鄂西低硅铁尾矿烧结制砖及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁尾矿是将铁矿石经过分选工艺选取铁精矿后剩余的废渣,是工业固体废弃物的主要组成部分。钢铁工业的快速发展,带来了尾矿的排放量与日俱增。长期以来对铁尾矿一般采取堆填处置,不仅占用土地,而且引起环境污染与安全问题。随着环境保护和可持续发展意识的增强,铁尾矿作为二次资源已受到普遍重视,其综合利用已引起广泛关注,特别是在利用铁尾矿制作建筑材料方面是当前国内外研究的热点。
     本论文在全面系统研究鄂西低硅铁尾矿基本性质的基础上,以该尾矿为主要原料,进行烧结普通砖和瓷质砖的制备技术研究,并对尾矿砖的性能和结构进行测试分析,探讨尾矿烧结普通砖和瓷质砖的烧结过程及机理。具体研究内容及结果如下:
     1.系统研究了鄂西低硅铁尾矿的基本性质。分析认为,该尾矿性能与粘土等矿物原料相近,具有粒度细、可塑性和干燥性能好的优点,但也存在尾矿中铁含量高、硅和铝含量低、尾矿烧结体的密度高、烧成收缩大等缺陷,经过适当调配,利用该尾矿烧结制砖是完全可行的。
     2.以鄂西低硅铁尾矿为主要原料添加少量的粘土、粉煤灰进行复配制备烧结砖,确定最佳的配方及制备工艺条件,并考察了标砖试验尾矿烧结砖样品综合性能。试验表明,添加少量粘土和粉煤灰对于提高尾矿烧结砖的性能起到积极作用,最佳原料配比为尾矿:粘土:粉煤灰=84:10:6,适宜工艺条件为成型水分12.5~15%、成型压力20~25MPa、干燥制度:105℃下干燥6~8h、温度制度:升温速率6℃/min左右、烧成温度范围980~1030℃、烧成保温时间2~3h,在此条件下烧制的尾矿烧结砖的抗压强度为20.03~23.60MPa,吸水率为16.54~17.93%,体积密度为1.85~1.90g/cm3。标砖试验结果与小样试验结果相符,尾矿烧结砖的抗压强度及其他耐久性能指标均达到《烧结普通砖》(GB/T5101-2003)中MU20合格品的要求。
     3.对尾矿烧结普通砖样品进行表征,分析了铁尾矿烧结砖的微观结构及性能的形成机理,并探讨了尾矿烧结普通砖的烧结过程。结果表明,烧结砖样品中主晶相为赤铁矿、石英、长石和磷灰石,构成烧结砖的主要骨架,赋予样品强度。长石与石英及硅铝酸盐形成低共熔物,充填于坯体的颗粒之间,促进砖坯的烧结致密,液相胶结各种形态的晶体颗粒相互穿插连接,保证了烧结砖样品的优良性能。此外,鄂西低硅铁尾矿烧结砖的烧结过程可分为:干燥预热、加热、烧成及冷却4个阶段,烧结过程主要以扩散传质机制为主,而在烧结后期坯体中会形成少量的高温液相,其对促进砖坯的烧结致密及固相反应起到不可忽视的促进作用。
     4.以鄂西低硅铁尾矿部分代替传统陶瓷原料制备无釉瓷质砖,确定了合理的铁尾矿瓷质砖基础成瓷配方范围及制备工艺条件,并对尾矿瓷质砖的各项性能进行综合检测。结果表明,铁尾矿全部取代长石的优化配方为铁尾矿55~65%,高岭土20~25%,石英砂10~20%,相应的坯体化学组成范围为SiO_237~44%,Al_2O_314~16%,Fe_2O_325~29%,CaO+MgO4~5%,K2O+NaO0.7~0.8%,烧失量为8.0~9.5%,在1200℃附近可烧结成瓷,烧成温度范围大于40℃;适宜制备工艺条件为:成型压力30MPa,烧成温度1200℃,保温时间15min,尾矿瓷质砖样品的主要性能符合国家标准陶瓷砖(GB/T4100-2006)中干压瓷质砖要求及陶瓷砖环境标志产品技术要求(HJ/T297-2006)的规定,具有很好的环境协调性。
     5.研究了铁尾矿瓷质砖的微观结构,分析了铁尾矿降低液相生成温度,促进烧结的作用机理,以及铁尾矿加入引起产品烧结温度范围变窄的原因及可行的解决方法,并探讨了尾矿瓷质砖的煅烧过程。
     分析认为,尾矿瓷质砖具有良好的烧结程度,瓷坯结构中包含大量晶体颗粒,主要有残余石英、赤铁矿和方石英,以及少量的钙长石和莫来石,玻璃相充填其中,构成致密的玻璃相和晶体颗粒相互交织的网状结构,对尾矿瓷质砖强度的提高和成瓷都起到了重要作用。
     铁尾矿中含量较高的Fe_2O_3、CaO与原料中的石英及硅铝酸盐形成低共熔物降低液相生成温度,促进坯体的烧结致密,此外,氧化铁在烧结高温时形成液相,冷却时又从液相中析出生成赤铁矿的微晶,均匀的分布在玻璃相中,有利于提高瓷坯的强度和硬度。铁尾矿瓷质砖的烧结成瓷过程可分为低温阶段、氧化分解阶段、高温烧结阶段及冷却阶段,最终形成多相结构的致密瓷体。
     通过上述工作,验证了低硅铁尾矿在烧结制砖技术上的可行性,不仅解决了该类铁尾矿综合利用的难题,而且为烧结普通砖和瓷质砖开辟了新资源,具有环境保护和资源节约的双重效益。本论文全面系统的研究了尾矿基本性质,为尾矿的综合利用提供了必要的科学依据,烧结制砖机理研究丰富和发展了低硅尾矿资源化研究领域的理论体系,为铁尾矿利用技术及其发展应用提供了理论基础。
Iron tailings as waste residues generated from the process of iron ore dressing is a kind ofmajor industrial solid wastes. The rapid development of iron and steel industry has led to theincreasing amount of iron tailings. The majority of iron tailings have been abandoned andstockpiled for a long time, not only taken large areas of land, but also resulted in environmentalpollution and safety problems. With the increasing awareness of environmental protection andsustainable development, iron tailings as secondary resources have been attached importance byall countries in the world, the utilization of iron tailings have widely received attention,especially, reuse in producing building materials is nowadays worldwide being investigated.
     This dissertation deals with the techniques of preparing fired bricks and porcelain tiles withthe low-silicon iron tailings from western Hubei province of China as the main raw materials,based on comprehensive analysis of the basic characteristics of tailings. Then, the properties andmicrostructure of the final fired samples were systematically investigated, the firing process andmechanism were probed. The research contents and results of the tests are summarized as thefollowing:
     1. The basic characteristics of the tailings were systematically studied. The results indicatedthat the tailings had similar properties with clay, with these advantages such as fine particles,good plasticity and easy drying. But it contained too high iron content and too low silica andalumina content for producing fired bricks and porcelain tiles,on the other hand the fired tailingsamples showed high bulk density and fired shrinkage. Through suitable formulation, it ispossible to prepare fired bricks and porcelain tiles using the iron tailings.
     2. Fired bricks were made with the low-silicon iron tailings from western Hubei as the mainmaterials together with clay and fly ash, the suitable process conditions and formulation wereinvestigated, the comprehensive properties of tailing bricks from large-scale test were measured.The results showed that the addition of clay and fly ash improved the brick quality. Therecommended mass ratio was the tailings: clay: fly ash=84:10:6, the optimum conditions werefound to be forming water content and forming pressure were respectively in the range of12.5~15%and20~25MPa, the drying system were100~105℃for6~8h, the optimumtemperature system were found to be that the heating rate was about6℃/min, the firingtemperature and holding time were in the range of980~1030℃and2~3h. Under theseconditions, the mechanical strength, water absorption and bulk density of the fired specimenswere20.03~23.60MPa,16.54~17.93%and1.85~1.90g/cm3, respectively. The results oflarge-scale test were consistent with the bench-scale test, and the other physical properties anddurability were well conformed to Chinese Fired Common Bricks standards (GB/T5101-2003).
     3. The samples of tailing fired brick were characterized, the mechanism of formingproperties and microstructures of the bricks were analyzed, and the firing process was discussed.The results showed that the main mineral phases of the products were hematite, quartz, feldsparand apatite, which formed the main framework of fired specimens, were principally responsiblefor the mechanical strength of bricks. Part of feldspar phases reacting with quarts andaluminosilicate formed eutectic solution, which filled with among the crystals and promoted thecompactness of bricks. The brick samples showed the typical grain and bond microstructure, andcrystalline phases were embedded in glassy matrix forming strong entirety, which promoted thegood properties of bricks. Moreover, the firing process was concluded to four stages as drying,heating, firing and cooling. The diffusion predominated in firing process, while some meltingliquid generated in the latter stage of firing, which played an important role to the vitrificationand solid-phase reaction of bricks.
     4. The unglazed porcelain tiles were prepared using the iron tailings instead of parts oftraditional materials, the suitable formulation range of forming ceramics and the optimumprocess conditions were determined, and the properties of tiles were presented. Results indicatedthat the suitable formulation of the iron tailings substituting completely feldspar should beaddition tailings55~65wt.%, kaolin20~25wt.%, quartz sand10~20wt.%, the chemicalcompositions range of green body were SiO_237~44%,Al_2O_314~16%,Fe_2O_325~29%,CaO+MgO4~5%,K2O+NaO0.7~0.8%and loss on ignition8.0~9.5%. The tailing porcelain tilescould achieve full vitrification at about1200℃, revealed a sintering interval of more than40℃.The optimum process conditions were found to be that forming pressure30MPa, firingtemperature1200℃and holding for15min. The obtained porcelain tiles as eco-friendlyproducts were well conformed to the requirements about drying press poecrlain tiles in Chinesestandard specifications Ceramic Tiles (GB/T4100-2006) and Specifications for EnvironmentalLabeling Products-Ceramic Tiles (HJ/T297-2006).
     5. The microstructures of the tailing porcelain tiles were discussed, the mechanism of theiron tailings addition could lower the firing temperature and promote the firing densification, andthe main reasons of narrowing densification interval were analyzed, in addition the feasiblesolutions are proposed, the fired process and densification mechanism of porcelain tiles wereprobed.
     Results revealed that the tiles featured good degree of sintering, high crystallinity with mainmineral phases as residual quartz, hematite, cristobalite, together with small amount anorthite andmullite, and presented in dense glassy and crystalline phase solid solutions with low porosity,which contributed to the densification and full vitrification of porcelain tiles.
     The high content of Fe_2O_3and CaO in tailings reacted with quartz and aluminosilicate andformed eutectic solution at lower temperature, which promoted the densification of porcelain tiles. Furthermore, Fe_2O_3crystallized form the liquid phases in cooling and were uniformity embeddedin glassy phases, which favored the mechanical strength and hardness of the tiles. The firedprocess of the tailing tiles could be divided into four stages as low temperature heating, oxidizingand decomposing, high sintering and cooling, at last the densification porcelain tiles withmultiphase structure were formed.
     Through the above research, the feasibility of making fired bricks and porcelain tiles usingthe low-silicon iron tailings was proved, not only resolved the problem of utilizing this kinds oftailings, but also would offer a new resources for building materials, with the double effects ofenvironmental protection and resources saving. Meanwhile,the comprehensive investigation oftailings characterics provided the scientific proof for tailings utilization, the mechanism researchenriched the theoretical systems and offered the theoretical basis for the application anddevelopment of the utilizing low-silicon tailings technologies.
引文
[1]闫满志,白丽梅,张云鹏,等.我国铁尾矿综合利用现状问题及对策[J].矿业快报,2008,7(7):9-13.
    [2]陈虎,沈卫国,单来等.国内外铁尾矿排放及综合利用状况探讨[J].混凝土,2012,(2):88-92.
    [3]刘永光,王晓雷.铁尾矿资源化综合利用的发展[J].现代矿业,2010,490(2):28-30.
    [4]郭建文,王建华,杨国华.我国铁尾矿资源现状及综合利用[J].现代矿业,2009,486(10):23-25.
    [5]秦煜民.磁选尾矿铁资源回收利用现状与前景[J].中国矿业,2010,9(5):47-49.
    [6]王运敏,常前发.当前我国铁矿尾矿的资源状况利用现状及工作方向[J].金属矿山,1999,271(1):1-6.
    [7]朱家骥.我国铁矿选矿技术[M].北京:冶金工业出版社,1994:13-17.
    [8]焦娟,郭志猛,刘祥庆,等.用程潮铁尾矿制备黑色通体砖[J].技术矿山,2010,414(12):167-174.
    [9]尹洪峰,王明利,任耘,等.利用邯郸铁矿尾矿制备轻质隔热墙体材料[J].金属矿山,2006,362(8):76-78.
    [10]衣德强,尤六亿,范庆霞.梅山铁矿尾矿综合利用研究[J].矿冶工程,2006,26(2):45-47.
    [11]刘凤春,刘家弟,傅海霞.铁矿尾矿双免砖的研制[J].矿业快报,2007,455(3):33-35.
    [12]张熠,那琼.铁尾矿制备彩色地面砖的技术探讨[J].矿业快报,2007,(1):64-66.
    [13]王业田,曹净,吴万红.攀钢马家田尾矿特性研究[J].广西人学学报(自然科学版),2003,28(3):261-264.
    [14]高志明.首钢大石河铁矿尾矿综合利用的研[J].金属矿山,2010,405(3):162-165.
    [15]牛福生,吴海军,吴根等.铁尾矿地砖的制备及其机理分析[J].再生资源研究,2007(4):41-44.
    [16]曹耀华,高照国,刘红召.鞍本地区某铁尾矿制备免蒸免烧砖试验研究[J].矿产综合利用,2009,(6):41-44.
    [17]王金忠,赵颖华.铁尾矿对普通硅酸盐水泥易烧性的影响[J].沈阳建筑工程学院学报,1999(4):342-347.
    [18]雷力,周兴龙,李家毓,等.我国矿山尾矿资源综合利用现状与思考[J].矿业快报,2008,473(9):5-8.
    [19]徐博书,张玉力,潘宝丰.铁尾矿资源综合利用概况.第六届国际绿色建筑与建筑节能大会论文集[C],北京:2000:262-265.
    [20] LicskóI, Lois L, Szebényi G. Tailings as a source of environmental pollution[J]. Wat SciTech,1999,39(10):333-336.
    [21]刘劲鸿.合理开发利用尾矿是矿业经济增长的新途径[J].中国地质,2000,282(11):21-25.
    [22]彭承英.尾矿库事故及预防措施[J].有色矿山,1996(5):38-40.
    [23] Niekerk HJ, Viljoen MJ. Causes and consequences of the Merriespruit and other tailingsdam failures[J]. Land Degrad Dev,2005(16):201-212.
    [24]金佳康,孙宝臣.浅谈铁尾矿综合利用的现状和问题[J].山西建筑,2008,34(14):26-27.
    [25] Zhang S, Xue X, Liu X, et al. Current situation and comprehensive utilization of iron oretailing resources[J]. Journal of Mining Science,2006,42(4):403-408.
    [26]常前发.我国矿山尾矿综合利用和减排的新进展[J].金属矿山,2010,405(3):1-5.
    [27] Giri SK, Das NN, Pradhan GC. Magnetite powder and kaolinite derived from waste ironore tailings for environmental applications[J]. Powder Technology,2011,214:513-518.
    [28] Li C, Sun H, Bai J, et al. Innovative methodology for comprehensive utilization of iron oretailings Part1. The recovery of iron from iron ore tailings using magnetic separation aftermagnetizing roasting[J]. Journal of Hazardous Materials,2010,174:71-77.
    [29] Zhang Y, Li H, Yu X. Recovery of iron from cyanide tailings with reduction roasting waterleaching followed by magnetic separation[J]. Journal of Hazardous Materials,2012:167-174
    [30] Mishra RK, Rout PC, Sarangi K, et al.Solvent extraction of Fe(III) from the chloride leachliquor of low grade iron ore tailings using Aliquat[J]. Hydrometallurgy,2011,108:93-99.
    [31] Sirkeci AA, Gul A, Bulut G. Recovery of Co, Ni, and Cu from the tailings of Divrigi IronOre Concentrator[J]. Mineral Processing and Extractive Metallurgy Review,2006,27(2):131-141.
    [32] Das B, Reddy PSR, Misra VN. Recovery of iron values from tailing dumps adoptinghydrocyclone and magnetic separation techniques[J]. Australasian Institute of Mining andMetallurgy Publication Series,2002(2):285-289.
    [33] Watson JHP. Extracting values from mine dumps and tailings[J]. Minerals Engineering,2006,19(8):1580-1587.
    [34] Kangal O, Guney A. Pilot scale tests for evaluation of feldspar tailings for ceramic industry[J]. Key Engineering Materials,2004,264(2):1415-1418.
    [35] Yellishetty M, Karpeb V, Reddy EH, et al. Reuse of iron ore mineral wastes in civilengineering constructions: A case study[J]. Resources, Conservation and Recycling,2008,52:1283-1289.
    [36] Li C, Sun H, Yi Z, et al. Innovative methodology for comprehensive utilization of iron oretailings Part2: The residues after iron recovery from iron ore tailings to preparecementitious material[J]. Journal of Hazardous Materials,2010,174:78-83.
    [37] Xu L, Zhang L, Hao X, et al. Preparation of Eco-friendly composite ceramicfrom iron ore tailings [J]. Materials Science Forum,2009,803:281-284.
    [38] Won J, Kang H; Lee S, Kang J. Eco-friendly fireproof high-strength polymercementitiouscomposites[J]. Construction and Building Materials,2012,30:406-412.
    [39]夏荣华,朱申红,李秋义等.矿业尾矿在建材中的应用前景[J].青岛理工大学学报,2007,28(3):76-80.
    [40]姚亚东.矿山尾矿制作建筑材料工艺研究[D].成都:四川大学,2002.
    [41] Das SK, Kumar S, Ramachandrarao P. Exploitation of iron ore tailing for the developmentof ceramic tiles [J]. Waste Management,2000,20(8):725-729.
    [42] Oti JE. Engineering properties of unfired clay masonry bricks [J]. Engineering Geology,2009,107:130-139
    [43] Maiti SK, Nandhini S, DasManab. Accumulation of metals by naturally growingherbaceous and tree species in iron ore tailings[J]. International Journal of EnvironmentalStudies,2005,62:595-603.
    [44] Michael R, Norland. Revegetation of coarse taconite iron ore tailing using municipal solidwaste compost [J]. Journal of Hazardous Materials,1995,41:123-134.
    [45]袁先乐,徐克创.我国金属矿山固体废弃物处理与处置技术进展[J].技术矿山,2004,336(6):46-49.
    [46]卢颖,孙胜义.我国矿山尾矿生产现状及综合治理利用[J].矿业工程,2007,5(2):53-55.
    [47]赵言勤.歪头山铁矿尾矿高效回收技术研究与实践[J].本钢技术,2008(3):1-3.
    [48]陈本亮,肖荣华.昆钢上厂铁矿尾矿回收的生产实践[J].矿业快报,2006(4):45-47.
    [49]衣德强,范庆霞.梅山铁矿尾矿再选与利用研究[J].矿业研究与开发,2005,25(5):44-45.
    [50]孙达,李永聪,高志.从铁尾矿中回收铜的试验研究[J].金属矿山,2007,375(9):119-122.
    [51]边同民,孙立杰,王琳.马庄铁矿采空区及尾矿库综合治理研究与实践[J].矿业快报,2008,466(2):43-45.
    [52]毛麒瑞.矿山尾矿的综合回收与利用[J].中国资源综合利用,2000(5):37-38.
    [53]赵瑞敏.我国铁矿尾矿综合利用[J].金属矿山,2009,397(7):158-163.
    [54]王克华.湖北省程潮铁矿尾矿废弃地生态恢复初步研究[D].武汉:华中师范大学,2003:10-36.
    [55]郭春丽.利用铁尾矿制造建筑用砖[J].砖瓦,2006,(2):42-44.
    [56]辛明印.本钢歪头山铁矿资源综合利用战略及实践[J].金属矿山,2001,300(6):5-7.
    [57]张金青,孙小卫.利用铁尾矿生产混凝土承重小型空心砌块[J].矿山环保,2003(2):14-16.
    [58]徐惠忠.尾矿建材开发[M].北京:冶金工业出版社,2000.
    [59]朱敏聪,朱申红,夏荣华,等.利用矿山尾矿制作蒸压砖的试验研究[J].新型建筑材料,2007,(11):30-32.
    [60]王秀萍.尾矿化学处理与综合利用的国内外研究概况[J].中国矿业,2009,18(5):73-736.
    [61]张锦瑞,倪文,贾清梅.唐山地区铁尾矿制取蒸压尾矿砖的研究[J].金属矿山,2007,369(3):85-87.
    [62]贾清梅,张锦瑞,李凤久.高硅铁尾矿制取蒸压尾矿砖的研究[J].中国矿业,2006,15(4):39-41.
    [63]田英良.利用铁尾矿研制CaO-MgO-Al2O3-SiO2系微晶玻璃[J].北京工业大学学报,2002,(3):369-373.
    [64]陈吉春,陈盛建.低硅铁尾矿微晶玻璃研制[J].非金属矿,2005,28(1):25-27.
    [65]云正,于鹏超,尹洪峰.气化炉渣对铁尾矿烧结墙体材料性能的影响[J].金属矿山,2010,413(11):183-186.
    [66]刘媛媛,肖慧,李寿德.铁尾矿烧结多孔保温材料气孔形成的机理研究[J].新型建筑材料,2010(4):47-49.
    [67]李继芳,刘向阳.铁尾矿在新型干法水泥生产线上的应用[J].新世纪水泥导报,2000(4):7-9.
    [68]郑永超.铁尾矿制备高强结构材料的试验研究[J].新型建筑材料,2009(3):4-6.
    [69]刘文永,张长海,许晓亮,等.用铁尾矿烧制胶凝材料的试验研究[J].金属矿山,2010,414(12):175-178.
    [70]黄世伟,李妍妍,程麟,等.用梅山铁尾矿制备免烧免蒸砖[J].金属矿山,2007,370(4):81-84.
    [71]陈吉春,田翱宇.低硅铁尾矿制彩色路面砖的外加剂试验研究[J].金属矿山,2003,330(12):56-57.
    [72] Zhao F, Zhao J, Liu H. Autoclaved brick from low-silicon tailings [J]. Construction andBuilding Materials,2009,23:538-541.
    [73] Zhao Y, Zhang Y, Chen T, et al. Preparation of high strength autoclaved bricks fromhematite tailings[J]. Construction and Building Materials,2012,28:450-455.
    [74]王金忠.铁尾矿部分代替粘土在烧结砖中的应用研究[J].房材与应用,2000,28(3):27-30.
    [75]王金忠,李晖,辛向阳.利用铁尾矿生产烧结砖的实验研究[J].辽宁建材,2000(3):21-23.
    [76]陈敏健,陈学江,任如学,等.铁尾尾矿矿相组成与制砖烧成工艺关系的研究[J].现代技术陶瓷,2005,105(3):13-14.
    [77]尹洪峰,夏丽红,任耘,等.利用邯邢铁矿尾矿制备建筑用砖的研究[J].中国矿业,2006(2):79-81.
    [78]田玉梅.利用铁矿尾矿制备烧结多孔砖技术研究[D].济南:山东大学,2004.
    [79]衣德强.铁矿尾矿烧结制砖可行性探讨[J].梅山科技,2007,(3):25-28.
    [80]衣德强,张剑锋.梅山铁矿尾矿烧结制砖试验研究[J].梅山科技,2008,(3):37-40.
    [81]杜建发.梅山细粒级尾矿综合利用的研究[J].金属矿山(增刊),2006,(8):444-447.
    [82] Andreola F, Barbieri L, Karamanova E, et al. Recycling of CRT panel glass as fluxingagent in the porcelain stoneware tile production [J]. Ceramics International,2008,34:1289-1295.
    [83] Asquini L, Furlani E, Bruckner S, et al. Production and characterization of sinteredceramics from paper mill sludge and glass cullet [J]. Chemosphere,2008,71:83-89.
    [84] Karamanova E, Avdeev G, Karamanov A. Ceramics from blast furnace slag, kaolin andquartz [J]. Journal of European Ceramic Society,2011,31:989-998.
    [85] Dana K, Das SK. Partial substitution of feldspar by B.F. slag in triaxial porcelain: Phaseand microstructural evolution [J]. Journal of European Ceramic Society,2004,24:3833-3839.
    [86] Ozdemir I, Yilmaz S. Processing of unglazed ceramic tiles from blast furnace slag [J].Journal of Materials Processing Technology,2007,183:13-17.
    [87] Favoni C, Minichelli D, Tubaro F, et al. Ceramic processing of municipal sewage sludge(MSS) and steelworks slags (SS)[J]. Ceramics International,2005,31:697-702.
    [88] Zimmer A, Bergmann CP. Fly ash of mineral coal as ceramic tiles raw material [J]. WasteManagement,2007,27:59-68.
    [89] Monteiro SN, Alexandre J, Margem JI, et al. Incorporation of sludge waste from watertreatment plant into red ceramic[J]. Construction and Building Materials,2008,22:1281-1287.
    [90]周俊,梁启斌,王焰新.利用高铁砂岩质煤矸石制备瓷质砖的研究[J].岩石矿物学杂志,2003,22(4):445-448.
    [91]卢树忠.含铁工业原料对陶瓷材料粘度的影响[J].耐火与石灰,2007,32(1):58-60.
    [92] Jonker A, Potgieter JH. An evaluation of selected waste resources for utilization in ceramicmaterials applications [J]. Journal of European Ceramic Society,2005,25:3145–3149.
    [93] Ghosh J, Mondal AK, Singh N, et al. Evaluation of iron ore tailings for the production ofbuilding materials[J]. Industrial Ceramics,2011(31):115-119.
    [94]倪文,张春艳,邹一民等.大庙铁矿尾矿制作玻化砖研究[J].陶瓷,1997,130(6):27-31.
    [95]钟旭东.利用铁尾矿制备彩坯釉面仿古砖的方法[P].中国专利:CN200710032792.0,2008-07-16.
    [96]石棋,郭玉忠,陈井清,等.程潮铁尾矿在玻化砖中的应用研究[J].中国陶瓷,2011,47(9):41-44.
    [97]胡起生,朱曾汉,高又成.关于湖北省铜、铁矿山尾矿资源的利用问题[J].资源环境与工程,2007,21(1):1-4.
    [98]李军.利用赤铁矿尾矿制备聚合磷硫酸铁及对污水处理研究[D].武汉:武汉理工大学,2008.
    [99]河水清.废渣烧制砖瓦技术[M].北京:中国建筑工业出版社,2008:102.
    [100]张海英,赵由才,祁景玉.生活垃圾焚烧飞灰在饰面砖的资源化应用技术[J].环境工程,2006,24(5):56-59.
    [101] Kornmann M.烧结砖瓦产品的制造及其产品性能[M].湛轩业,译.北京:中国建材工业出版社,2010:16
    [102]石棋,李月明.建筑陶瓷工艺学[M].武汉:武汉理工大学出版社,2007:56-57.
    [103] Ghosh S, Das M, Chakrabarti S, et al. Development of ceramic tiles from common clayand blast furnace slag[J]. Ceramics International,2002,28(4):393-400.
    [104]杨增玲.煤矸石烧结空心砖的研究[D].济南:山东大学,2007.
    [105]李学金. BIF尾矿资源化综合利用的研究[D].上海:上海大学,2007.
    [106]田玉梅.利用铁矿尾矿制备烧结多孔砖技术研究[D].山东:山东大学机械工程,2004.
    [107] GB/T50123-1999,土工试验方法标准[S].
    [108]陈章.鄂西低硅铁尾矿制备劈开砖的研究[D].武汉:武汉理工大学硕士论文,2010.
    [109]殷念祖,张新国,宋富生等.烧结砖瓦工艺[M].北京:中国建筑工业出版社,1983:65-148.
    [110] Karsten J. Through-flow drying of vertically perforated clay bricks and blocks[J]. Brickand Tile Industry International,2000,7(7):35-40.
    [111] Lowrison,Charle G.Crushing and Grinding-the size reduction of solid materials.CeramicIndustry.1974,(3):33~36
    [112]章秦娟.陶瓷工艺学[M].武汉:武汉理工大学出版社,2010:19-20.
    [113]于强.意大利烧结砖瓦产品应用翻开新篇章[J].砖瓦世界,2007(11):55.
    [114] Kornmann M.烧结砖瓦产品的制造及其产品性能[M].湛轩业,译.北京:中国建材工业出版社,2010:2-5.
    [115] Karaman S, Gunal H, Ersahin S. Assesment of clay bricks compressive strength usingquantitative values of colour components[J]. Construction and Building Materials,2006,20:348-354.
    [116] Duminuco P, MessigaB, Riccardi MP. Firing process of natural clays. Some microtexturesand related phase compositions [J].Thermochimica Acta,1998,321:185-190.
    [117]于漧.烧结砖中矿物相的研究[J].砖瓦,2008(2):32-33.
    [118] Jordán MM, Boix A, Sanfeliu T, et al. Firing transformation of cretaceous clays used inthe manufacturing of ceramic tiles[J]. Applied Clay Science.1999,14:225–234.
    [119] Xu L, Guo W, Wang T, et al. Study on fired bricks with replacing clay by fly ash in highvolume ratio[J]. Construction and Building Materials.2005,19(3):243-247.
    [120] Cultrone G, Sebastián E. Fly ash addition in clayey materials to improve the quality ofsolid bricks[J]. Construction and Building Materials.2009,23(2):1178-1184.
    [121]李庆繁.粉煤灰提高烧结砖性能的机理探讨[J].新型建筑材料,2001,4:34-35.
    [122]袁康,陈燕华,马斌.高掺量粉煤灰烧结砖制砖原料性能分析[J].山西建筑,2009,35(7):175-177.
    [123] GB/T5101-2003,烧结普通砖[S].
    [124] Kornmann M.烧结砖瓦产品的制造及其产品性能[M].湛轩业,译.北京:中国建材工业出版社,2010:76.
    [125]田玉梅,肖庆,刘艳梅.铁矿尾矿制砖烧成特性的研究[J].硅酸盐通报,2004,(6):41-44.
    [126] Yellishetty M, Karpe V, Reddy EH, et al. Reuse of iron ore mineral wastes in civilengineering constructions: A case study[J]. Resources, Conservation and Recycling,2008,52:1283-1289.
    [127]刘涛,谭克锋,刘来宝,等.利用钻井废泥浆制备墙体材料的应用研究[J].武汉理工大学学报,2007,29(5):34-37.
    [128]吴建锋,陈金桂,徐晓虹,等.利用废陶瓷制备陶瓷透水砖的研究[J].武汉理工大学学报,2009,31(19):27-30.
    [129]李大伟,张立全,刘学峰,等.高含量赤泥烧结砖的研究[J].新型建筑材料,2009,(6):26-29.
    [130]佟志芳,康立武,李英杰,等.粉煤灰中硅酸盐烧结反应过程的研究[J].硅酸盐通报,2009,28(3):450-453.
    [131]周俊,舒杼,王焰新.建筑陶瓷清洁生产[M].北京:科学出版社,2011:2-5.
    [132] Pennisi L. Porcelainized stoneware tile [J]. American Ceramic Society Bulletin,1995,74(5):76-79.
    [133] Lee WE, Souza GP, McConville CJ, et al. Mullite formation in clays and clay-derivedvitreous ceramics [J]. Journal of the European Ceramic Society,2008,28:465-471.
    [134]杜海清,唐绍裘.陶瓷原料与配方[M].北京:轻工业出版社,1986:257.
    [135] Yuruyen S, Ozkan Toplan H. The sintering kinetics of porcelain bodies made from wasteglass and fly ash[J]. Ceramics International,2009,35:2427-2433.
    [136] Martín-Márquez J, Ma. Rincón J, Romero M. Effect of microstructure on mechanicalproperties of porcelain stoneware[J]. Journal of the European Ceramic Society,2010,30:3063-3069.
    [137]赵志曼.微波辐照煤矸石陶瓷砖应用基础研究[D].昆明:昆明理工大学,2005.
    [138]李淑展.污水厂脱水污泥制陶质地砖及填埋场防渗衬层材料研究[D].长沙:湖南大学,2007.
    [139]周俊,舒杼,王焰新.建筑陶瓷清洁生产[M].北京:科学出版社,2011:5-7.
    [140]章秦娟.陶瓷工艺学[M].武汉:武汉理工大学出版社,2010:97-100.
    [141]章秦娟.陶瓷工艺学[M].武汉:武汉理工大学出版社,2010:216-220.
    [142]李家驹,缪松兰,马铁成等.陶瓷工艺学(下册)[M].北京:中国轻工业出版社,2001:146-147.
    [143] A·И·阿甫古斯契尼克.陶瓷(上册)[M].刘康时,译.北京:中国工业出版社,1965:165-173.
    [144]武秀兰,陈国平,嵇鹰.硅酸盐生产配方设计与工艺控制[M].北京:化学工业出版社,2004:99-100.
    [145] Harada R, Sugiyama N, Shida HI. Al2O3strengthened feldspathic porcelain bodies:effects of the amount and particles size of alumina[J]. Ceram Eng Sci Proc,1996,17:88–98.
    [146] Abadir MF, Sallam EH, Bakr IM. Preparation of poecelain tiles from Egyptian rawmaterials[J]. Ceramics International,2002,28:303-310.
    [147] Carty WM, Senapati U. Porcelain-raw materials, processing, phase evolution, andmechanical behavior[J]. Journal of the American Ceramic Society,1998,81:3-20.
    [148] Ghosh J, Mondal AK, Singh N, et al. Evaluation of iron ore tailings for the productionof building materials[J]. Ind Ceram2011;31:115-9.
    [149]廖立兵,王丽娟,尹京武,方勤方.矿物材料现代测试技术[M].北京:化学工业出版社,2010:170-172.
    [150] GB/T4100-2006,陶瓷砖[S].
    [151] HJ/T297-2006,环境标志产品技术要求陶瓷砖[S].
    [152]张金升,张银燕,王美婷,许凤秀.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007:5-11.
    [153]张金升,张银燕,王美婷,许凤秀.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007:120-123.
    [154]盖广清.陶粒泡沫混凝土孔结构及其对性能影响的研究[J].硅酸盐建筑制品,1995,5:13-15.
    [155] Matteucci F, Dondi M, Guarini G. Effect of soda-lime glass on sintering and technologicalproperties of porcelain stoneware tiles [J]. Ceramics International,2002,28:873-880.
    [156]樊先平,洪樟连,翁文剑.无机非金属材料科学基础[M].杭州:浙江大学出版社,2004:52-56.
    [157]张海英,赵由才,祁景玉.生活垃圾焚烧飞灰制陶瓷砖表征[J].环境科学与技术,2011,34(3):193-196.
    [158]李华彬,何安西,邓天秀.尾矿瓷质砖配方及烧成工艺研究[J].中国陶瓷,1999,35(1):31-33.
    [159] Marghussian VK, Eftekhari B. Single fast fired wall tiles containing Iranian iron slags[J].British Ceramic Transactions,1994,93(4):141-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700