电除尘控制器参数优化算法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电除尘器(ESP)具有除尘效率高、运行及维护费用低廉、适应性强的特点,因此被广泛应用于电力、水泥、冶金等工业领域,在大气污染的治理和生态环境的保护方面做出了显著的贡献,但是沥青烟气净化ESP普遍存在着除尘效果不理想,过度依赖手动调节参数等问题。
     在对用于沥青烟气净化的ESP所存在的问题做了深入分析的基础上,介绍了基于现场可编程门阵列(FPGA)硬件平台的智能型ESP高压电源主控制器的设计,主要工作如下所述:
     (1)根据ESP电源控制器的需求制定了以FPGA为核心处理器的整体实现方案,该控制器不仅可以实时地显示各种运行状态及故障信息,还设计了RS485通信接口,为实现ESP的集散控制提供了必要的条件。
     (2)基于Protel设计了控制器的板级电路原理图,并详细分析了ESP运行参数的特点和硬件资源需求情况,对系统中的主要芯片进行了选型设计。
     (3)在QuartusⅡ集成开发环境下进行了控制器的接口逻辑电路和功能模块逻辑电路的设计工作,并对设计的所有模块进行了仿真验证。
     对火花放电信号的准确判断和及时处理是决定ESP电源控制器控制性能的关键因素。尽可能的抑制火花状态的发生,可以确保ESP取得较高的除尘效率,不仅有效的节约了电能,也保证了设备的安全。因此本文从以下四个方面着手重点解决影响ESP性能的火花放电问题:
     (1)分析了ESP二次电压闭环控制的特点,将带死区的积分分离增量式数字PID用于二次电压的闭环跟踪,该算法在保证响应速度的同时又避免了超调的发生,可以实现对火花的有效抑制。
     (2)基于BP神经网络实现火花放电信号预测,通过神经网络对ESP历史运行参数的学习,计算出ESP下一时刻的运行参数值,从而得到ESP的运行状态预测值。并针对该模型存在计算量大的问题,在分析了ESP运行参数特点的基础上,将运行参数聚类中心作为神经网络预测模型的预处理层,从而大幅降低计算量,确保该算法在嵌入式NiosⅡ处理器中的运行时间满足系统需求。Matlab仿真结果表明该模型可以准确地预测出火花信号,是实现浮动火花跟踪控制的有效途径。
     (3)基于FPGA逻辑电路实现火花放电信号的检测,这种硬件电路的检测手段保证了火花检测的及时、准确。
     (4)采用二折线火花跟踪算法实现精确的火花响应,而且基于FPGA硬件电路实现的二折线算法控制模块也保证了对火花状态的及时响应。
With high efficiency, low operation cost and good adaptability, electrostatic precipitator (ESP) is widely used in plant, cement, metallurgy and other industries, has made significant contribution on pollution control and environmental protection. But there are several problems of ESP which applying in asphalt purify, for instance can't get ideal purify result and over-dependent manly adjust, and so on.
     Analyzed the problems of ESP which used for purifying asphalt gas, an intelligent controller based on Field-Programmable Gate Array (FPGA) is introduced, addressed to solve spark discharge problem which has huge influence on ESP's performance. The mainly work is shown as following.
     (1) According to the function requirements of the ESP supply controller drawn the overall control program with FPGA as the mainly processor. The controller can timely display all kinds of states and faults information, and has RS485 communication interface, which is necessary condition for ESP distributed control system.
     (2) Selected key chip for the system according to the characteristic of ESP parameter and hardware source requirement. And the circuit schematics are designed based on Protel software.
     (3) Designed all interface logic circuits and functional logic circuits based on Quartus II integrated development Environment, and each module has passed the simulation, can obtain desired function.
     Accurately judgment and timely treatment of spark are the key factor of the supply controller. To suppress spark as much as possible, ESP can have higher efficiency under different conditions, not only save energy, but also ensure the facility's safety. In this thesis the following four measures to solve the spark signal suppression problem.
     (1) Analyzed the feature of ESP's secondary voltage closed-loop control, an incremental digital PID which have dead-zone and integral separation is introduced to the controller, the algorithm will achieve quickly response and avoid overshoot, can suppress spark discharge efficiently.
     (2) A spark signal prediction model based on neural network is provided, through studied the historical operating parameters of ESP then calculated the prediction operating parameters, thereby get the prediction state. After analyzed the characteristics of ESP's operating parameters, an improved neural network prediction model which including a cluster centers layer is introduced, it can significant reduce the calculation, ensure the prediction algorithm can be successfully transplanted into embedded microprocessor Nios II, and the running time satisfied the system requirement. The simulation of Matlab demonstrated that the model can accurately predict spark signal, is an effective way of float spark track control.
     (3) Spark discharge signal detection module is designed on FPGA, the detection measurement which based on hardware circuit can ensure spark signal is detected timely and accurately.
     (4) Two-broken-line tracking algorithm is provided to maintain accurately spark response, and the two-broken-line tracking module which is designed on FPGA hardware circuit can ensure the response in time.
引文
[1]刘宇.电除尘高压电源控制系统的研究[D].鞍山:辽宁科技大学,2008.
    [2]国家环境保护部.GB3095-1996国家标准环境空气质量标准[S].
    [3]国家环境保护部.GB9078-1996工业炉窑大气污染物排放标准[S].
    [4]王洪江.大型电除尘器关键技术研究[D].重庆:重庆大学,2008.
    [5]周兴求.环保设备设计手册——大气污染控制设备[M].北京:化学工业出版社,2004.
    [6]刘军,石健将.静电除尘电源的发展[J].环境工程,2008,26(5):44-47.
    [7]翟军勇.神经网络研究方兴未艾[J].国际学术动态,2008,1:30-31.
    [8]于占东,王庆超.一类不确定非线性系统反步自适应神经网络控制研究[J].控制与决策,2004,19(5):561-564.
    [9]李泉溪,巩庆民,常波.基于神经网络的恒温控制系统的研究与设计[J].计算机工程与设计,2008,29(11):2967-2969.
    [10]Hikmet Esen, Filiz Ozgen, Mehmet Esen, et al. Artificial neural network and wavelet neural network approaches for modeling of a solar air heater[J]. Expert Systems with Applications,2009,36:11240-11248.
    [11]罗俊海,李录明,叶丹霞等.基于改进的RBF模糊神经网络滤波的噪声消除[J].系统仿真学报,2007,19(21):4918-4921.
    [12]高为广,杨元喜,张双成.顾及动力学模型误差影响的GPS/INS组合导航自适应滤波算法[J].武汉大学学报(信息科学版),2008,33(2):191-194.
    [13]Robert R. Jensen, Shankar Karki, Hossein Salehfar. Artificial neural network-based estimation of mercury speciation in combustion flue gases[J]. Fuel Processing Technology,2004,85:451-462.
    [14]中国环境保护产业协会电除尘委员会.我国电除尘行业2007年发展综述[J].中国环保产业,2008(11):7-11.
    [15]中国环境保护产业协会电除尘委员会.我国电除尘行业2006年发展综述[J].中国环保产业,2007(9):47-49.
    [16]黄三明.电除尘技术的发展与展望[J].环境保护,2005,7:59-63.
    [17]Norbert Grass. Fuzzy-logic-based power control system for multifield electrostatic precipitators[J]. IEEE Transactions on Industry Applications,2002,38(5):1190-1195.
    [18]Norbert Grass, Werner Hartmann, Michael klockner. Application of different types of high-voltage supplies on industry electrostatic precipitators[J]. IEEE Transactions on Industry Applications,2004, 40(6):1513-1520.
    [19]胡志光,李魁选,常爱玲.电除尘器节能与优化控制的仿真研究[J].华北电力大学学报,2005,32(4):105-107.
    [20]韩小梅.燃煤电厂电除尘技术评估系统的研究与应用[D].西安:西安建筑科技大学,2006.
    [21]王成福.电除尘器高压供电优化控制仿真研究[J].计算机仿真,2007,24(4):240-242.
    [22]赵冠君.高压静电除尘控制器的设计[D].杭州:浙江大学,2006.
    [23]杨强.基于DSPTMS320LF2407控制的静电除尘三相电源[D].北京:北京交通大学,2007.
    [24]曹显奇,赵明,刘海江.应用FPGA的静电除尘电源控制器设计[J].高电压技术,2008,34(3):525-528.
    [25]罗鑫.电除尘器节能与优化控制的仿真研究[D].保定:华北电力大学,2003.
    [26]朝泽云,徐至新,钟和清等.静电除尘用高压供电电源特性浅析[J].高电压技术,2006,32(2):81-83.
    [27]杨君超.基于动态测试的电除尘器高压电源节能控制器的研究[D].保定:华北电力大学,2009.
    [28]王洋,王宁会.基于Prony算法的静电除尘器放电信号分析[J].中国电机工程学报,2003,23(1):141-144.
    [29]Long Zheng-wei,Yao Qiang,Song Qiang, et al. A second-order accurate finite volume method for the computation of electrical conditions inside a wire-plate electrostatic precipitator on unstructured meshes[J]. Journal of Electrostatics,2009,67:597-604.
    [30]Istvan Berta. Use of soft computing methods in risk assessment of electrostatic fire and explosion hazards in industries[J]. Journal of Electrostatics,2009,67:235-241.
    [31]马广大.大气污染控制工程[M].北京:中国环境科学出版社,2003.
    [32]赵振华,曾劲松.电除尘(雾)器的高压供电技术及装置[J].硫酸工业,2002,2:32-36.
    [33]何立波,王显龙,贾明生.影响静电除尘器效率的控制因素[J].中国电力,2004,37(1):74-76.
    [34]张科,靖固.利用FPGA的增量式PID控制的研究[J].现代制造工程,2009,3:112-114.
    [35]王诚.Altera FPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社,2005.
    [36]郑亚民.可编程逻辑器件开发软件Quartus II[M].北京:国防工业出版社,2006.
    [37]陈亚娜,石磊.PID控制算法在加热炉温度控制的应用研究[J].机电产品开发与创新,2007,20(5):169-170.
    [38]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2004.
    [39]胡寿松.自动控制原理[M].(第四版).北京:科学出版社,2001.
    [40]康宁.高压静电除尘控制器研究与研制[D].大连:大连理工大学,2005.
    [41]B.S. Rajanikanth, N. Thirumaran. Prediction of Pre-breakdown V-I Characteristics of an Electrostatic Precipitator Using a Combined Boundary Element-finite Difference Approach[J]. Journal of Fuel Processing Technology,2002,76:159-186.
    [42]吴葆京.电除尘器T/R设备的二次电压特性探讨[J].高电压技术,2007,33(2):167-170.
    [43]Boni Dramane,Noureddine Zouzou,Eric Moreau, et al. Electrostatic precipitation in wire-to-cylinder configuration:Effect of the high-voltage power supply waveform[J]. Journal of Electrostatics,2009, 67:117-122.
    [44]Robert R. Jensen, Shankar Karki, Hossein Salehfar. Artificial neural network-based estimation of mercury speciation in combustion flue gases[J]. Fuel Processing Technology,2004,85:451-462.
    [45]Larry Manevitz, Akram Bitar, Dan Givoli. Neural network time series forecasting of finite-element mesh adaptation[J]. Neurocomputing,2005,63:447-463.
    [46]Zhao Ying, Nan Jun, Cui Fu-yi, et al. Water quality forecast through application of BP neural network at Yuqiao reservoir[J]. Journal of Zhejiang University SCIENCE A,2007,8(9):1482-1487.
    [47]A. Azadeh, M. Saberi, A. Gitiforouz, et al. A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation[J]. Expert Systems with Applications,2009,36:11108-11117.
    [48]何源,张文生,葛铭等.基于时序聚类的吹灰预测模型[J].计算机工程,2008,34(10):244-246.
    [49]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    [50]顾海燕,徐文科,于雷.基于BP神经网络的河川年径流量预测[J].东北林业大学学报,2007,35(10):83-85.
    [51]黄越洋,李平,刘宣宇.基于BP神经网络的非线性预测控制[J].辽宁石油化工大学学报,2008,28(1):59-61.
    [52]杨艳春,赵玮烨.BP神经网络在煤与瓦斯突出预测的研究[J].兰州交通大学学报,2009,28(6):26-28.
    [53]Simon Haykon. Neural Networks:A Comprehensive Foundation[M].(第二版).北京:清华大学出版社,2001.
    [54]于晓洲,周军,周凤岐.基于SOPC技术的阵列信息处理技术实现研究[J].西北工业大学学报,2009,27(2):168-172.
    [55]刘睿.基于NIOS Ⅱ的局步运动目标提取及远程监控系统的设计与实现[D].昆明:昆明理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700