用户名: 密码: 验证码:
冲击挤密潜孔锤外表减阻结构优化设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击挤密潜孔锤钻进技术集冲击钻进、振动钻进、空气钻进及无排渣方法的优点于一体,钻进效率高,成孔质量好,是一种高效环保的浅层地热孔钻进技术。钻头结构形式,冲击挤密潜孔锤外管形状设计,尾部机构优化都直接影响钻进效率,是完善和推广该项技术的关键所在。
     本文以LS-DYNA显式动力分析为基础,对比了优化九阶梯钻头和凸轮旋压钻头在相同冲击荷载作用,相同计算时间,相同地层条件下的钻进深度,为凸轮旋压钻头挤土机理提供了理论依据,并在此基础上对凸轮旋压钻头做了机构改进,在原结构基本不变的条件下设计了螺旋球齿型和反S型切削刃凸轮旋压钻头,提高了钻进效率。
     对冲击挤密潜孔锤外管机构做了全新的结构设计,首先借鉴振动沉管桩增加管靴易入土工程实例,利用ANSYS/LS-DYNA显式动力分析有限元软件模拟分析了冲击挤密潜孔锤一段粗径外管粗径段出刃量锥角,长径比,两段粗径外管粗径段出刃量锥角,长径比,粗径位置,三段粗径外管的粗径段出刃量锥角,长径比,粗径段数目及位置等参数对钻进效率的影响,设计加工了多组活套式粗径外管,并进行了对比性室外冲击试验,对比分析确定了各情形下粗径外管的最优参数,验证了数值模拟的合理性和可靠性,为生产试验提供可靠的理论依据。
     在冲击挤密潜孔锤头部机构改进,中部机构重新设计的基础上,对其尾部机构的后轴套及花键轴做了优化设计,设计了花键轴底端凸肩装置,实现了两个零件轴向锁紧定位,解决了原冲击挤密潜孔锤工作不连续,效率低下的问题,并将表面仿生设计理论引入冲击挤密潜孔锤外部机构表面设计中,得到头部仿生非光滑表面设计宜采用凹坑表面仿生形态,中部和尾部仿生非光滑表面设计宜采用凹槽表面仿生形态,优化组合了一套完整的高效环保浅层地热孔冲击挤密潜孔锤钻进技术。
Sallow geothermal energy is green and renewable sources of energy. It doesn't only have a wide distribution and a large reserve, but also is clean, environmentally-friendly and reproducible. Further, its exploring doesn't be affected by using areas and the seasons. Vigorously developing and exploiting sallow geothermal energy has major significance for satisfying the energy need of all the world, improving energy structure, alleviating environmental pollution, fulfilling the target on energy conservation and reduction of pollutant emissions of all countries and promoting the sustainable development of eco.
     At the same time, developing an effect environmental drilling method, just applying to geothermal hole, is very important. Then, the drilling technology of percussion-compact DTH hammer solves this drilling problem, and builds a strong foundation for exploiting and widely using sallow geothermal energy. Additionally, the drilling technology of percussion-compact DTH hammer also has a wide field of application with good prospects on geotechnical anchor engineering, no open-digging laying pipeline engineering and pile foundation engineering.
     Percussion-compact DTH hammer is an effect environmental drilling technology, and design on exterior structure of percussion-compact DTH hammer is the key. The exterior structure of percussion-compact DTH hammer contacts with soil around during the process of percussion-compact-rotary drilling. Therefore, the optimum design on exterior structure will improve drilling effect of percussion-compact DTH hammer.
     This paper just based on "Research on applying of an effect environmental drilling technology in exploring of sallow geothermal energy". After analysis on the effect environmental drilling technology of soft formation, mechanical model and finite element model of soft formation and exterior structure of DTH hammer were built and analyzed on numerical simulation. The forming reasons of "pile effect" were analyzed through dynamic simulation methods. Cam spinning bit, outer and tail structures were optimum designed, and the theory of surface non-smooth was applied to outer structure design. Based on experimental data, the parameters of exterior structure of the CJ-130 percussion-compact DTH hammer were defined. All these played an important part in exploiting the sallow geothermal energy. The main research contents and conclusions contain:
     1. Based on the theory of damage of soil body, combining the dynamic character of soil under live-loading, the forming reason of "pile effect" was analyzed from mechanism, and the numerical simulation of the "pile effect" was done, during which its forming process was observed. The continuous dynamic simulation of optimized nine multiple diameter drill pressing soil was analyzed, and then, the same analysis on Cam spinning bit was completed. The difference of pressing soil mechanism between these two drills was compared. Next, comparative trials were completed among circular cone bit, multiple diameter drill and cam spinning bit. The results showed that cam spinning bit had the top drilling effect, multiple diameter drill takes second place, and circular cone bit was the last. The reason of the cam spinning bit with high effect was conclude combining simulation and experiment. Given this, some improvements of cam spinning bit were done. I designed five cam spinning bits, including buttons well-distributed front cam spinning bit, buttons spiral-distributed front, unilateral channelized, double sided channelized and spiral-distributed channelized.
     2. Based on the result that outer tube effects on drilling efficiency is three times than that of drill, the outer tube structures, such as different angels of oblique edge, different slenderness ratios, different numbers and places of wide diameter, effects on drilling depth were calculated by use of ANSYS/LS-DYNA. The results deduced the best parameters. That is, the angel of oblique edge was 20°, the slenderness ratio of one wide diameter was 1.54, the slenderness ratio of two wide diameters(front-middle) is 1.42, the slenderness ratio of two wide diameters(front-back) is 1.35, and the slenderness ratio of three wide diameters is 1.15. All these drilling efficiency were higher than that of the same diameter outer tube.
     3. On the base of theory researches and numerical simulations, looping type test pieces of outer tubes were manufactured, and test-bed was built. Many compared experiments were made, including the angel of oblique edge, the slenderness ratio and the numbers and places of outer tube with one wide diameter, outer tube with two front-middle wide diameters, outer tube with two front-back wide diameters and three wide diameters. The end results deduced the best angel of oblique edge was 20°, the range of wide diameter was 2~4mm, the range of the slenderness ratio was 1.4~1.6. And the reasonable number of wide diameter is 1~2. The three wide diameters will be not consided.
     4. Test piece of outer tube withΦ34mm was secondary manufactued. Together with looping and matrix, it was made new sample of two or three sections joined. And the second compared experiments were made. As is shown from the results, the synergic parameters of exterior structure of the CJ-130 percussion-compact DTH hammer provided reliable test data for the following research. That is, the angel of oblique edge was 20°, the diameter of wide section isΦ134mm,the length is 201mm,the number of wide section is one and it situated at the bottom.
     5. Optimum designs on rear axle housing, castellated shaft and air Distributor of tail structure of percussion-compact DTH hammer were researched. As a result, the function of axial alignment self-locking came true in the tail structure. And it solved the discontinuous-"working on and off" problem of percussion-compact DTH hammer. In other words, continuous and effect drilling was carried out. At the same time, the simulate theory of surface non-smooth was applied to the surface design of outer structure. Then, experiment on exterior structure with non-smooth simulation surface was made. The results showed that drill with simulation surface of steel pit, and outer tube and tail structure with simulation surface of notch would help to improve drilling efficiency.
     The main innovation points in this paper contain:
     1. The forming process of "pile effect" was dynamic simulation analyzed by the non-linear finite element solver ANSYS/LS-DYNA, whose calculation is explicit, aided with implied. The drilling process of nine multiple diameter drill, cam spinning bit and the wide diameter outer tube were simulated by the same means.
     2. Optimum design on exterior structure of percussion-compact DTH hammer was done, borrowing ideas from pipe boots structure. The parameters of wide diameter outer tube were determined from numerical simulation and experimental research. And the drilling efficiency was improved.
     3. Flank spline, transferring from circumference direction, was applying to the tail structure of percussion-compact DTH hammer. So it solved the discontinuous problem of percussion-compact DTH hammer. The simulate theory of surface non-smooth was applied to the surface design of outer structure. The simulation surface helped to improve drilling efficiency of percussion-compact DTH hammer.
引文
[1]负小苏.在全国地热(浅层地热能)开发利用现场经验交流会上的讲话[J].国土资源通讯,2007,6:33-35.
    [2]王旭霞.“低温地热能”开发与利用[J].低温建筑技术,2006,5:130-131.
    [3]包元文.德国地热利用潜能的开发[C].德国矿业技术有限公司矿山技术部,2003,10.
    [4]于凤菊.低温地热能的利用研究(硕士学位论文).北京:北京工业大学,2003-06.
    [5]中国新技术新产品权威发布平台.地热开发及利用:理想的“绿色空调”技术[J].中国新技术新产品,2008,6:78-81.
    [6]武选,柏琴,苑惠明等.冰岛地热资源开发利用现状[J].水文地质工程地质,2007,5:1~2.
    [7]任照峰.地热供暖技术应用探衬[J].山东暖通空调,2007,2:24-29.
    [8]柯柏林,丁连靖,周艳富等.地热并洗并及增产工艺技术探讨[J].研究探讨,2008,3(1):5-9.
    [9]张金萍,段金平.地热勘探开发技术方法解析[J].地质勘查导报,2008,9:1~3.
    [10]段景春.地热能源——地心热的开发利用[J].科技信息(学术研究),2008,4:163~165.
    [11]林丽,郑秀华,詹美萍.地热能源利用现状及发展前景[J].资源与产业,2006,6:20-23.
    [12]徐健,司华峰,郭开华等.地热驱动吸收式制冷技术在广东地热开发中的应用探讨[J].制冷,2002,21(4):34-36.
    [13]张祖培,殷琨主编.岩土钻掘工程新技术[M].北京:地质出版社,2003-10.
    [14]谢旭恩.风动潜孔锤钻探工艺在岩土工程中的应用[J].应用技术,2005,6:24.
    [15]殷琨,蒋荣庆,赖振宇.气动潜孔锤钻进技术[J].世界地质,1999,6:101-104.
    [16]耿瑞伦.多工艺空气钻进技术成就与展望[J].探矿工程,1999(S):132-136.
    [17]张勇,蒋荣庆.多工艺冲击回转钻进技术的新拓展[J].西部探矿工程,2002,2:112~113.
    [18]LI Xi-bing, G.Rupert, D.A.Summers.Energy transmissions of down-hole hammer tool and its conditionality[J].Trans.Nonferrous Met. Soc. China,2000(10),1:109~113.
    [19]Finger J T. Investigation of percussion drills for geothermal applications[J]. Journal of Petroleum Technology,1984,2:2128~2136.
    [20]Zhao Lin. Concluding remarks to the seventh Asian geothermal symposium[C]. Proceedings of the 7th Asian Geothermalsymposium,2006,7:165-169.
    [21]Jiu-rong Liu,Kun Wang. Geothermal reinjection in china[C]. Proceedings of the 7th Asian Geothermalsymposium,2006,7:59~65.
    [22]戴文育.北京城区地热形成机理及开采动态研究(硕士学位论文).北京:中国地质大学,2007-05.
    [23]王泽龙.北京市小汤山地区地温场特征及地下热水成因模式分析(硕士学位论文).北京:中国地质大学,2007-05.
    [24]任攀攀.北京香山地区地热条件分析及机械钻速与地层关系研究(硕士学位论文).北京:中国地质大学,2006-05.
    [25]韩再生.浅层地热能的属性和利用[C].第二届“地温资源开发与地源热泵技术应用论坛”大会,2008,11.
    [26]曾铁军.深层地热水井钻探工艺[J].煤田地质与勘探,2000,2:60-64.
    [27]孟利山.塘沽区北部古近系东营组地热资源调查评价(硕士学位论文).北京:中国地质大学,2007-5.
    [28]马立新,田舍.我国地热能开发利用现状与发展[J].中国国土资源经济,2006,10:19~21.
    [29]钱丽苏.我国开发地热经济与管理问题分析及建议[J].资源论坛(资源导刊),2007,8:8-10.
    [30]程良奎.岩土锚固的研究与新进展[J].岩石力学与工程学报,2005,11:3803-3811
    [31]吴卫国.岩土锚固工程施工技术探优[J].质量论坛,2006,4:37-40
    [32]王文龙.KCM-130Ⅱ型可控冲击矛钻头控向机构的设计研究(博士学位论文)长春:吉林大学,2006-4.
    [33]叶建良,蒋国盛,窦斌编著.非开挖铺设地下管线施工技术与实践[M],武汉:中国地质大学出版社,2000-3.
    [34]窦斌,蒋国盛.我国非开挖施工技术的发展概况及差距[J].岩土工程界,2001,4:47~48.
    [35]赵一归,罗云,候东利.非开挖技术与环境保护[J].工业安全与防尘,2000,6:11-13.
    [36]徐海良,龙国健,梁武.非开挖气动冲击锤的技术现状及研究前景分析[J].凿岩机械气动工具,2005,3:1~7.
    [37]A.Benamar.Dynamic pile response using two pile-driving techniques.Soil Dynamics and Earthquake Engineering.2000,20:243~247.
    [38]陈建平.德国地热利用潜能的开发[C].全国地热(浅层地热能)开发利用现场经验交流会论文集,2008,10.
    [39]李明.地下蓄能时变特性及其能量特征分析(博士学位论文).长春:吉林大学,2007-4.
    [40]李守圣.地下混凝土储热桩热能存储试验与研究(博士学位论文).长春:吉林大学,2010-6.
    [41]张艳伟.地源热泵系统实验研究与经济分析(硕士学位论文).南京:南京师范大学,2007-4.
    [42]刘伟,张文秀,王吉标等.地源热泵土壤换热器在建筑物下的工程应用[J].中国住宅设施(技术交流),2006,9:56-58.
    [43]谢含华.国内外非开挖气动锤的技术现状[J].凿岩机械气动工具,2006,4:1~7.
    [44]王文龙,彭枧明,殷琨.国内外非开挖可控气动冲击矛的发展现状[J].工程机械,2004,12:29~33.
    [45]杨国平,龙国键,刘忠.国内外非开挖气动冲击锤的发展概况[J].建设机械技术与管理,2003,1:1-7.
    [46]王鹏,陈忠义.非开挖铺设地下管线施工技术与设备[J].地质装备,2002,3:7~11.
    [47]何江.非开挖铺设地下管线技术的发展现状[J].工程建设与设计,2003,2:33~36
    [48]宾德智.地热资源——可持续开发利用的清洁能源[C].全国地热(浅层地热能)开发利用现场经验交流会论文集,2006,10.
    [49]廖忠礼,张予杰,陈文彬等.地热资源的特点与可持续开发利用[J].中国矿业,2006,15(10):8-11.
    [50]李国栋.地热钻井技术的若干问题[J].地下水,2008,30(1):85-87.
    [51]景成虎.邯郸东部平原地区地热地质特征及开发利用研究(硕士学位论文).北京:中国地质大学,2007-6.
    [52]安家盛.合理利用地热资源积极构建节约型社会[J].中国国土资源报,2007,4:1-2.
    [53]张传成.黄河三角洲地区地热资源开发利用与环境影响研究(硕士学位论文).长春:吉林大学,2007-6.
    [54]管彦武.基于GIS的青藏高原地热信息系统研究(博士学位论文).长春:吉林 大学,2006-4.
    [55]白冰,肖宏彬.软土工程若干理论与应用[M].北京:中国水利水电出版社,2002.
    [56]杨桂通.土动力学[M].北京:中国建材工业出版社,2000-10.
    [57]赵其华,彭社琴.岩土支挡与锚固工程[M].成都:四川大学出版社,2008-12.
    [58]唐大雄,刘佑荣,王清等.工程岩土学[M].北京:地质出版社,1999-08.
    [59]吴湘兴,杨小平.建筑地基基础[M].广州:华南理工大学出版社,2004-08.
    [60]白顺果,崔自治等.土力学[M].北京:中国水利水电出版社,2009-01.
    [61]周攸滨.动力触探[M].北京:中国铁道出版社,1986-02.
    [62]S.普拉卡什.土动力学[M].北京:中国水利电力出版社,1984-12.
    [63]曾义金,樊洪海译.空气和气体钻井手册[M].北京:中国石化出版社,2006.
    [64]陈晨.岩土工程施工[M].长春:吉林大学出版社,2003-09.
    [65]曹品鲁.冲击挤密钻进机理及挤密钻头的设计与实验研究(博士学位论文).长春:吉林大学,2007-04.
    [66]郝文化主编.Ansys土木工程应用实例[M].北京:中国水利水电出版社,2005-1.
    [67]刘尔烈主编.有限单元法及程序设计[M].天津:天津大学出版社,1999.
    [68]王丽娟.沉桩过程中挤土效应的三维有限元分析(硕士学位论文).天津:天津大学,2003-5.
    [69]苏继军.金刚石绳索取心钻杆接头螺纹的优化研究(博士学位论文).长春:吉林大学,2005-12.
    [70]徐兴,郭乙木,沈永兴编著.非线性有限元及程序设计.杭州:浙江大学出版社,1993,8:3-54.
    [71]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005-1.
    [72]尚晓江,苏建宇,王化锋.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2008-2.
    [73]罗战友.静压桩挤土效应及施工措施研究(博士学位论文).杭州:浙江大学,2004-1.
    [74]龚晓南,李向红.静力压桩挤土效应中的若干力学问题[J].工程力学,2000,,17(14):7~12.
    [75]M E Mabsout,L C Reese,J L Tassoulas.Study of pile driving by finite-element method[J].Journal of Geotechnical Engineering,1995,July:535~543.
    [76]M E Mabsout&J L Tassoulas.A finite element model for the simulation of pile driving[J].Int.J.Numer.Meth.Engng,1994,37:257~278.
    [77]J M Duncan. Limitations of Conventional Analysis of Consolidation Settlement[J].J of Geotechnical Engineering, ADCE,1993,119(9):1333~1359.
    [78]M B Chopra&G F Dargush.Finite-element analysis of time-dependent large-deformation problems[J]. Anal yt.Meth. Geomech.1992,16:101~130.
    [79]刘国庆,杨庆东.Ansys工程应用教程-机械篇[M].北京:中国铁道出版社,2003-1.
    [80]叶先磊,史亚杰.Ansys工程分析软件应用实例[M].北京:清华大学出版社,2003-9.
    [81]张朝晖主编.Ansys工程应用范例入门与提高[M].北京:清华大学出版社,2004-10.
    [82]刘涛,杨风鹏编著.精通Ansys[M]北京:清华大学出版社,2002-9.
    [83]张立新,徐长航,陈江荣等编著.Ansys7.0基础教程[M].北京:机械工业出版社,2004-3.
    [84]张朝辉.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008-1.
    [85]龚晓南等.地基处理手册[M].北京:中国建筑工业出版社.北京.2000.
    [86]江天寿.软土层施工桩基的新方法——滚压法[J].探矿工程,1998,2:22-23.
    [87]李长明,季伟峰.土质地层滚压器,实用新型专利,专利号:02221947.1.
    [88]李长明,季伟峰.滚压法成孔(桩)技术方法的研究与试验[J].探矿工程,2001(S1):30-31.
    [89]李长明,季伟峰.滚压法成孔(桩)技术的实际应用[J].西部探矿工程,2002(001):470~471.
    [90]罗春红.凸轮型冲击回转挤压钻头成孔机理的研究(硕士学位论文).长春:吉林大学,2008-06.
    [91]张忠林.“穿地龙”机器人转向机构与位姿检测研究(博士学位论文).哈尔滨:哈尔滨工程大学,2006-8.
    [92]曹品鲁,高科等.阶梯式冲击挤密钻头结构优化设计及试验[J].石油机械,2009,3:20~23.
    [93]孙庆.冲击挤密作用下土体变形机理的有限元分析与实验研究(硕士学位论文).长春:吉林大学,2007-06.
    [94]孙庆,曹品鲁,殷琨.冲击挤密作用下土体变形机理的有限元分析[J].煤田地质与勘探,2009,2:36-38.
    [95]韩冰,曹品鲁.冲击取样钻头与土体相互作用的有限元分析[J].岩土工程学报,2008,10:1560~1563.
    [96]http://www.jxcad.cn(中国机械CAD论坛).
    [97]http://okok.org/cgi-bin/ut/forum_show.cgi(中华刚结构论坛).
    [98]http://www.simwe.com/forum/(SimWer仿真论坛).
    [99]http://www.simu-online.com/bbs(仿真在线论坛).
    [100]http://bbs.icax.cn/(ICAX开思论坛).
    [101]顾尧章,余德忠等.空腔式无肩桩靴,实用新型专利,专利号200620101418.2.
    [102]姜贤放.筒状扩底桩靴,实用新型专利,专利号:03231780.8.
    [103]张喜龙.瓣式活页桩靴,实用新型专利,专利号:94214365.5.
    [104]江森利,毕恒信.一种穿透力强的桩靴,实用新型专利,专利号:92246176.7.
    [105]钱久军.钢筋砼钝锥平底桩靴,实用新型专利,专利号:91200479.7.
    [106]孔清华.十字尖钢筋砼平底桩靴,实用新型专利,专利号:89204754.2.
    [107]刘双龙.一种复合桩靴机构装置,发明专利,专利号:2006210040416.1.
    [108]森谷范夫.基础桩与基础桩的前端桩靴,发明专利,专利号:03148489.1.
    [109]宋太奎,杨永清等.一种振动冲击沉管灌注桩机桩管引头,实用新型专利,专利号:92203531.8.
    [110]钱永梅,尹新生等.挤扩多盘桩土体破坏机理的试验研究[J].检测与分析,2003,6:78~80.
    [111]钱永梅,尹新生等.挤扩多盘桩桩土效应的计算机模拟分析[J].检测与分析,2009,6:68-70.
    [112]钱永梅,尹新生等.影响挤扩多盘桩土体极限承载力因素的研究[J].吉林建筑工程学院学报,2004,2:14-16.
    [113]钱永梅,王雪飞等.有限元法分析挤扩多盘桩的计算模型的构筑[J].吉林建筑工程学院学报,2004,1:16-18.
    [114]Ren Luquan,Han Zhiwu,Li Jianqiao,et al.Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil[J].Journal of Terramechanics, 2002,39(4):221-230.
    [115]高科,孙友宏等.仿生非光滑理论在钻井工程中的应用与前景[J].石油勘探与开发,2009,8:519-522.
    [116]王云鹏,任露泉,杨晓东,等.仿生柔性非光滑表面的结构优化设计[J].农业工程学报,1999,15(1):33-35.
    [117]任露泉,李建桥,陈秉聪.非光滑表面的仿生降阻研究[J].科学通报,1995,40(19):1812-1814.
    [118]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [119]杨卓娟.激光处理凹坑非光滑表面耐磨试验的正交设计研究[J].机械设计,2005,22(7):55-56.
    [120]L.Q.Ren,L.Zhang,J.Tong,et al.GA-based analysis of the fractalness of soil-burrowing animal body suface[J].Int Agr Eng J,2001,10:13-27.
    [121]L.Q.Ren,S.J.Wang,X.M.Tian,et al.Non-Smooth Morphologies of Typical Plant Leaf Surfaces and Their Anti-Adhesion Effects[J]. Journal of Bionic Engineering,2007,4:33-40.
    [122]L.Zhang,L.Q.Ren,J.Tong,et al.Study of soil-solid adhesion by grey system theory[J].Prog Nat Sci,2004,14:119-124.
    [123]L.Q.Ren,J.Tong,J.Q.Li,B.C.Chen.SW-Soil and Water:Soil Adhesion and Biomimetics of Soil-engaging Components:a Review[J].Journal of Agricultural Engineering Research,2001,73:239-263.
    [124]丛茜,封云等.仿生非光滑沟槽形状对减阻效果的影响[J].水动力学研究与进展,2006,3:232~238.
    [125]单宏宇.仿生非光滑耦合模具表面粘附性能研究(博士学位论文).长春:吉林大学,2009-12.
    [126]陈莉.仿生非光滑表面热作模具的磨料磨损性能研究(博士学位论文).长春:吉林大学,2007-6.
    [127]张成春,任露泉等.旋成体仿生凹坑表面流场控制减阻仿真分析[J].兵工学报,2009,8:1066~1071.
    [128]任露泉,张成春,田丽梅.仿生非光滑用于旋成体减阻的试验研究[J].吉林大学学报:工学版,2005,35(4):431-436.
    [129]张成春,任露泉,王晶.旋成体仿生凹环表面减阻的试验分析及数值模拟[J].吉林大学学报:工学版,2007,37(1):100-105.
    [130]张成春,任露泉,刘庆平,等.旋成体仿生凹坑表面减阻试验研究[J].空气动力学学报,2008,26(1):79-84.
    [131]仲崇梅,孙友宏等.仿生非光滑理论在钻探(井)工程中的应用与前景分析 [J].石油钻探技术,2009,3:22-25.
    [132]张毅,孙友宏,任露泉.钻头泥包的土壤动物仿生学分析研究[J].探矿工程,2003,2:41-43.
    [133]孙志宏,单鸿波等.仿生非光滑表面纺杯减阻性能的数值模拟[J].纺织学报,2010,5:117-121.
    [134]王伟.仿生非光滑表面模具钢材料磨粒磨损研究(硕士学位论文).长春:吉林大学,2006-5.
    [135]高科,孙友宏等.仿生孕镶金刚石钻头非光滑度优化设计及试验[J].吉林大学学报:工学版,2009,5:721-725.
    [136]史婷婷.具有仿生非光滑表面纺杯的减阻性能数值模拟研究(硕士学位论文).上海:东华大学,2009-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700