2):99-105.
    [33] Sommer C, Thonke B, Popp M. The compatibility of D-pinitol and1D-1-O-methyl-muco-inositol with malate dehydrogenase activity[J]. Botanica acta,1990,103(3):270-273.
    [34]李永华,邹琦.植物体内甜菜碱合成相关酶的基因工程[J].植物生理学通讯,2002,38(5):500-504.
    [35]刘家栋,翟兴礼.植物抗盐机理的研究[J].农业与技术,2001,21(1):26-29.
    [36] Zhao F, Qin P. Protective effect of exogenous polyamines on root tonoplast function againstsalt stress in barley seedlings[J]. Plant growth regulation,2004,42(2):97-103.
    [37] Hai H R, Wen B S, Lang L X. Nitric oxide involved in the Abscisic Acid induced prolineaccumulation in wheat seedling leaves under salt stress[J]. Acta Botanica Sinica,2004,46(11):1307-1315.
    [38] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1and DREB2, with anEREBP/AP2DNA binding domain separate two cellular signal transduction pathways indrought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J].The Plant Cell Online,1998,10(8):1391-1406.
    [39] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance bygene transfer of a single stress-inducible transcription factor[J]. Nature biotechnology,1999,17(3):287-291.
    [40] Lauchi A, Epstein E. Mechanisms of salt tolerance in plants[J]. Californiaagriculture-California Agricultural Experiment Station,1984,38.
    [41] Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual review of plantbiology,2002,53:247.
    [42]邱念伟,杨洪兵,王宝山.Na+/H+逆向转运蛋白及其与植物耐盐性的关系[J].植物生理学通讯,2001,37(3):260-264.
    [43]武维华.植物生理学[M].北京:科学出版社,2003:448-456.
    [44]王丽燕,赵可夫.NaCl胁迫对海蓬子(Salicornia bigelovii Torr.)离子区室化,光合作用和生长的影响[J].植物生理与分子生物学学报,2004,30(1):94-98.
    [45] Michelet B, Boutry M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzymewith Multiple Physiological Functions)[J]. Plant Physiology,1995,108(1):1.
    [46] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1encodes aputative Na+/H+antiporter[J]. Proceedings of the National Academy of Sciences,2000,97(12):6896-6901.
    [47] Wu S J, Ding L, Zhu J-K. SOS1, a genetic locus essential for salt tolerance and potassiumacquisition[J]. The Plant Cell Online,1996,8(4):617-627.
    [48] Qiu Q S, Guo Y, Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3[J]. Proceedings of the NationalAcademy of Sciences,2002,99(12):8436-8441.
    [49] Oh D H, Lee S Y, Bressan R A, et al. Intracellular consequences of SOS1deficiency duringsalt stress[J]. Journal of experimental botany,2010,61(4):1205-1213.
    [50] Martínez-Atienza J, Jiang X, Garciadeblas B, et al. Conservation of the salt overly sensitivepathway in rice[J]. Plant Physiology,2007,143(2):1001-1012.
    [51] Xu H, Jiang X, Zhan K, et al. Functional characterization of a wheat plasma membraneNa+/H+antiporter in yeast[J]. Archives of Biochemistry and Biophysics,2008,473(1):8-15.
    [52]赵可夫,邹琦,李德全.盐分和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,1993,35(7):519-525.
    [53]高辉远,李卫军.Na2SO4胁迫对四种抗盐性不同牧草膜脂过氧化和活性氧清除系统[J].植物生态学报,1995,19(2):192-196.
    [54]郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J].1998,37(2):278-282.
    [55]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science,2002,7(9):405-410.
    [56] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control[J].Annual review of plant biology,1998,49(1):249-279.
    [57] Athar H, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-inducedoxidative stress in wheat[J]. Environmental and Experimental Botany,2008,63(1):224-231.
    [58] Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants:relationships in green cells[J]. Physiologia Plantarum,2006,100(2):224-233.
    [59] Asada K. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2scavenging in plants[J]. Cold Spring Harbor Monograph Archive,1997,34:715-735.
    [60] Niyogi K K. Photoprotection revisited: genetic and molecular approaches[J]. Annual reviewof plant biology,1999,50(1):333-359.
    [61] Bjorkman O, Demming-Adams B. Regulation of photosynthetic light energy capture,conversion, and dissipation in leaves of higher plants[J]. Ecological studies: analysis andsynthesis,1994,100.
    [62] Kagawa T, Sakai T, Suetsugu N, et al. Arabidopsis NPL1: a phototropin homolog controllingthe chloroplast high-light avoidance response[J]. Science Signalling,2001,291(5511):2138.
    [63] Murata N. Control of excitation transfer in photosynthesis I. Light-induced change ofchlorophyll a fluoresence in Porphyridium cruentum[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1969,172(2):242-251.
    [64]许大全.光合作用效率[J].植物生理学通讯,1988,5(1):7.
    [65] Anderson J, Osmond C. Shade-sun responses: compromises between acclimation andphotoinhibition[J]. Photoinhibition,1987,9:1-38.
    [66] Powles S B. Photoinhibition of photosynthesis induced by visible light[J]. Annual Review ofPlant Physiology,1984,35(1):15-44.
    [67]郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制和光呼吸的关系[J].科学通报,1995,40(20):1885-1888.
    [68] Ruuska S A, Badger M R, Andrews T J, et al. Photosynthetic electron sinks in transgenictobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction[J].Journal of Experimental Botany,2000,51(suppl1):357-368.
    [69]Niyogi K K. Safety valves for photosynthesis[J]. Current opinion in plant biology,2000,3(6):455-460.
    [70] Horton P, Ruban A, Walters R. Regulation of light harvesting in green plants[J]. Annualreview of plant biology,1996,47(1):655-684.
    [71] Demmig Adams B, Gilmore A, Adams W. Carotenoids3: in vivo function of carotenoids inhigher plants[J]. The FASEB Journal,1996,10(4):403-412.
    [72] Strasserf R J, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants andcyanobacteria[J]. Photochemistry and Photobiology,1995,61(1):32-42.
    [73] Krause G, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annualreview of plant biology,1991,42(1):313-349.
    [74] Strasser R, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool tocharacterize and screen photosynthetic samples[J]. Probing photosynthesis: mechanisms,regulation and adaptation,2000:445-483.
    [75] Strasser R J, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescencetransient[J]. Chlorophyll a Fluorescence,2004:321-362.
    [76] Lu C, Zhang J. Changes in photosystem Ⅱ function during senescence of wheat leaves[J].Physiologia Plantarum,1998,104(2):239-247.
    [77] Dai J, Gao H, Dai Y, et al. Changes in activity of energy dissipating mechanisms in wheatflag leaves during senescence[J]. Plant Biology,2004,6(2):171-177.
    [78] Jiang C D, Gao H Y, Zou Q. Changes of donor and acceptor side in photosystem2complexinduced by iron deficiency in attached soybean and maize leaves[J]. Photosynthetica,2003,41(2):267-271.
    [79] Guissé B, Srivastava A, Strasser R. The polyphasic rise of the chlorophyll a fluorescence(OKJIP) in heat stressed leaves[J]. Arch Sci Genève,1995,48:147-160.
    [80] Lu C M, Zhang J H. Heat-induced multiple effects on PSII in wheat plants[J]. Journal ofplant physiology,2000,156(2):259-265.
    [81] Fryer M J, Andrews J R, Oxborough K, et al. Relationship between CO2assimilation,photosynthetic electron transport, and active O2metabolism in leaves of maize in the fieldduring periods of low temperature[J]. Plant Physiology,1998,116(2):571-580.
    [82] Lu C, Jiang G, Wang B, et al. Photosystem Ⅱ photochemistry and photosynthetic pigmentcomposition in salt-adapted halophyteArtimisia anethifolia grown under outdoorconditions[J]. Journal of Plant Physiology,2003,160(4):403-408.
    [83] Lu C, Qiu N, Wang B, et al. Salinity treatment shows no effects on photosystem Ⅱphotochemistry, but increases the resistance of photosystem Ⅱ to heat stress in halophyteSuaeda salsa[J]. Journal of experimental botany,2003,54(383):851-860.
    [84] Chen H X, Li W J, An S Z, et al. Characterization of PS Ⅱ photochemistry andthermostability in salt-treated Rumex leaves[J]. Journal of Plant Physiology,2004,161(3):257-264.
    [85] Eggenberg P, Rensburg L, Krüger H, et al. Screening criteria for drought tolerance inNicotiana tabacum L. derived from the polyphasic rise of the chlorophyll a fluorescencetransient (OJIP)[J]. Photosynthesis: From light to biosphere KAP Press, Dordrecht, theNetherlands,1995:661-664.
    [86] Maxwell K, Johnson G N. Chlorophyll fluorescence—a practical guide[J]. Journal ofexperimental botany,2000,51(345):659-668.
    [87]冯建灿,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [88] Bilger W, Schreiber U, Bock M. Determination of the quantum efficiency of photosystem Ⅱand of non-photochemical quenching of chlorophyll fluorescence in the field[J]. Oecologia,1995,102(4):425-432.
    [89]魏亦农,孔广超,曹连莆.干旱胁迫对春小麦与小黑麦光合特性影响的比较[J].干旱地区农业研究,2003,21(3):134-136.
    [90] Arzani A. Improving salinity tolerance in crop plants: a biotechnological view[J]. In VitroCellular&Developmental Biology-Plant,2008,44(5):373-383.
    [91] Flowers T. Improving crop salt tolerance[J]. Journal of Experimental botany,2004,55(396):307-319.
    [92]常红军,秦毓茜.植物的盐胁迫生理[J].安阳师范学院学报,2006,(5):149-152.
    [93]杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展,2006,28(4):70-76.
    [94]董合忠,李维江.植物诱导抗病性及其利用[J].莱阳农学院学报,2001,18(4):268-273.
    [95]李冠,欧阳光察.植物诱导抗病性[J].植物生理学通讯,1990,6:1-5.
    [96] Hornby D. Immunization for the control of plant disease: proceedings of the Biologicalcontrol of soil-borne plant pathogens.,1990[C]. CAB International.
    [97] Aist J, Bailey J, Deverall B. The dynamics of host defense[J]. The dynamics of host defense,1983.
    [98]王松.褐藻寡糖的制备及诱导烟草抗性研究[D]:山东青岛:中国海洋大学,2003.
    [99]张士功,高吉寅.水杨酸和阿斯匹林对产幼苗生长过程中盐害的缓解作用[J].西北植物学报,1998,18(4):549-554.
    [100]时丽冉.外源水杨酸对玉米幼苗盐害的缓解作用[J].衡水师专学报,2000,2(2):35-38.
    [101]刘娟,马小乐,尚勋武,等.外源IAA对小麦“西旱2号”幼苗水分胁迫和NaCl胁迫的缓解响应[J].甘肃农业大学学报,2009,44(2):47-51.
    [102] Tuna A L, Kaya C, Dikilitas M, et al. The combined effects of gibberellic acid and salinityon some antioxidant enzyme activities, plant growth parameters and nutritional status inmaize plants[J]. Environmental and Experimental Botany,2008,62(1):1-9.
    [103]赵可夫, P Har.盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J].植物学报:英文版,1995,37(4):295-300.
    [104]王玉凤,王庆祥,商丽威.钙对NaCl胁迫下玉米幼苗保护酶活性等生理特性的影响[J].干旱地区农业研究,2008,26(3):119-123.
    [105]刘丽云,王明友.CaCl2对盐胁迫下小麦种子萌发及生理效应的影响[J].河南农业科学,2010,(001):5-7.
    [106]王广印,周秀梅,张建伟,等. Ca2+对NaCl胁迫下黄瓜和南瓜种子发芽的影响[J].浙江农业科学,2005,(6):307-309.
    [107]钱琼秋,魏国强,朱祝军,等.不同品种黄瓜幼苗光合机构对盐胁迫的响应[J].科技通报,2004,20(5):459-463.
    [108] Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide onboth salt and heat stress tolerance in rice[J]. Plant Science,2002,163(3):515-523.
    [109] Zheng C, Jiang D, Liu F, et al. Exogenous nitric oxide improves seed germination in wheatagainst mitochondrial oxidative damage induced by high salinity[J]. Environmental andExperimental Botany,2009,67(1):222-227.
    [110]徐静,谢蓉桃,林强,等.海洋生物多糖的种类及其生物活性[J].中国热带医学,2006,6(7):1277-1278.
    [111]李军,蒋碧蓉,吴红梅,等.海星多糖的提取分离与抗氧化活性研究[J].广东化工,2010,(2):188-189.
    [112]刘娜,朱蓓薇,孙黎明,等.鲍鱼性腺多糖的体内抗氧化活性[J].大连工业大学学报,2011,30(3):177-179.
    [113]王海桃,刘赛.牡蛎糖胺聚糖对损伤的血管内皮细胞功能的影响[J].海洋水产研究,2007,28(5):105-105.
    [114]苏文金,黄益丽,黄耀坚,等.产免疫调节活性多糖海洋放线菌的筛选[J].海洋学报,2001,23(6):1l4-119.
    [115]娄翠,汤顺清.海带岩藻多糖PFS-2抗氧化活性的研究[J].安徽农业科学,2011,39(10):5674-5676.
    [116] Jaulneau V, Lafitte C, Jacquet C, et al. Ulvan, a sulfated polysaccharide from green algae,activates plant immunity through the jasmonic acid signaling pathway[J]. Journal ofBiomedicine and Biotechnology,2010,2010.
    [117] Klarzynski O, Descamps V, Plesse B, et al. Sulfated fucan oligosaccharides elicit defenseresponses in tobacco and local and systemic resistance against tobacco mosaic virus[J].Molecular Plant-Microbe Interactions,2003,16(2):115-122.
    [118] Campbell W H. Nitrate reductase and its role in nitrate assimilation in plants[J]. PhysiologiaPlantarum,2006,74(1):214-219.
    [119]孙杰.两种海藻提取物的化学成分和生物活性的研究及其应用[D]:中国科学院研究生院(海洋研究所),2006:26.
    [120]杨晓玲,郭金耀.褐藻酸钠对向日葵幼苗耐盐性的影响[J].北方园艺,2010,(23):37-39.
    [121]杨晓玲,郭彦东.褐藻酸钠对白萝卜幼苗耐盐适应性的影响[J].中国蔬菜,2012,(2):81-84.
    [122] Aquino R S, Grativol C, Mour o P A. Rising from the sea: correlations between sulfatedpolysaccharides and salinity in plants[J]. PloS one,2011,6(4): e18862.
    [123] Mercier L, Lafitte C, Borderies G, et al. The algal polysaccharide carrageenans can act as anelicitor of plant defence[J]. New Phytologist,2001,149(1):43-51.
    [124] Shimada S, Hiraoka M, Nabata S, et al. Molecular phylogenetic analyses of the JapaneseUlva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to thefree‐f loating Ulva[J]. Phycological Research,2003,51(2):99-108.
    [125] Hernández I, Peralta G, Pérez-Lloréns J L, et al. Biomass and dynamics of growth of ulvaspecies in palmones river estuary[J]. Journal of Phycology,1997,33(5):764-772.
    [126] Ohno M, Werlinger C, Shimada S, et al. A'green tide'problem caused by Enteromorpha sp.in Dichato, Chile: proceedings of the Proceedings of the17th International SeaweedSymposium, Cape Town, South Africa,28January-2February2001.,2003[C]. OxfordUniversity Press.
    [127] Morand P, Briand X. Excessive growth of macroalgae: a symptom of environmentaldisturbance[J]. Botanica Marina,1996,39(1-6):491-516.
    [128] Fletcher R. The occurrence of “green tides”—a review[A]. Marine benthic vegetation[C].Springer,1996.7-43.
    [129] Callow M E, Callow J A, Pickett‐Heaps J D, et al. Primary adhesion ofEnteromorpha(chlorophyta, ulvales) propagules: quantitative settlement studies and video microscopy.[J].Journal of Phycology,1997,33(6):938-947.
    [130]曾呈奎.中国科学院海洋研究所.中国经济海藻志[M].科学出版社,1962:26.
    [131] Tan I H, Blomster J, Hansen G, et al. Molecular phylogenetic evidence for a reversiblemorphogenetic switch controlling the gross morphology of two common genera of greenseaweeds, Ulva and Enteromorpha[J]. Molecular Biology and Evolution,1999,16(8):1011-1018.
    [132]林文庭.浅论浒苔的开发与利用[J].中国食物与营养,2007,(9):23-25.
    [133] Dion P, Le Bozec S. The French atlantic coasts[A]. Marine Benthic Vegetation[C]. Springer,1996.251-264.
    [134]李祯,王爽,徐姗楠,等.大型海藻浒苔热解特性与动力学研究[J].生物技术通报,2007,3:159-164.
    [135]何培民,张寒野,徐姗楠.我国海洋环境生态修复与海藻生物能源产业链发展[J].2005中国可持续发展论坛-中国可持续发展研究会2005年学术年会论文集(下册),2005:184-186.
    [136]余志雄,林叶,陈丽娇,等.浒苔硫酸多糖热水提取工艺研究[J].福建师大福清分校学报,2010,(5):29-34.
    [137]徐大伦,黄晓春,欧昌荣,等.浒苔水溶性多糖提取的工艺研究[J].浙江海洋学院学报:自然科学版,2005,24(1):67-69.
    [138] Chattopadhyay K, Mandal P, Lerouge P, et al. Sulphated polysaccharides from Indiansamples of Enteromorpha compressa (Ulvales, Chlorophyta): Isolation and structuralfeatures[J]. Food Chemistry,2007,104(3):928-935.
    [139] Ray B. Polysaccharides from Enteromorpha compressa: Isolation, purification andstructural features[J]. Carbohydrate Polymers,2006,66(3):408-416.
    [140] Chattopadhyay K, Adhikari U, Lerouge P, et al. Polysaccharides from Caulerpa racemosa:Purification and structural features[J]. Carbohydrate Polymers,2007,68(3):407-415.
    [141] Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide fromgreen seaweeds[J]. Biomacromolecules,2007,8(6):1765-1774.
    [142] Jiao L, Li X, Li T, et al. Characterization and anti-tumor activity of alkali-extractedpolysaccharide from Enteromorpha intestinalis[J]. International Immunopharmacology,2009,9(3):324-329.
    [143] Cho M, Yang C, Kim S M, et al. Molecular characterization and biological activities ofwatersoluble sulfated polysaccharides from Enteromorpha prolifera[J]. Food Science andBiotechnology,2010,19(2):525-533.
    [144] Jiao L, Jiang P, Zhang L, et al. Antitumor and immunomodulating activity ofpolysaccharides from Enteromorpha intestinalis[J]. Biotechnology and BioprocessEngineering,2010,15(3):421-428.
    [145]徐大伦,黄晓春,欧昌荣,等.浒苔硫酸多糖对非特异性免疫功能的体外实验研究[J].食品科学,2005,26(10):232-235.
    [146]周慧萍,蒋巡天.浒苔硫酸多糖的降血脂及其对SOD活力和LPO含量的影响[J].生物化学杂志,1995,11(2):161-165.
    [147]石学连,张晶晶,王晶,等.浒苔硫酸多糖的分级纯化及体外抗氧化活性研究[J].中国海洋药物,2009,(3):44-49.
    [148] Zhang Z, Wang F, Wang X, et al. Extraction of the polysaccharides from five algae andtheir potential antioxidant activity in vitro[J]. Carbohydrate Polymers,2010,82(1):118-121.
    [149] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugarsand related substances[J]. Analytical chemistry,1956,28(3):350-356.
    [150] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding Anal Biochem72:248-254[J]. Findthis article online,1976.
    [151] Bitter T, Muir H M. A modified uronic acid carbazole reaction[J]. Analytical biochemistry,1962,4:330.
    [152] Pengzhan Y, Ning L, Xiguang L, et al. Antihyperlipidemic effects of different molecularweight sulfated polysaccharides from Ulva pertusa (Chlorophyta)[J]. PharmacologicalResearch,2003,48(6):543-549.
    [153]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995:55-59.
    [154]张志良,植物学.植物生理学实验指导[M].高等教育出版社,1990:33-35.
    [155]克热木,伊力,袁琳,等.盐胁迫对阿月浑子SOD,CAT,POD活性的影响[J].新疆农业科学,2004,3:1-3.
    [156]赵会杰.现代植物生理学实验指南[M].北京:科学出版社,1999:45-47.
    [157]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000:167-169.
    [158]张士功,高吉寅.甜菜碱对小麦幼苗生长过程中盐害的缓解作用[J].北京农业科学,1998,16(3):13-17.
    [159]温福平,张檀,张朝晖,等.赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析[J].作物学报,2009,35(3):483-489.
    [160]丁顺华,李艳艳,王宝山.外源海藻糖对小麦幼苗耐盐性的影响[J].西北植物学报,2005,25(3):513-518.
    [161]苏桐,魏小红,丁学智,等.外源NO与蔗糖对盐胁迫下番茄(Lycopersicon esculentum Mill)幼苗氧化损伤的保护效应[J].生态学报,2008,28(4).
    [162] rd g V, Stirk W A, Van Staden J, et al. Endogenous cytokinins in three genera ofmicroalgae from the chlorophyta[J]. Journal of phycology,2004,40(1):88-95.
    [163]岳宏忠,侯栋,刘明军,等.海藻肥对黄瓜种子萌发盐胁迫伤害的缓解作用[J]. CHINAVEGETABLES,2005,6:24-25.
    [164] Lloyd A G, Dodgson K S, Price R G, et al. I. Polysaccharide sulphates[J]. Biochimica etBiophysica Acta,1961,46(1):108-115.
    [165]李波,顾小红,许时婴.硫酸酯多糖结构中硫酸基位置的判断[J].分析科学学报,2004,20(5):498-500.
    [166] Jiang C D, Jiang G M, Wang X, et al. Enhanced photosystem2thermostability during leafgrowth of elm (Ulmus pumila) seedlings[J]. Photosynthetica,2006,44(3):411-418.
    [167] Kaeffer B, Bénard C, Lahaye M, et al. Biological properties of ulvan, a new source of greenseaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelialcells[J]. Planta medica,1999,65(06):527-531.
    [168] Mehta P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects ofhigh salt stress on PhotosystemⅡ in wheat leaves[J]. Plant Physiology and Biochemistry,2010,48(1):16-20.
    [169]陈华新,李卫军,安沙舟,等.钙对NaCl胁迫下杂交酸模(Rumex K-1)幼苗叶片光抑制的减轻作用[J].植物生理与分子生物学学报,2003,29(5):449-454.
    [170] Wu Y, Ding N, Zhao X, et al. Molecular characterization of PeSOS1: the putative Na+/H+antiporter of Populus euphratica[J]. Plant molecular biology,2007,65(1-2):1-11.
    [171] Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-TimeQuantitative PCR and the2-△△CT Method[J]. Methods,2001,25(4):402-408.
    [172] Chen J, Xiao Q, Wu F, et al. Nitric oxide enhances salt secretion and Na+sequestration in amangrove plant, Avicennia marina, through increasing the expression of H+-ATPase andNa+/H+antiporter under high salinity[J]. Tree physiology,2010,30(12):1570-1585.
    [173] Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements,ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response todehydration and high-salinity stresses[J]. The Plant Journal,2003,34(2):137-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700