过表达EGF、CNTF诱导反应性星形胶质细胞逆分化促进脊髓损伤修复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经干细胞(neural stem cells, NSCs)目前被认为是治疗中枢神经系统损伤最有临床应用前景的细胞,但NSCs的来源、致瘤性以及移植后的免疫排斥反应等诸多方面的问题又面临着巨大的挑战。研究发现,在神经系统受到机械性、化学性或病理性损伤后,损伤区周围的星形胶质细胞能够表达NSCs的特异性标记物nestin,呈现神经前体细胞或NSCs的特性,并且经过体外培养可以获得NSCs,这一现象的发生机制尚未完全明确,据推测可能与星形胶质细胞周围的微环境变化引起星形胶质细胞逆分化有关。因此星形胶质细胞逆分化的特性为神经系统损伤修复提供了一条新的思路。本实验的目的是构建表皮生长因子(Epidermal GrowthFactor, EGF)、睫状神经营养因子(Ciliary Neurotrophic Factor, CNTF)的真核表达载体后,将重组载体在体外细胞模型进行共转染,观察重组载体对反应性星形胶质细胞(Reactive astrocytes, RAS)逆分化的影响,继而将重组载体共转染脊髓损伤大鼠,观察重组载体在体内环境中对RAS逆分化的影响及促进脊髓损伤修复的效果。为下一步从蛋白和基因水平研究EGF、CNTF调节RAS逆分化的分子机制打下基础。
     本研究共分为三部分。在实验一中,我们将3周龄的SD大鼠脱颈处死后,在无菌、无RNA酶污染、冰冷的条件下利用Trizol试剂提取出大鼠颌下腺及坐骨神经组织总RNA。利用逆转录聚合酶链反应(RT-PCR)分别扩增出EGF及CNTF基因功能片段,电泳分析结束后回收纯化PCR产物,回收产物分别与空白质粒pSecTag2/Hygro B同时进行BamHⅠ和HindⅢ双酶切,两组酶切产物经T4DNA连接酶作用后,分别转化入感受态大肠杆菌JM109,LB琼脂平板培养过夜。经PCR初筛,两组阳性克隆分别行BamHⅠ和HindⅢ双酶切鉴定后送测序,测序结果使用BLAST软件与GeneBank数据库进行同源性分析。正确构建成功的载体命名为pSecTag2/Hygro B-EGF、pSecTag2/Hygro B-CNTF。随后将重组载体在脂质体试剂Lipofectamine2000的介导下分别单独及共转染cos-7细胞检测重组载体的表达活性。转染48h后分别收集三组细胞培养上清液,Western blot鉴定重组EGF、CNTF蛋白在cos-7细胞各组中的表达情况。结果发现:单独转染pSecTag2/HygroB-EGF、pSecTag2/hygro B-CNTF的cos-7细胞培养上清分别在6kD、22kD左右处出现阳性条带,共转染组在6kD、22kD均出现阳性条带,对照组呈阴性结果。证实重组EGF、CNTF蛋白在cos-7细胞中共表达成功。
     在实验二中,我们首先在体外分离培养出大鼠脊髓组织的星形胶质细胞,并在体外用细胞划痕的方法建立RAS细胞模型,经免疫荧光染色发现细胞呈GFAP和nestin表达双阳性,说明星形胶质细胞在受到刺激后发生了逆分化,表达神经干细胞的特异性蛋白,这与前期其他学者的研究结果相一致。接着,我们将构建成功的真核表达载体pSecTag2/Hygro B-EGF、pSecTag2/Hygro B-CNTF共转染RAS,在RAS中过表达重组EGF、CNTF蛋白,发现随着共转染时间的推移,RAS表达nestin的强度不断增强,培养到第6d,视野中基本都是GFAP和nestin双阳性细胞,nestin的表达强度也有显著提高。而共转染真核表达载体的正常星形胶质细胞未出现nestin阳性细胞。转染空白质粒的RAS仅有少量的GFAP阳性细胞表达nestin,且表达强度相对较弱。并且对nestin的表达进行半定量分析发现,未损伤的正常星形胶质细胞没有明显的表达nestin。转染空白质粒的RAS的nestin表达强度相对较弱。而共转染第2~6d,nestin的表达强度出现逐渐上升的趋势,在第6d时,nestin的表达量达到最高。以转染空白质粒的RAS相对光密度值为1,转染第2d的相对光密度值为1.03±0.13,第4d为1.14±0.16,第6d为1.23±0.27。这些结果提示将重组EGF、CNTF真核表达载体在体外共转染RAS的细胞模型,能够上调RAS的nestin表达,促进RAS的逆分化过程,但是其具体分子机制有待进一步研究。
     在实验三中,我们将4月龄SPF级SD大鼠随机分为EGF转染组(A组),CNTF转染组(B组),CNTF与EGF共转染组(C组)和对照组(D组)4组,每组24只。采用改良Allen’s法制备大鼠脊髓损伤模型后,应用Alzet微渗透压泵分别向A、B、C组和D组持续转染重组EGF与CNTF质粒和空白质粒各5μg(A组单独EGF转染,B组单独CNTF转染,C组EGF与CNTF共转染,D组为空白质粒)。在术后1、2、4、6周采用BBB运动功能评分系统,斜板运动试验检测大鼠运动功能恢复情况;采用RT-PCR和Western blot方法检测EGF与CNTF基因的表达;采用免疫荧光双标染色和组织学观察EGF与CNTF对反应性星形胶质细胞增殖分化的影响以及脊髓组织病理变化情况。结果发现,术后2、4、6周运动功能评分C组BBB评分明显高于其余三组,差异有统计学意义(P<0.05)。RT-PCR和Western blot方法检测显示A组大鼠脊髓组织可见EGF,B组可见CNTF mRNA与蛋白的表达,C组可见共同表达,而D组则未见明显表达。组织学观察示C组脊髓结构以及神经元形态恢复较好且逐渐趋于正常,且免疫荧光双标染色示C组脊髓组织中Nestin阳性的星形胶质细胞数较对照组明显增多,差异有统计学意义(P<0.05)。这些结果提示重组EGF、CNTF能够在体内环境中通过促进RAS的逆分化从而促进脊髓损伤大鼠神经功能的恢复。
     综上所述,在体外RAS细胞模型中过表达EGF和CNTF蛋白能够促进RAS的逆分化过程。在脊髓损伤大鼠中过表达EGF和CNTF蛋白能够促进RAS逆分化过程并且促进脊髓损伤大鼠神经功能的恢复。
Neural stem cells (NSCs) are regards as a perspective candidate for neural treatment inclinical therapies for central nerve system injury and neurological discorders.Unfortunately, NSCs sources supply, tumor formation and persistence of pronouncedimmue response make this technique face great challenge for its therapeutic applications.Astrocytes within injured central nerve system region resulting from mechanical,chemical and pathological unjury may undergo a process of de-differentiation, thesede-differentiated astrocytes express nestin, the marker of neural progenitor cells, orsometimes possess neural precursor/stem cells characteristics. How the astrocytes makede-differentiation following injury is largely unclear. It presumption that astrocytesde-differentiation may correlate to intimate microenviroment around them. The data invitro shows astrocytes from injured spinal cord may acquire NSCs in culture conditions,the approved viewpoint is of astrocytes de-differentiation profiles. The property ofastrocytes de-differentiation offers a potential useful method for treatment of centralnerve system injury. The purpose of this experiment is to bulid the eukaryoticexpression vector of epidermal growth factor (EGF) and ciliary neurotrophic factor(CNTF). The recombinant vectors were co-transfected into reactive astrocytes (RAS) toobserve its effect on RAS de-differentiation in vitro. Then the recombinant vectors wereco-transfected with a spinal cord injury in rats, to observed its effect on RASde-differentiation in vivo and promote the repair of spinal cord injury.
     The study is divided in three parts. In the first experiment, a SD rat aged3weeks was selected and killed by dislocation of neck, the submandibular gland and sciatic nervewere quickly taken out under cold condition, then dissected the submandibular glandand sciatic nerve, after that, the total RNA of the submandibular gland and sciatic nervewas extracted under the condition without RNA enzyme contamination with Trizolreagents. Using revers transcription PCR, the cDNA fragments of EGF and CNTF geneswere amplified from total RNAs respectively. After the end of electrophoretic analysis,the purified PCR products were collected. Then the amplified fragments wererespectively inserted into eukaryotic expression vector pSecTag2/Hygro B to constructthe recombined plasmid that encoded EGF and CNTF cDNA. The plasmids carryingEGF and CNTF genes were transfected alone respectively into competence JM109E.coli. After preliminary screening by PCR, the two positive clone were digested bydouble restriction enzyms BamH Ⅰ and Hind Ⅰ. The vectors which build correctly werenamed pSecTag2/Hygro B-EGF and pSecTag2/Hygro B-CNTF. The purified plasmidscarrying EGF and CNTF genes were transfected alone respectively or cotransfected intocos-7cells by liposome method. After transfecting48hours, collecting cell culturemedium and then the expression proteins were detected by Western blot. The resultsshowed that, a specific positive band was detected in6kD in signal transfectionpSecTag2/Hygro B-EGF group, a specific positive band was detected in22kD in signaltransfection pSecTag2/Hygro B-CNTF group, co-transfected group in both6kD and22kD, the control group showed a negative result. These results confirmed that therecombinanted EGF and CNTF protein were correctly expression in cos-7cells.
     In the second experiment, we first isolated and cultured rat spinal cord astrocytes invitro, then established the RAS cell model by scratch method. The immunofluorescencestaining showed that the RAS GFAP and nestin expression in double positive, thisconfirmed that astrocytes ungo de-differentiation by stimulation, and expression ofneural stem cell specific protein, which in consistent with the preliminary findings of other reserachs. Then, we on-transfected the successful constracted eukaryoticexpression vector pSecTag2/Hygro B-EGF and pSecTag2/Hygro B-CNTF into RAS tooverexpression recombinant EGF and CNTF proteins. As time goes on, RAS expressnestin constantly enhance the strength, at6d, the field of view are basically GFAP andnestin double positive cells, the expression of nestin also significantly enhanced. But thenormal astrocytes do not appear nestin positive cells with co-transfection eukaryoticexpression vectors. The RAS which transfected with blank plasmid only a small numberof GFAP-positive cells express nestin, and the expression intensity is relatively weak.And the semiquantitative analysis found that no significant expression of nestin innoramal astrocytes. The RAS transfected with blank plasmind expression nestin isrelatively weak. From2to6day, the nestin expression intensity gradually rising inco-transfection group, at the6th day, the nestin expression reach the highest. Set therelative optical density value of1in blank plasmid transfection group, at2day therelative optical density value is1.03±0.13, the4d is1.14±0.16, the6d is1.23±0.27.These results suggest that the recombinant EGF and CNTF eukaryotic expression vectorwere co-transfected the RAS cell model in vitro, that can up-regulated nestin expressionin RAS, and promote RAS de-differentiation, but the specific molecular mechanismneeds further research.
     In the third experiment, Ninety-six rats were randomly divided into four groups, andeach group contained24rats. The rats in EGF uni-transfection group (group A), CNTFuni-transfection group (group B), EGF and CNTF co-transfection group (group C) andcontrol group (group D). The rats received a spinal cord contusive injury at T10levelusing modified Allen’s method. EGF and CNTF recombinant plasmid and blankplasmid were transfected into the damaged areas of exprimental group and controlgroup respectively by Alzet pumps. At1,2,4,6weeks, Basso-Beattle-Bresnahan (BBB)Rating Scale was used to observe the recovery of motor function. The expressions of EGF and CNTF DNA and protein in injured spinal cord were detected by RT-PCR andWestern blot techniques. And double immunofluorescence and histopathologicexaminations were performed to study the proliferation and differentiation of thereactive astrocyte and pathological change after SCI. The results showed that, At2,4,6weeks after SCI, the BBB scores in the group C was significantly higher than that inother three groups (P<0.05). RT-PCR and Western blot showed that the DNA andprotein expressions of EGF and CNTF were observed in group A, B, C and noexpression was seen in group D. Histologic observation showed that the morphology ofspinal cord and neurons in group C was better than that in the other three groups andwas close to the normal tissue. The number of Nestin+astrocytes in group C wassignificantly more than that in other three groups (P<0.05). These results suggested thatthe recombinant EGF and CNTF in vivo environment by promoting the RASde-differentiation neurological function recovery in rats with spinal cord injury.
     In summary, overexpression of EGF and CNTF protein in vitro model of RAS cells cancontribute to the process of de-differentiation of the RAS. Overexpression of EGF andCNTF protein can promote RAS de-differentiation and promotion of spinal cord injuryin rats recovery of neurological function in spinal cord injury in rats.
引文
1Willerth SM, Sakiyama Elbert SE. Cell therapy for spinal cord regeneration. AdvDrug Deliv Rev.2008;60:263276.
    2Yoon C, Tuszynski MH. Frontiers of spinal cord and spine repair: experimentalapproaches for repair of spinal cord injury. Adv Exp Med Biol.2012;760:1-15.
    3Reeves A, Keirstead HS. Stem cell based strategies for spinal cord injury repair. AdvExp Med Biol.2012;760:16-24.
    4Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy forspinal cord injury: human embryonic stem cells, endogenous neural stem cells, orinduced pluripotent stem cells? Stem Cells.2010;28:93-99.
    5Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol.2010;119:7–35.
    6Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: molecular andcellular insights into their reactive response and healing potential. Biochem Pharmacol.2010;79:77-89.
    7Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol.2008;86:342-367.
    8Lang B, Liu HL, Liu R, et al. Astrocytes in injured adult rat spinal cord mayacquire the potential of neural stem cells. Neuroscience.2004;128:775-783.
    9Broadie K. Axon pruning: an active for glial cells. Curr Biol.2004;4:302-304.
    10Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation ofenergy metabolism by astrocytes: an update. Glia.2007;55:1251-1262.
    11Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinatessynaptic networks. Science.2005;310:113-116.
    12Perea G, Araque A. Synaptic information processing by astrocytes. J Physiol Paris.2006;99:92-97.
    13Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders:a molecular perspective. Nat Rev Neurosci.2006;7:194-206.
    14Lin RCS, Matesic DF, Marvin M, et al. Re-expression of the intermediate filamentnestin in reactive astrocytes. Neurobiology of Disease.1995;2:79-85.
    15Duggal N, Schmidt-Kastner R, Hakim AM. Nestin expression in reactive astrocytesfollowing focal cerebral ischemia in rats. Brain Research.1997;768:1-9.
    16Walder S, Zhang F, Ferretti P. Up-regulation of neural stem cell markers suggests theoccurrence of dedifferentiation in regenerating spinal cord. Dev Genes Evol.2003;213:625-630.
    17Chen J, Leong SY, Schachner M. Differential expression of cell fate determinants inneurons and glial cellsof adult mouse spinal cord after compression injury. EuropeanJournal of Neuroscience.2005;22:1895-1906.
    18Buffo A, Rite I, Tripathi P, et al. Origin and progency of reactive gliosis: A source ofmultipotent cells in the injuryed brain. Proc Natl Acad Sci USA.2008;105:3581-2586.
    19Renault-Mihara F, Okada S, Shibata S, et al. Spinal cord injury: Emerging beneficialrole of reactive astrocytes’migration. Int J Biochem Cell Biol.2008;40:1649-1653.
    20Eddleston M, Mucke L. Molecular profile of reactive astrocytes:implications fortheir role in neurological disease. Neumseience.1993;54:15-36.
    21Yun SJ, Byun K, Bhin L, et al. Transcriptional regulatory net-works associated withself-renewal and diferentiation of neural stem cells. J Cell Physiol.2010;225:337-347.
    22Mulligan RC. The basic science of gene therapy. Science.1993;260:926-932.
    23Jimene Z, Hamann MC, Tator CH, et al. Injectable intrathecal delivery system forlocalized administration of EGF and FGF-2to the injured rat spinal cord. ExpNeurol.2005;194:106-109.
    24Bambakidis NC, Butler J, Horn EM, et al. Stem cell biology and its therapeuticapplications in thesetting of spinal cord injury. Neurosurg Focus.2008;24: E20.
    25Liu B, Chen H, Johns TJ, et al. Epidermal growth factor receptor activation: anupstream signal for transition of quiescent astrocytes into reactive astrocytes afterneural injury. J Neurosci.2006;26:7532-7540.
    26Yang P, Arnold SA, Habas A, et al. Ciliary neurotrophic factor mediates dopamineD2receptor-induced CNS neurogenesis in adult mice. J Neurosci.2008;28:2231-2241.
    27Faijerson J, Tinsley RB, Aprico K, et al. Reactive astrogliosis induces astrocyticdifferentiation of adult neural stem/progenitor cells in vitro. J Neurosci Res.2006;84:1415-1424.
    28Muller S, Chakrapani BP, Schwegler H, et al. Neurogenesis in the dentate gyrusdepends on ciliary neurotrophic factor and signal transducer and activator oftranscription3signaling. Stem Cells.2009;27:431-441.
    29Albrecht PJ, Enterline JC, Cromer J, et al. CNTF-activated astrocytes release asoluble trophic activity for oligodendrocyte progenitors. Neurochem Res.2007;32:263-271.
    30Pawson T, Gish GD. SH2and SH2domains: from structure to function. Cell.1992;71:359-362.
    1Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol.2008;86:342-367.
    2Sun D, Lye-Barthel M, Masland RH, et al. Structural remodeling of fibrousastrocytes after axonal injury. J Neurosci.2010;30:14008-14019.
    3Gris P, Tighe A, Levin D, et al. Transcriptional regulation of scar gene expression inprimary astrocytes. Glia.2007;55:1145-1155.
    4Busch SA, Horn KP, Cuascut FX, et al. Adult NG2+cells are permissive to neuriteoutgrowth and stabilize sensory axons during macrophage-induced axonal diebackafter spinal cord injury. J Neurosci.2010;30:255-265.
    5Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: molecular andcellular insights into their reactive response and healing potential. BiochemPharmacol.2010;79:77-89.
    6Hsu JY, Bourguignon LY, Adams CM, et al. Matrix metalloproteinase-9facilitatesglial scar formation in the injured spinal cord. J Neurosci.2008;28:13467-13477.
    7Su Z, Yuan Y, Chen J, et al. Reactive astrocytes inhibit the survival anddifferentiation of oligodendrocyte precursor cells by secreted TNF-alpha. JNeurotrauma.2011;28:1089-1100.
    8Okano H, Kaneko S, Okada S, et al. Regeneration-based therapies for spinal cordinjuries. Neurochem Int.2007;51:68-73.
    9Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue andpreserve function after spinal cord injury. J Neurosci.2004;24:2143-2155.
    10Okada S, Nakamura M, Katoh H, et al. Conditional ablation of Stat3or Socs3discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med.2006;12:829-834.
    11Xu R, Wu C, Tao Y, et al. Nestin-positive cells in the spinal cord: a potential sourceof neural stem cells. Int J Dev Neurosci.2008;26:813-820.
    12Xu L, Xu C J, Lu H Z, et al. Long-term fate of allogeneic neural stem cells followingtransplantation into injured spinal cord. Stem Cell Rev.2010;6:121-136.
    13Jimene Z, Hamann MC, Tator CH, et al. Injectable intrathecal delivery system forlocalized administration of EGF and FGF-2to the injured rat spinal cord. ExpNeurol.2005;194:106-109.
    14Bambakidis NC, Butler J, Horn EM, et al. Stem cell biology and its therapeuticapplications in thesetting of spinal cord injury. Neurosurg Focus.2008;24: E20.
    15Liu B, Chen H, Johns TJ, et al. Epidermal growth factor receptor activation: anupstream signal for transition of quiescent astrocytes into reactive astrocytes afterneural injury. J Neurosci.2006;26:7532-7540.
    16Yang P, Arnold SA, Habas A, et al. Ciliary neurotrophic factor mediates dopamineD2receptor-induced CNS neurogenesis in adult mice. J Neurosci.2008;28:2231-2241.
    17Faijerson J, Tinsley RB, Aprico K, et al. Reactive astrogliosis induces astrocyticdifferentiation of adult neural stem/progenitor cells in vitro. J Neurosci Res.2006;84:1415-1424.
    18Muller S, Chakrapani BP, Schwegler H, et al. Neurogenesis in the dentate gyrusdepends on ciliary neurotrophic factor and signal transducer and activator oftranscription3signaling. Stem Cells.2009;27:431-441.
    19Albrecht PJ, Enterline JC, Cromer J, et al. CNTF-activated astrocytes release asoluble trophic activity for oligodendrocyte progenitors. Neurochem Res.2007;32:263-271.
    20Oki K, Kaneko N, Kanki H, et al. Musashi1as a marker of reactive astrocytes aftertransient focal brain ischemia. Neurosci Res.2010;66:390-395.
    21Wei G, Schubiger G, Harder F, et al. Stem cell plasticity in mammals andtransdetermination in Drosophila: common themes? Stem Cells.2000;18:409-414.
    22Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neuralstem cells. Science.2000;288:1660-1663.
    23Chang KT, Tsai CM, Chiou YC et al. IL-6induceds neuroendocrine dedifferentiationand cell proliferation in non-small cell lung cancer cells. An J Phusiol Lung CellMol Phusiol.2005;289:446-453.
    24Suzuki A, Raya A, Ka W. Nanog binds to Smad1and blocks bone morphogeneticprotein-induced differentiation of embryonic stem cells. Pro Natl Acad Sci USA.2006;103:10294-10299.
    25Laywell ED, Rakic P, Kukekov VG, et al. Identiation of a multipotent astrocytic stemcell in the immature and adult mouse brain. PNAS.2000;97:13883-13888.
    26Timiras PS, Yaghmaiel F, Saeed O, et al. The ageing phenome: caloric restriction andhormones promote neural cell survival, growth, and de-differentiation. Mechanismof Ageing and Development.2005;126:3-9.
    27Codeluppi S, Svensson CI, Hefferan MP, et al. The Rheb-mTOR pathway isupregulated in reactive astrocytes of the injured spinal cord. J Neurosci.2009;29:1093-1104.
    28Logan A, et al. Effects of transforming growth factor beta1on scar production in theinjured central nervous system of the rat. Eur J Neurosci.1994;6:355–363.
    29Forschini DR, Kestler AM, Egger MD, et al. The up-regulation of trkA and trkB indorsal column astrocytes following dorsal rhizotomy. Neurosci Lett.1994;169:21–24.
    1Wu JC, Huang WC, Tsai YA,et al. Nerve repair using acidic fibrolast growth factorin human cervical spinal injury:a preliminary Phase I climical. J Neurosury Spine.2008;8:208-214.
    2Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol.2008;86:342-367.
    3Jimenez Hamann MC, Tator CH, Shoichet MS. Injectable intrathecal deliverysystem for localized administration of EGF and FGF-2to the injury rat spinal cord.Exp Neurol.2005;194:106-119.
    4Bambakidis NC, Butler J, Horn EM, et al. Stem cell biology and its therapeuticapplications in the setting of spinal cord injury. Neurosurg Focus.2008;24: E20.
    5Liu B, Chen H, Johns TG, et al. Epidermal growth factor receptor activation: anupstream signal for transition of quiescent astrocytes into reactive astrocytes afterneural injury. J Neurosci.2006;26:7532-40
    6Faijerson J, Tinsley RB, Aprico K, et al. Reactive astrogliosis induces astrocyticdifferentiation of adult neural/progenitor cells in vitro. J Neurosci Res.2006;84:1415-1424.
    7Muller S, Chakrapani BP, Schwegler H, et al. Neurogenesis in the dentate gyrusdepends on ciliary neurotrophic factor and signal transducer and activator oftranscription3signaling. Stem Cells.2009;27:431-441.
    8Buffo A, Rite I, Tripathi P, et al. Origin and progency of reactive gliosis:A source ofmultipotent cells in the injured brain. Proc Natl Acad Sci USA.2008;105:3581-3586.
    9Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cordinjury-beneficial and detrimental effects. Mol Neurobiol.2012;46:251-264.
    10Lang B, Liu HL, Liu R,et al. Astrocytes in injured adult rat spinal cord may acquirethe potential of neural stem cells. Neuroscience.2004;128:775-783.
    11Escartin C, Bonvento G. Targeted activation of astrocytes: a potential neuroprotectivestrategy. Mol Neurobiol.2008;38:231-241.
    12Pataky DM, Borisoff JF, Fernandes KJ, et al. Fibroblast growth factor treatmentproduces differential effects on survival and neurite outgrowth from identifiedbulbospinal neurons in vitro. Exp Neurol.2000;163:357-372.
    13Myer DJ, Gurkoff GG, Lee SM, et al. Essential protective roles of reactive astrocytesin traumatic brain injury. Brain.2006;129:2761-2772.
    14Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in healthand disease. Trends Neurosci.2001;24:39-47.
    15Min KJ, Yang MS, Kim SU, et al. Astrocytes induces hemeoxygenase-1expressionin microglia:a feasible mechanism for preventing excessive brain inflammation. JNeurosci.2006;26:1880-1887.
    16Xu R, Wu C, Tao Y, et al. Nestin-positive cells in the spinal cord:a potential sourceof neural stem cells. Int J Dev Neurosci.2008;26:813-820.
    17Sergent-Tanguy S, Michel DC, Neceu I, et al. Long-lasting coexpression of nestinand glial fibrillary acidic protein in primary cultures of astroglial cells with a majorparticipation of nestin(+)/GFAP(-) cells in cell proliferation. J Neurosci Res.2006;83:1515-1524.
    18Obermair FJ, Schroter A, Thallmair M. Endogenous neural progenitor cells astherapeutic target after spinal cord injury. Physiology.2008;23:296-304.
    19Renault-Mihara F, Okada S, Shibata S, et al. Spinal cord injury:emerging beneficialrole of reactive astrocytes migration. Int J Biochem Cell Biol.2008;40:1649-1653.
    20Huang YL, Shi gy, Jiang MJ, et al. Epidermal growth factor up-regulates theexpression of nestin through the Ras-Raf-ERK signaling axis in rat vascular smoothmuscle cells. Biochem Biophys Res Commun.2008;377:361-366.
    21Rasouli A, Bhatia N, Dinh P, et a1. Resection of Glial Scar Following Spinal CordInjury. J Orthop Res.2009;27:931-936.
    22Gilardino A, Farcito S, Zamburlin P, et al. Specificity of the second messengerpathways involved in basic fibroblast growth factor-induced survival and neuritegrowth in chick ciliary ganglion neurons. J Neurosci Res.2009;87:2951-2962.
    23Linker R, Gold R, Luhder F. Function of neurotrophlc factors beyond the nervoussystem:inflammation and autoimmune demyelination. Crit Rev Immunol.200929:l43-168.
    24Yang P, Arnold SA, Habas A, et al. Ciliary neurotrophic factor mediates dopamineD2receptor-induced CNS neurogenesis in adult mice. J Neurosci.2008;
    28:2231-2241.
    1Pekny M, Wilhelmsson U, Bogestl YR, et al. The role of astrocytes and complementsystem in neural plasticity. Int Rev Neurobiol.2007;82:95-111.
    2Freeman MR. Specification and morphogenesis of astrocytes. Science.2010;330:774-778.
    3Grosche J, Matyash V, Moller T, et al. Microdomains for neuron-glia interaction:parallel fiber signaling to Bergmann glial cells. Nat Neurosci.1999;2:139-143.
    4Popov VI, Medvedev NI, Rogachevskii VV, et al. Three-dimentional organization ofsynapses and Astroglia in the hippocampus of rats and ground squirrels: newstructural and functional paradigms of the synapse function. Biofizika.2003;48:289-308.
    5Mcdonald AJ, Mascagni F, Muller JF. Immunocytochemical localization ofGABABR1receptor subunits in the basolateral amygdala. Brain Res.2004;1018:147-158.
    6Rumajogee P, Verge D, Darmon M, et al. Rapid up-regulation of the neuronalserotoninergic phenotype by brain-derived neurotrophic factor and cyclic adenosinemonophosphate: relations with raphe Astrocytes. J Neurosci Res.2005;81:481-487.
    7Huang YH, Sinha SR, Tanaka K, et al. Astrocyte glutamate transporters regulatemetabotropic glutamate receptor-mediated excitation of hippocampal interneurons. JNeurosci.2004;24:4551-4559.
    8Molofsky AV, Krencik R, Ullian EM, et al. Astrocytes and disease: aneurodevelopmental perspective. Genes Dev.2012;26:891-907.
    9Gao X, Gillig TA, Ye P, et al. Interferon-gamma protects against cuprizone-induceddemyelination. Mol Cell Neurosci.2000;16:338-349.
    10Erkman L, Cadelli D, Wuarin L, et al. Interferon stimulates the expression ofcholinergic properties in human spinal cord neurons in culture. Rev Neurol.1988;144:660-663.
    11Oren A, Falk K, Rotzschke O, et al. Production of neuroprotective NGF inAstrocyte-T helper cell cocultures is upregulated following antigen recognition. JNeuroimmunol.2004;149:59-65.
    12Brodie C. Differential effects of Th1and Th2derived cytokines on NGF synthesis bymouse Astrocytes. FEBS Lett.1996;394:117-120.
    13Brodie C, Goldreich N, Haiman T, et al. Functional IL-4receptors on mouseAstrocytes: IL-4inhibits Astrocyte activation and induces NGF secretion. JNeuroimmunol.1998;81:20-30.
    14Appel E, Kolman O, Kazimirsky G, et al. Regulation of GDNF expression incultured Astrocytes by inflammatory stimuli. Neuroreport.1997;8:3309-3312.
    15Nadal A, Fuentes E, PAstor J, et al. Plasma albumin induces calcium waves in ratcortical Astrocytes. Glia.1997;19:343-351.
    16Rouach N, Segal M, Koulakoff A, et al. Carbenoxolone blockade of neuronalnetwork activity in culture is not mediated by an action on gap junctions. J Physiol.2003;553:729-745.
    17Neusch C, Papadopoulos N, Muller M, et al. Lack of the Kir4.1channel subunitabolishes K+buffering properties of Astrocytes in the ventral respiratory group:impact on extracellular K+regulation. J Neurophysiol.2006;95:1843-1852.
    18Kalmar B, Kittel A, Lemmens R, et al. Cultured Astrocytes react to LPS withincreased cyclooxygenase activity and phagocytosis. Neurochem Int.2001;38:453-461.
    19Herber DL, Severance EG, Cuevas J, et al. Biochemical and histochemical evidenceof nonspecific binding of alpha7nAChR antibodies to mouse brain tissue. JHistochem Cytochem.2004;52:1367-1376.
    20Angulo MC, Kozlov AS, Charpak S, et al. Glutamate released from glial cellssynchronizes neuronal activity in the hippocampus. J Neurosci.2004;24:6920-6927.
    21Kucher BM, Neary JT. Bi-functional effects of ATP/P2receptor activation on tumornecrosis factor-alpha release in lipopolysaccharide-stimulated Astrocytes. JNeurochem.2005;92:525-535.
    22Schipke CG, Kettenmann H. Astrocyte responses to neuronal activity. Glia.2004;47:226-32.
    23Noack H, Possel H, Chatterjee S, et al. Nitrosative stress in primary glial culturesafter induction of the inducible isoform of nitric oxide synthase (i-NOS). Toxicology.2000;148:133-142.
    24Oren A, Falk K, Rotzschke O, et al. Production of neuroprotective NGF inAstrocyte-T helper cell cocultures is upregulated following antigen recognition. JNeuroimmunol.2004;149:59-65.
    25Cornet A, Bettelli E, Oukka M, et al. Role of Astrocytes in antigen presentation andnaive T-cell activation. J Neuroimmunol.2000;106:69-77.
    26Constantinescu CS, Tani M, Ransohoff RM, et al. Astrocytes as antigen-presentingcells: expression of IL-12/IL-23. J Neurochem.2005;95:331-340.
    27Verderio C, Matteoli M. ATP mediates calcium signaling between Astrocytes andmicroglial cells: modulation by IFN-gamma. J Immunol.2001;166:6383-6391.
    28McNaught KS, Jenner P. Dysfunction of rat forebrain Astrocytes in culture alterscytokine and neurotrophic factor release. Neurosci Lett.2000;285:61-65.
    29McKimmie CS, Fazakerley JK. In response to pathogens, glial cells dynamically anddifferentially regulate Toll-like receptor gene expression. J Neuroimmunol.2005;169:116-125.
    30Carpentier PA, Begolka WS, Olson JK, et al. Differential activation of Astrocytes byinnate and adaptive immune stimuli. Glia.2005;49:360-374.
    31Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immuneresponses in human microglia and Astrocytes. J Immunol.2005;175:4320-4330.
    32Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: Molecular andcellular insights into their reactive response and healing potential. BiochemicalPharmacology.2010;79:77-89.
    33Lin RCS, Matesic DF, Marvin M, et al. Re-expression of the intermediate filamentnestin in reactive astrocytes. Neurobiology of Disease.1995;2:79-85.
    34Duggal N, Schmidt-Kastner R, Hakim AM. Nestin expression in reactive astrocytesfollowing focal cerebral ischemia in rats. Brain Research.1997;768:1-9.
    35Walder S, Zhang F, Ferretti P. Up-regulation of neural stem cell markers suggests theoccurrence of dedifferentiation in regenerating spinal cord. Dev Genes Evol.2003;213:625-630.
    36Chen J, Leong SY, Schachner M. Differential expression of cell fate determinants inneurons and glail cells of adult mouse spinal cord after compression injury. Euro JNeurosci.2005;22:1895-1906.
    37Lang B, Liu HL, Liu R, et al. Astrocytes in injured adult rat spinal cord may acquirethe potential of neural stem cells. Neurosci.2004;128:775-783.
    38Buffo A, Rite I, Tripathi P, et al. Origin and progency of reactive gliosis: A source ofmultipotent cells in the injured brain. Proc Natl Acad Sci USA.2008;105:3581-3586.
    39Laywell ED, Rakic P, Kukekov VG, et al. Identification of a multipotent astrocyticatem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA.2000;97:13883-13888.
    40Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor andInk4a/Arf convergent mechanisms governing terminal differentiation andtansformation along the neural stem cell to astrocyte axis. Cancer Cell.2002;1:269-277.
    41Yu T, Cao G, Feng LY. Low temperature induced de-differentiation of astrocytes. JCell Biochem.2006;99:1096-1107.
    42Sharif A, Legendre P, Prevot V, et al. Transforming growth factor a promotessequential conversion of mature astrocytes into neural progenitors and stem cells.Oncogene.2007;26:2695-2706.
    43Moon JH, Yoon BS, Kim B, et al. Induction of neural stem cell-like cells from mouseastrocytes by Bim1. Biochem Bioph Res Co.2008;371:267-272.
    44Yang H, Cheng XP, Li JW, et al. De-differentiation response of cultured astrocytes toinjury induced by scratch or conditioned culture medium of scratch insultedastrocytes. Cell Mol Neurobiol.2009;29:455-473.
    45Timiras PS, Yaghmaiel F, Saeed O, et al. The ageing phenome caloric restriction andformones promote neural cell survival, growth and de-differentiation. Mechan AgeDev.2005;126:3-9.
    46Mao XG, Xue XY, Zhang X. The potential of the brain plasticity implications forde-differentiation of mature astrocytes. Cell Mol Neurobiol.2009;29:1105-1108.
    47Hockfield S, Mckay RDG. Identification of major cell classes in the developingmammalian nervous system. J Neurosci.1985;5:3310-3328.
    48Frederiksen K, McKay RDG. Proliferation and diferentiation of rat neuroepithefialprecursor cells in vivo. J Neurosci.1988;8:1144-1151.
    49Lendahl U, Zilnlnerlnan LB, McKay RDG. CNS stem cells express a new class ofintermediate filarrmnt protein. Cell.1990.60:585-595.
    50Liem RKH. Molecular biology of neuronal intermediate filaments.Curt Opin CellBiol.1993;5:12-16.
    51Dahl D. The vimentin GFAP protein transition in rat neulglia cytoskeleton occurs atthe time of myelination. J Neurosci Res.1981;6:741-748.
    52Sjoberg G, Jiang WQ, Ringertz NR, et a1. Colocalization of nestin and vimentindesmin in skeletal muscle cells demonstrated by three-dimensional fluorescencedigital imaging microscopy. Exp Cell Res.1994;214:447-458.
    53Vaittinen S, Lukka R, Sahlgren C. Specific and innervation regulated expression ofthe intermediate filament protein nestin neuromuscular and myotendinous junctionsin skeletal muscle. Am J Pathology.1999;154:591-600.
    54Kappen C, Yaworsky PJ. Mutation of a putative nuclear receptor binding siteabolishes activity of the nestin midbrain enhancer. Biochim Biophys Acta.2003;1625:109-l15.
    55Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class ofintermediate filament protein. Cell.1990;60:585-595.
    56Bonaguidi MA, Wheeler MA, Shapiro JS, et al. In vivo clonal analysis revealsself-renewing and multipotent adult neural stem cell characteristics. Cell.2011;145:1142-1155.
    57Selvaraj V, Plane JM, Williams AJ, et al. Switching cell fate: the remarkable rise ofinduced pluripotent stem cells and lineage reprogramming technologies. TrendsBiotechnol.2010;28:214-223.
    58Okada S, Nakamura M, Katoh H, et al. Conditional ablation of STAS3/SOCS3discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med.2006;12:829-834.
    59Okano H, Kaneko S, Okada S, et al. Regeneration based therapies for spinal cordinjuries. Neurochem Int.2007;51:68-73.
    60Voskuhl RR. Reactive astrocytes form scar like perivascular barriers to leukocytesduring adaptive immune inflammation of the CNS. J Neurosci.2009;29:11511-11522.
    61Colangelo AM. Targeting reactive astrogliosis by novel biotechnological strategies.Biotechnol Adv.2011;6:5.
    62Forssard N, Naline E, Olgart HC, et al. Nerve growth factor is released by IL-1betainduces hyperresponsiveness of the human isolated bronchus. Eur Respire J.2005;26:15-20.
    63West H, Richard WD, Fruttiger M. Stabilization of the retinal vascular network byreciprocal feedback between blood vessels and astrocytes. Development.2005;132:1855-1862.
    64Davies SJ, Goucher DR, Doller C, et al. Robust regeneration of adult sensory axonsin degeneration white matter of the adult rat spinal cord. J Neurosci.1999;19:5810-5822.
    65Ridet JL, Malhotra SK, Privat A, et a1. Reactive astrocytes: cellular and molecularcues to biological function. Trends in Neuroscinces.1997;20:570-577.
    66Davies SJ, Fitch MT, Memberg SP, et al. Regeneration of adult axons in white mattertracts of the central nervous system. Nature.1997;390:680-683.
    67Bush TG, Puvanachandra N, Horner CH, et al. Leukocyte infiltration, neuronaldegeneration, and neurite outgrowth after ablation of scar forming, reactiveastrocytes in adult transgenic mice. Neuron.1999;23:297-308.
    68Hsu JY, Bourguignon LY, Adams CN, et al. Matrix metalloproteinase-9facilitatesglial scar formation in the injured spinal cord. J Neurosic.2008;28:13467-1377.
    69Beamanti V, Tomassoni D, Avitabile M, et al. Biomarkers of glial cell proliferationand differentiation in culture. Eront Biosci.2010;2:558-570.
    70Toyooka T, Nawashiro D, Shinomiya N, et al. Down-regulation of glial fibrillaryacidic protein and vimentin by RNA interference improves acute urinarydysfunction associated with spinal cord injury in rats. J Neurotrauma.2011;28:607-618.
    71Li ZW, Tang RH, Zhang JP, et al. Inhibiting epidermal growth factor receptorattenuates reactive astrogliosis and improves functional outcome after spinal cordinjury in rats. Neurochem Int.2011;58:812-819.
    72Leung YK, Pankhurst M, Dunlop SA, et al. Metalothione in induces a regenerativeastrocytes phenotype via JAK/STAT and RhoA signaling pathways. Exp Neurol.2010;221:98-106.
    73Silver J, Miller JH. Regeneration beyond the glial scar. Nature ReviewsNeuroscience.2004;5:146-156.
    74Fitch MT. Activated macrophages and the blood brain barrier: inflammation afterCNS injury leads to increases in putative inhibitory molecules. Exp Neurol.1997;148:587-603.
    75Cui W. Inducible ablation of astrocytes shows that these cells are required forneuronal survival in the adult brain. Glia.2001;34:272-282.
    76Faulkner JR. Reactive astrocytes protect tissue and preserve function after spinalcord injury. J Neurosci.2004;24:2143-2155.
    77Rolls A. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role inmicroglia macrophage activation. PLoS Med.2008;5:171.
    78Drgemller K. Astrocyte gp130expression is critical for the control of Toxoplasmaencephalitis. J Immunol.2008;181:2683-2693.
    79Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation.Trends Neurosci.2009;32:638-647.
    80Silver J, Miller JH. Regeneration beyond the glial scar. Nature Reviews Neurosci.2004;5:146-156.
    81Barger SW, VanEldik LJ, Matson MP. S100beta protects hippocampal neurons fromdamage induced by glucose deprivation. Brain Res.1995;677:167-170.
    82Jinger CC, Beatriz FA, Bianca A, et a1. Responses of reactive astrocytes containingS100b protein and fibroblast growth factor-2in the border and in the adjacentpreserved tissue after a contusion injury of the spinal cord in rats implications forwound repair and neuroregeneration. Wound Rep Reg.2007;15:134-146.
    83Ji YF, Xu SM, Zhu J, et al. Insulin increases glutamate transporter GLT1in culturedastrocytes. Biochem Bioph Res.2011;405:691-696.
    84Nishimoto M, Miyakawa H, Wada K, et al. Activation of the VIP/VPCA2systeminduces reactive astrocytosis associated with increasede xpression of glutamatetransporters. Brain Res.2011;1383:45-53.
    85Halassa MM. Synaptic islands defined by the territory of a single astrocyte. JNeurosci.2007;27:6473-6477.
    86Li L. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood FlowMetab.2008;28:468-481.
    87Voskuhl RR. Reactive astrocytes form scar like perivascular barrier to leukocytesduring adaptive immune inflammation of the CNS. J Neurosci.2009;29:11511-11522.
    88Fitch MT. Activated macrophages and the blood brain barrier: inflammation afterCNS injury leads to increases in putative inhibitory molecules. Exp Neurol.1997;148:587-603.
    89Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist.2005;11:400-407.
    90Lang B, Liu HL, Liu R, et al. Astrocytes in injured adult rat spinal cord may acquirethe potential of neural stem cells. Neurosic.2004;128:775-783.
    91Yang H, Cheng XP, Li JW, et al. De-differentiation response of cultured astrocytes toinjury induced by scratch or conditioned culture medium of scratch insultedastrocytes. Cell Mol Neurobiol.2010;29:455-473.
    92Oki K, Kaneko N, Kanki H, et al. Musashi1as a marker of reactive astrocytes aftertransient focal brain ischemia. Neurosci Res.2010;66:390-395.
    93Bramanti V, Tomassoni D, Avitabile M, et al. Biomarkers of glial cell proliferationand differentiation in culture. Front Biosci.2010;2:558-570.
    94Costa MR, Gotz M, Berninger B. What determines neurogenic competence in glia.Brain Res Rev.2010;63:47-59.
    95Briones TL, Woods J, Wadowska M, et al. Astrocytic changes in the hippocampusand functional recovery after cerebral ischemia are facilitated by rehabilitationtraining. Behav Brain Res.2006;17:17-25.
    96Su Z, Yuan Y, Chen J, et al. Reactive astrocytes inhibit the survival anddifferentiation of oligodendrocyte prescursor cells by secreted TNF-alpha. JNeurotrauma,2011;28:1089-1100.
    97Robel S, Berninger B, Gotz M, et al. The stem cell potential of glia: lessons fromreactive gliosis. Nat Rev Neurosci.2011;12:88-104.
    98Herrmann JE, Faulkner JR, Woo MJ, et a1. Roles of reactive astrocytes after crushspinal cord injury. Soc Neurosci Abstr.2004;4:400-407.
    99Okada S, Nakamura M, Katoh H, et al. Conditional ablation of Stat3or Soc3discloses a dua1role for reactive astrocytes after spinal cord injury. Nature Med.2006;12:829-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700