中国北方主要农业生态区土壤有机碳储量变化及其经济学解释
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人口、资源、环境和发展(PRED)成为现今困扰人类的四大问题。其中,全球气候变化已成为各国政府和科学界共同关心的重大问题,因为其不仅是全球环境领域的科学问题,而且是一个涉及到人类社会的生产、消费和生活方式以及生存空间等社会和经济发展的各个领域的重大问题。气候变化领域的国际谈判归结为各主要国家利益集团政治、经济、科技、环境与外交的综合较量,是继WTO后国际多边活动的又一个主要平台。
     陆地生态系统土壤碳储量约是大气碳库的2倍,其较小幅度的变动都会引起全球气候较大的变化,成为研究的焦点。我国土壤类型繁多、人类改造强度大,在自然和人类活动的共同作用下,近几十年土地利用/覆被发生了很大变化,通过影响土壤有机碳库的稳定性和CO_2排放,对全球气候变化产生影响。经济因素是诱发“温室效应”的内在驱动因素。本文选择我国北方主要农业生态区——黄淮海区、黄土高原区和东北区的典型县市,计算农业土壤碳储量变化,并应用经济学的原理和方法对其进行解释。主要结论如下:
     (1) 精确的计算方法是进行土壤碳储量计算的基础,针对耕地土壤有机碳密度和储量的计算方法进行了探讨。土体中有机碳含量在纵向和横向上都具有空间相关性,基于曲周县四疃乡的30个剖面数据,应用纵向拟合法和横向插值法分别计算了该样区的土壤有机碳密度和碳储量。由于两种算法对数据的组织方式不同,得到的土壤有机碳密度和碳储量存在较大差异。两种方法适用于土壤有机碳在剖面中分布形式不同的土壤类型。
     (2) 利用68个剖面和1184个表层耕地土壤的有机碳数据,分别对我国北方三个不同的农业生态区,黄淮海平原区、黄土高原区和东北区的耕地土壤有机碳储量变化进行了计算。计算结果表明:黄淮海平原区土壤有机碳密度和有机碳库总量分别增加0.84kgCm~(-2)和2.06×10~(10)kgC;黄土高原区土壤有机碳密度和有机碳库总量分别增加1.78kgCm~(-2)和2.72×10~(10)KgC;而东北区土壤有机碳密度和有机碳库总量分别减少1.57kgCm~(-2)和3.60×10~(10)KgC。黄淮海平原区和黄土高原区土壤有机碳储量增加表明,虽然中国人口众多,对食物和纤维的需求以及国家的粮食安全战略对有限耕地的压力巨大,但是这种压力可能还没有达到净损耗土壤有机碳的临界值,集约化的土地利用方式还没有达到破坏地力的临界点。
     (3) 分别计算三个研究区土壤有机碳的收支平衡状况,结果表明:黄淮海平原区的大兴和曲周土壤有机碳有盈余,单位面积分别增加113.5千克/公顷和123.2千克/公顷:黄土高原区的离石和兴县土壤有机碳也有盈余,单位面积分别增加41.5千克/公顷和44.6千克/公顷;东北区的公主岭和海伦土壤有机碳有亏缺,单位面积分别减少598.7千克/公顷和1130.0千克/公顷。与试验获得土壤有机碳储量变化情况结论完全一致。
     (4) 利用Janny模型预测模拟耕层土壤有机碳储量及土壤有机碳含量,结果表明:如果继续维持现有的生产状况,十年以后,黄淮海平原区和黄土高原区土壤有机碳储量分别为4.86×10~(10)kg和1.94×10~(10)kg,增加0.22×10~(10)Kg和0.09×10~(10)kg。东北区土壤有机碳储量为9.14×10~(10)kg,减少0.60×10~(10)kg。
     (5) 针对三个农业生态区土壤有机碳储量的变化,分别从制度经济学、土地经济学、农户经济学、环境经济学的角度对土壤有机碳储量变化进行解释。
     通过对比宏观政策与农产品收购价格之间的对应关系出发,划分出我国农业经济体制
Today, population, resources, environment and development are becoming the most difficult problems to trouble people. However, global climate change is the key issue cared by multilateral governments and the researchers. It is not only a science item in the field of global environment, but an important problem in connection with society and economy development fields, such as producing, consumption, life style and living space. The international negotiation about climate change is a focus on the integrated comparison of most country interest groups about politics, economy, science and technology, environment and diplomacy. It has become another significant flatform of international multilateral activities after WTO.The storage of soil organic carbon (SOC) in terrestrial ecological system is twice as much as that in atmosphere. It has become a hotspot for a minimal fluctuation of SOC might bring .about great change of global climate. Because of large variety of soil types and anthropic action of high intensity, land use/cover in China has changed much in recent decades under the associated influence of natural and anthropic activity, which have great effects on global climate through affecting the stability of SOC and the release of CO_2. Economic factors have intrinsically driving forces on "greenhouse effect". Taking typical counties in the Huang Huai-hai Plain, the Loessial Plateau, and Northeastern Plain for case studys, this paper computed the storage of SOC and its change, and delivered its explain using principles and methods of economic science. The main conclusions are as follows:(1) As accurate methods are the bases of computing, the methods of calculating the density and storage of SOC were studied. As the content of SOC is interrelated spatially at both vertical and horizontal direction in soil, the methods for simulating the distribution of SOC in vertical and horizontal were employed to calculate the density of SOC and the storage of SOC in research area, based on the data of 30 soil profiles of Situan town, Quzhou county. The different results are duo to the difference of calculating methods that organize the data from different way. The two methods are suitable to different soils that are different in soil organic matter distribution.(2) For analyzing the changes of SOC, 130 soil profiles and 1184 surface layer soil samples were collected from farmlands in the three agro-ecological zones, and the SOC content of these samples were analyzed and the storage of SOC were calculated respectively. The results are as followings: the SOC density and the SOC storage increased 0.84kgC m~(-2) and 2.06 × 10~(10)kgC respectively in the Huang Huai-hai Plain; the SOC density and the SOC storage increased 1.78kgC m~(-2) and 2.72 × 10~(10)kgC respectively in the Loess Plateau; the SOC density and the SOC storage decreased 1.57kgC m~(-2)and 3.60×10~(10)kgC respectively in the Northeastern China. The increase of SOC in the Huang Huai-hai Plain and the Loess Plateau indicates that China was under the stress of a great demand of food, fiber and cultivated land for food security strategy because of its large population. However, the stress has not reached the threshold of net releasing SOC, which showed that the intensive land use at current level can't destroy the productivity of cultivated land still.
    (3) Through analyzing the balance between input and output of the soil organic carbon (SOC) in three research regions, the results are as follows: there are SOC surplus in the Huang Huai-hai Plain, 113.5kg ha"1 increased in Daxing county, 123.2 kg ha'1 in Quzhou county. The same result appears in the Loess Plateau, 41.5 kg ha"' increased in Lishi county and 44.6 kg ha"1 in Xing county. However, it has a deficit of SOC in Northeastern China, 598.7 kg ha"1 decreased in Gong Zhu-ling and 1130.0 kg ha'1 in Hailun. This result is consistent with the change of SOC Storage through experimentation.(4) Forecasting and simulating the SOC storage and SOC content using Janny model, the results show as follows: if keeping the curren
引文
1. Adams J.M., Piovesan G Uncertainties in the role of land vegetation in the carbon cycle. Chemosphere, 2002,49: 805-819
    2. Akihiko I., Takehisa O. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modelling, 2002, 151: 143-176
    3. Alessandra A. F., Pedro L. O., Henrique P. S., et al. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil and Tillage Research, 2002, 64: 221-230
    4. Alexandrov G.A., Oikawa T., Esser G. Estimating terrestrial NPP: what the data say and how they may be interpreted? Ecological Modelling, 1999, 117: 361-369
    5. Anderson J. M. Soil and climate change. Advances in Ecological Research, 1992, 22: 188-210
    6. Andrew W. D., Anette R., Christian T. Historical footprints in contemporary landuse systems: forest cover changes in savannah woodlands in the Sudano-Sahelian zone. Global Environmental Change, 2003,13:235-254
    7. Appsa M.J., Kurzb W.A., Beukemab S.J. et al. Carbon budget of the Canadian forest product sector. Environmental Science and Policy, 1999,2: 25-41.
    8. An P., Timo K., Seppo K., et al. Potential contribution of the forest sector to carbon sequestration in Finland, 1997, 13(6): 377-387
    9. Bakker D., Watson A. A piece in the CO_2 jigsaw. Nature, 2001, 410: 765-766
    10. Battle M., Bender M.L., Tans P.P., et al. Global carbon sink and their variability inferred from atmospheric O_2 and δ~(13)C. Science, 2000, 287: 2467-2470
    11. Bindraban, P.S., Stoorvogel, J.J., Jansen, D.M., et al. Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agriculture, Ecosystems and Environment, 2000, 81:103-112
    12. Botkin D.B., Janak J.S., Wallis J.R. Some ecological consequences of a computer model of forest growth. Journal Ecology, 1972,60: 849-872
    13. Ceulemans R., Janssens I. A., Jach M. E. Effects of CO_2 enrichment on trees and forests: Lessons to be learned in View of future ecosystem studies. Annals of Botany, 1999, 84: 577-590
    14. Changhui P. From static biogeographical model to dynamic global vegetation model: a global perspective on modeling vegetation dynamics. Ecological Modelling, 2000,135: 33-54
    15. Changsheng L., Steve F., Graham J.G., et al. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma, 1997, 81:45-60
    16. Charles T., Garten Jr. Soil carbon storage beneath recently established tree plantations in Tennessee
     and South Carolina. USA, Biomass and Bioenergy, 2002, 23: 93-102
    17. Chevallier T., Voltz M., Blanchart E., et al. Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol (Martinique). Geoderma, 2000, 94: 43-58
    18. Christopher K., Thomas S., Nikolaos M. Exergy analysis of renewable energy sources. Renewable Energy, 2003, 28:295-310
    19. Conghe S., Curtis E.W. A regional forest ecosystem carbon budget model: impacts of forest age structure and landuse history. Ecological Modelling, 2003, 164: 33~47
    20. David S.S. Terrestrial biogeochemical cycles: global estimates with remote sensing. Remote Sensing of Environment, 1995, 51: 49-56
    21. Dick W.A., Blevins R.L., Frye W.W., Peters S.E., et al. Impacts of agricultural management practices on C equestration in forest-derived soils of the eastern Corn Belt. Soil and Tillage Research, 1998,47:235-244
    22. Doran J.W. Soil health and global sustainability: translating science into practice. Agriculture, Ecosystem and Environment, 2002(88): 119-127
    23. Dumanski, J., Pieri, C. Land quality indicators: research plan. Agriculture, Ecosystem and Environment, 2000, 81: 93-102
    24. Durpaire J.P., Gentet T., Phulpin T., et al. SPOT-4 vegetation instrument: vegetation monitoring on a global scale. Acta Astronautica, 1995, 35(7): 453-459
    25. Emanuel W.R., Shugart H.A. Stevenson M. P. Climatic change and the broad-scale distribution in terrestrial ecosystem complexes. Climate Change, 1985,7: 29-43
    26. Eswaran H. Vanden B. E., Reich, P. Organic carbon in soils of the world. Soil Science Society of America Journal, 1993, 57: 192-194
    27. Fan S., Gloor M., Mahlman J., et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998,282: 442-446
    28. FAO. FESLM: An International Framework for Evaluating Sustainable Land Management. Rome: World Soil Resources Report, 1993, 73
    29. FAO/UNESCO. A Framework for Land Evaluation. Rome: Soils Bulletin, 1976,32
    30. Genxu W., Ju Q., Guodong C, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. The Science of the Total Environment, 2002, 291:207-217
    31. Helmut H., Karl-Heinz E., Fridolin K. How to calculate and interpret ecological footprints for long periods of time: the case of Austria 1926-1995. Ecological Economics, 2001,38: 25-45
    32. Hofman G. et al. Evolution of soil humus content and calculation of global humification coefficients on different organic matter treatments during a 12-year experiment with Belgian silt soil. Soil Science, 1980,129(2): 92-94
    33. Holmen K., The global carbon cycle, In: Butcher et al (eds). Global Biogeochemical Cycles. San Diego:A cademic Press, 1992. 239-262
    34. Hongqing Wang, Joseph D. C, Charles A.S. H, et al. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico. Ecological Modelling, 2002, 147: 105-122
    35. Houghton R. A. Changes in the storage of terrestrial carbon since 1850. In: Lai, R. et al (eds). Soils and Global Change. Florida: CRC Press, Inc. Boca Raton, 1995,45-65
    36. Hu S., Coleman D.C., Carroll C.R., et al. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation type. Agriculture Ecosystems and Environment, 1997,65: 69~78
    37. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001. The Scientific Basis (Cambridge Univ. Press, Cambridge, 2001)
    38. IPCC. In: Houghton, J.T., Jenkins, G.J., Ephraums, J.J. (Eds). Climate Change. Cambridge University Press, Cambridge, 1990
    39. Janzen H.H., Campbell C.A., Izaurralde R.C. et al. Management effects on soil C storage on the Canadian prairies. Soil and Tillage Research, 1998, 47: 181-195
    40. Jeffrey Q.C., Niro H., Edgard ST., et al. Carbon sink for a century. Nature, 2001, 410: 429
    41. Jenkinson D.S., Rayner J.H. The turnover of soil organic matter in some of the Rothamasted classical experiment. Soil Science, 1977, 123(5): 298-305
    42. Kimble J.M., Levine E. R. The Nairobi Conference: Topics, Results, and Research Needs. 15th World Conference Soil Science, Acapulco, Mexico, 1994, 151-162
    43. Kirschbaum M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 2000, 48: 21-51
    44. Klingebiel A.A., Montgomery P.H, Land Capability Classification. US Department of Agriculture Handbook, No.210, 30.LUCCD. Proceedings of International Conference on Land Use/Cover Change Dynamics. Beijing Normal University, Beijing, China, 2001
    45. Krishna P.V., Rajagopal T., Yogesh K., et al. Quantification of carbon fluxes in tropical deciduous forest using satellite data. Advances in Space Research, 2000, 26(7): 1101-1104
    46. Kuyvenhoven, Ruben A., R., Kruseman G, Options for sustainable land use and policy instruments to reach them. in: Bouma J., Kuyvenhoven A., Bouman B.A.M.,et al (eds) Eco-regional approaches for sustainable land use and food production.Dordrecht/Boston: Kluwer Academic Publishers, 1995:187-212
    47. Lars K., Anette N., Martin H., et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture Ecosystems and Environment, 2003, 96: 19-28
    48. Lupwayi N.Z., Rice W.A., Clayton GW. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and carbon dioxide flux under wheat as influenced by tillage and crop rotation. Can J Soil Sci, 1999,79:273-280
    49. Mikhail B. Climate catastrophes. Global and Planetary Change, 1999,20: 281-288.
    50. Mikhailova E.A., Bryant R.B., DeGIoria S.D., et al. Modeling soil organic matter dynamics after
     conversion of native grassland to long-term continuous fallow using the CENTURY model. Ecological Modelling, 2000, 132: 247-257
    51. Milne R., Brown T.A. Carbon in the vegetation and soils of Great Britain. Environmental Management, 1997, 49: 413-433
    52. Mohammed G.D. Energy situation in Pakistan: options and issue. Renewable Energy, 1995, 6(2): 151-157
    53. Naohiro G, Yukio Y. Assessment of CO_2 reduction by technological usage of terrestrial ecosystems reforestation and biomass energy. Energy Conversion, 1996, 37: 1199~ 1204
    54. Olson J. S., Watts J. A., Allison L. J. Carbon in live vegetation of major world ecosystems. United States Department of Energy, TR004, 1983
    55. Paul E.S., Jack W. Assessing Brazil's carbon budget: I. Biotic carbon pools. Forest Ecology and Management, 1995, 75: 77-86
    56. Pennock D.J., Frick A.H. The role of field studies in landscape-scale applications of process models: an example of soil redistribution and soil organic carbon modeling using CENTURY. Soil and Tillage Research, 2001, 58: 183-191
    57. Philippe J.B., Rene D. Energy policy and climate change. Energy Policy, 2003, 31: 155-166
    58. Post W. M., Emanuel W. R., Zinke P. J., et al. Soil carbon pools and world life zones. Nature, 1982, 298:156-159.
    59. Quideau S.A., Graham R.C., Chadwick O.A. et al. Organic carbon sequestration under chaparral and pine after four decades of soil development. Geoderma, 1998, 83: 227-242
    60. Rasmussen P.E., Albrecht S.L., Smiley R.W. Soil C and N changes under tillage and cropping systems in semi-arid Paci/Ec Northwest agriculture. Soil and Tillage Research, 1998,47: 197-205
    61. Richard A. L. Global warming: Rain might be leading carbon sink factor. Science, 2002, 296: 1787
    62. Roselyne L., Jing M.C., Jean-Louis R., et al. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sensing of Environment, 2002, 79: 84—95
    63. Ruben R. Kruseman G And Hengsdijk H., Farm household modeling for estimating the effectiveness of price instruments on sustainable land use in the Atlantic Zone of Costa Rica. DLV Report no.4. Wageningen, 1994
    64. Sarmiento J.L., Sundquist E.T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 1992, 356:589-593
    65. Schlesinger W. H. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 1977, 8: 51-81
    66. Schlesinger W.H. Biogeochemistry: an Analysis of Global Change. San Diego, California: Academic Press, 1997
    67. Shaoqiang W., Chenghu Z., Jiyuan L., et al. Carbon storage in northeast China as estimated from vegetation and soil inventories. Environmental Pollution, 2002,116: S157~S165
    68. Shugart H.H. Using ecosystem models to assess potential consequences of global climatic change. Tree, 1990, 5:303-307
    69. Shugart H. H. , West D. C. Forest succession models. Biology Science, 1980, 30: 308~313
    70. Smith C. K. , Francisco A. O. , Henry L. G. , et al. Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. Forest Ecology and Management, 2002, 164: 257~263
    71. Steiner, F. R. , et al. The Use of the SCS Agricultural Land Evaluation and Site Assessment System in Whitman County. Washington: Landscape Journal, 1984, Vol. 3, No. 1
    72. Sundquist E. T. . The global carbon budget. Science, 1993, 259: 934~942.
    73. Susan R. , Wilma M. , Cornelis V. Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari Transect. Journal of Arid Environments, 1998, 38: 379~396
    74. Tatyana P. K. , Ted S. V. Carbon cycle of terrestrial ecosystems of the former Soviet Union. Environmental Science and Policy, 1998, 1: 115~128
    75. United Nations. Report of the conference of the parties on its third session. Kyoto Protocol, United Nations, New York, 1997
    76. Veroustraete F. , Patyn J. , Myneni R. B. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model. Remote Sensing of Environment, 1996, 58: 115~130
    77. Wackernagel M, Rees W. E. Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island: New Society Publishers, 1996
    78. Wackernagel M. , Onisto L, et al. Ecological Footprints of Nations: How much nature do they use? How much nature do they have? http://www.ecouncil.ac.cr/rio/focus/report/english/footprint/, 1997
    79. Watson R. T. et al. Climate Change, Impacts adaptations and mitigation of climate change. Scientific Technical Analyses Published for the IPCC, Cambridge University Press, New York, 1996, pp 3~10
    80. Wofsy S. C. Where has all the carbon gone? Science, 2001, 292: 2261~2263
    81. Xiaoke W. , Zongwei F. , Zhiyun O. The impact of human disturbance on vegetative carbon storage in forest ecosystem in China. Forest Ecology and Management, 2001, 148: 117~123
    82. Ye Q. , Ming X. , Jianguo W. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 2002, 153: 131~142
    83. Yu Zh. , Changsheng L. , Xiuji Z. , et al. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecological Modelling, 2002, 151: 75~108
    84.包维楷,陈庆恒.退化山地生态系统恢复和重建问题的探讨.山地学报,1999,17 (1):22~27
    85.毕宝德.土地经济学,北京:中国人民大学出版社,1993
    86.车玉萍,吴顺铃,程励励.施肥对潮土有机质积累和地力的影响.土壤,1992,24 (3):125~128
    87.陈佑启,杨鹏,国际上土地利用/土地覆盖变化研究的新进展.经济地理,2001,1:95~100
    88.程励励,文启孝,林心雄.内蒙古自治区土壤中有机碳、全氮和固定态铵的储量.土壤,1994,5:248~252
    89.迟凤琴,宿庆瑞,王鹤桥.不同有机物料在黑土中的腐解及土壤有机质平衡的研究.土壤 通报,1996,27 (3):124~125
    90.大兴县农业局.大兴土壤,1982
    91.范中桥.地域分异规律初探.哈尔滨师范大学自然科学学报,2004,20 (5):106~109
    92.方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594-602
    93.傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响.地理学报,2000,3:241~246
    94.高志强,刘纪远,庄大方.中国土地资源生态环境质量状况分析.自然资源学报,1999,1:93~96
    95.国家统计局工交司.中国工业经济统计年鉴,中国统计出版社,1998
    96.韩志卿,张电学,王介元,等.冀东地区褐土土壤有机质平衡与调控研究.河北职业技术师范学院学报,2000,14 (1):5~8
    97.黑龙江土壤,北京:农业出版社,1992
    98.胡霭堂.植物营养学(下册),北京:北京农业大学出版社,1995
    99.胡克林,李保国,陈德立.区域浅层地下水埋深和水质的空间变异性特性[J].水科学进展,2000,11 (4):408—414
    100.黄义德.姚维传.作物栽培学,北京:中国农业大学出版社,2002
    101.吉林土壤,北京:中国农业出版社,1998
    102.贾灵,焦志延.京都议定书及其灵活性机制.世界环境,1999,(1):19~23
    103.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析.土壤学报,2004,41 (1):35—43
    104.金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究.土壤学报,2001,38 (4):522—528
    105.靳云汇,刘学,杨婉华.中国在潜在清洁发展机制市场中的地位分析.数量经济技术经济研究,2000,(10):6~10
    106.康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验.水利学报,2001,11:80~86
    107.冷疏影,李秀彬.土地质量指标体系国际研究的新进展.地理学报,1999,54(2):177~185
    108.李承绪.河北土壤,石家庄:河北科学技术出版社,1990
    109.李凤民,郭安红,雒梅,等.土壤深层供水对冬小麦干物质生产的影响.应用生态学报,1997,8 (6):575~579
    110.李克让,王绍强,曹明奎.中国植被和土壤碳储量.中国科学,2003,33 (1):72~80
    111.李香兰,郑剑英,吴瑞俊.安塞新修黄绵土农地有机质消长与平衡.水土保持研究,1996,3 (2):23~28
    112.李秀彬.中国近20年耕地面积的变化及其政策启示.自然资源学报,1999,4:329
    113.李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究.地理学报,2001,56(14):379~389
    114.李挚萍.《京都议定书》与温室气体国际减排交易制度.环境保护,2004,(2):58~60
    115.李忠,孙波,赵其国.我国东部土壤有机碳的密度和储量.农业环境保护,2001,20 (6):385~389
    116.林心雄,程励励,文孝启.我国农田土壤有机质含量及其变异趋势.见:中国土壤学会编写组编.土壤科学与农业发展,北京:中国科学技术出版社,1994
    117.林心雄,文孝启,程励励,等.土壤中有机物质分解的控制因素研究.土壤学报,1995,32(增刊2):41~48
    118.刘慧,成升魁,张雷.人类经济活动影响碳排放的国际研究动态.地理科学进展,2002,21 (5):420~429
    119.刘彦随,JayGao.陕北长城沿线地区土地退化态势分析.地理学报,2002,4:443~450
    120.刘彦随.区域土地利用优化配置,北京:学苑出版社,1999
    121.刘耀宗,张经元.山西土壤,北京:科学出版社,1992
    122.鲁如坤.土壤—植物营养学原理和施肥,北京:化学工业出版社,1998
    123.马歇尔 T.J.,霍姆斯 J.W.土壤物理学,北京:科学出版社,1986,4~12
    124.潘根兴.中国土壤有机碳和无机碳库量研究.科技通报,1999,15 (5):330~332
    125.秦小光,蔡炳贵,张鹏,等.开展我国陆地生态系统碳氮循环的生物地球化学遥感动态评估的思路与建议.科技导报,2002,8:51~54
    126.萨伊.政治经济学概论,商务印书馆,1963,75
    127.沈善敏.中国土壤肥力,北京:中国农业出版社,1998
    128.沈中泉.高产栽培下土壤有机质平衡的研究.土壤肥料,1993,(3):8~11
    129.童成立,吴金水,向万胜,等.长江中游稻田土壤有机碳计算机模拟.长江流域资源与环境,2002,11 (3):229~233
    130.王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55 (5):533~544
    131.王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18 (4):349~356
    132.王伟中,陈滨,鲁传一,等.《京都议定书》和碳排放权分配问题.清华学报,2002,17 (6):81~85
    133.王文山,王维敏.用砂虑管法研究农作物残体在土壤中的腐解.土壤通报,1984,15 (6):267~268
    134.王文山,张美荣,蔡典雄,等.植物残体在北京潮褐土中的分解.土壤肥料,1986,5:29~33
    135.王仰仁,张建中,杨丽霞.作物组合种植需水量与灌溉制度研究.中国农村水利水电,2000(11):9~11
    136.王兆荣,王宏燕,种传立.有机物料的腐解及土壤有机质的调控.东北农学院学报,1991,22 (4):307~313
    137.卫兴华,顾学荣.政治经济学原理,北京:经济科学出版社,1998
    138.魏涛远,格罗姆斯洛德.征收碳税对中国经济与温室气体排放的影响.世界经济与政治,2002,8:47~49
    139.熊德平,冉光和.农业产业结构调整:制度经济学的解释,定义与建议.福建论坛(经济社会版),2002,10:32~35
    140.徐中民.陈东景,张志强,等.中国1999年的生态足迹分析.土壤学报,2002,39(3):441~445
    141.杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响.应用生态学报,2003,14 (8):1385~1390
    142.杨开忠,杨咏,陈洁.生态足迹分析理论与方法.地球科学进展,2000,15 (6):630~636
    143.杨昕,王明星,黄耀.地-气间碳通量气候响应的模拟Ⅰ近百年来气候变化.生态学报,2002,22 (2):270~277
    144.杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义.地理科学,2003,23 (1):101~106
    145.杨学明.利用农业土壤固定有机碳——缓解全球变暖与提高土壤生产力.土壤与环境,2000,9 (4):311~315
    146.姚贤良,程云生.土壤物理学,北京:农业出版社,1986:8~33
    147.姚予龙,谷树忠.资源安全机理及其经济学解释.资源科学,2002,24 (5):46~51
    148.张传清.俄罗斯自然生态系统中的碳循环.环境科学,1997,5:86~95
    149.张凤荣,黄勤,张迪.黄淮海平原粘土层在土系划分中的意义,分类指标和土系初建.土壤通报,2001,32 (5):197~200.
    150.张凤荣.中国土地资源及其可持续利用,北京:中国农业大学出版社,2000
    151.张金屯.全球气候变化对自然土壤碳,氮循环的影响.地理科学,1998,18 (5):463~471
    152.张坤民,何雪炀.气候变化与实施清洁发展机制的展望.世界环境,1999,(4):10~14
    153.张丽娟,刘树庆,李彦慧,等.栗钙土有机物料的腐解特征及土壤有机质调控.土壤通报,2001,32 (5):201~205
    154.张中祥.排放权贸易市场的经济影响——基于12个国家和地区边际减排成本全球模型分析.数量经济技术经济研究,2003,(9):95~99
    155.赵登辉.土地可持续利用与农业政策转换研究.农业环境与发展,1998,15 (1):1-5
    156.周明康,万贻民.地球碳量循环与造林.中国林业,1998,5:43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700