08-32捣固车静液压传动行走系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
08-32捣固车采用封闭线路作业模式,为保证铁路的畅通,严格限定了作业时间。故为保证生产任务的按时完成,捣固车不但应具有良好的区间行驶性能,以减少车辆到达施工现场的非作业时间,还应具备稳定的作业行驶性能,以保证作业质量和效率。液力机械传动在车辆领域应用广泛,它能使车辆具备较好的高速区间行驶性能,但由于缺乏固定速比,不能满足捣固车作业时车速稳定的要求。静液压传动能准确调速,可保证作业时车速的稳定,但传统观念认为静液压传动不适合应用于车辆高速行驶领域。故现有08-32捣固车采用液力机械和静液压两套传动系统来分别实现车辆的区间运行和作业运行,其系统结构复杂,效率也不高,且在传动系统设计中存在缺陷,致使车辆车轴齿轮箱经常损坏。本文为08-32捣固车设计了一套新型静液压传动系统,能同时满足捣固车的区间运行和作业运行两种工况,突破了静液压传动不适用于车辆高速行驶领域的瓶颈。本文主要完成的工作如下:
     1.详细分析了现有08-32捣固车行走传动系统的工作原理,并通过试验分析证实了该车作业行走传动系统的设计缺陷。同时论述了静液压传动应用于08-32捣固车行走系统的合理性;
     2.设计了08-32捣固车静液压传动行走系统。对元件的型号、性能参数、控制方式进行了合理的配置,设计了行车制动单元,避免车辆制动、下长大坡道时可能引起的发动机飞车;
     3.对08-32捣固车的加速性能进行了重点研究。文章从车辆动力学和液压传动两方面分析了静液压传动行走系统的加速过程,并在此基础上制定了由电动比例控制液压泵和HA高压自动变量液压马达及电动比例控制液压泵和电动比例控制液压马达两种传动方案,实现车辆恒功率加速的排量控制模式;
     4.通过AMESim软件建立了车辆静液压传动行走系统的模型,同时对上述HA控制模式下,车辆的加速过程进行了仿真研究。最后,进行了静液压传动行走系统的加速实验。
Tamper 08-32 works in area of closed corridor, so operation time is strictly limited to guarantee the railway unblocked. In order to fulfill tasks on time, tamper 08-32 should have two kinds of drive performance: Firstly, high speed driving performance is need, in order to reduce the non-operating time of driving to construction site; Secondly, operating speed must be stable to ensure operation quality and efficiency. Hydro-mechanical transmission is used widely in vehicles, which enable high-speed vehicle with better performance on interval. But it can not satisfy the requirement of steady operating speed because lack of a fixed ratio. Hydrostatic transmission is accurate speed regulation, but it is not suitable to the field of high speed driving in traditional concept. Therefore, existing tamper 08-32 has two transmission systems, hydro-mechanical transmission is for high speed and hydrostatic transmission is for operating speed. Structure of existing tamper 08-32 is complicated, efficiency is low, and axle gear box is damaged frequently. In this paper a hydrostatic transmission system is designed to implement both high/low speed driving, breaking the bottleneck which hydrostatic transmission is not applicable to the field of high speed driving. The main research works are as follow:
     1. The operational principle of drive system of tamper 08-32 has been analyzed. Defect of drive system is verified by test results. Rationally of that hydrostatic transmission is applicable to tamper 08-32 is discussed.
     2. New type hydrostatic transmission system is designed. Types, performance parameters, control modes of components are allocated rationally. Braking unit is set to prevent over running in engine when vehicle is braking or driving from ramp.
     3. Accelerating performance of tamper 08-32 is emphatically studied. Accelerating process of hydrostatic drive system is analyzed in paper by both vehicle dynamic and hydraulic transmission theory. Accelerating strategy is made based on this. In order to realized control model of constant-power acceleration, two accelerating control scheme, electric proportional adjusting hydraulic pump/HA high pressure auto vitiate displacement hydraulic motor and electric proportional adjusting hydraulic pump/electric proportional adjusting hydraulic motor, are made.
     4. The model of hydrostatic transmission system is built by AMESim, and accelerating process of vehicle is simulated by the same time. Finally, accelerating test of hydrostatic transmission system has been done.
引文
[1]郑中立.我国铁路大型养路机械发展回顾.铁道建筑,2004,(7):3-5
    [2]付光志.我国大型养路机械的现状及发展.铁道标准设计,1999(11):30
    [3]宋慧京,何姗.大型养路机械技术引进与国产化.中国铁路,2004(10):11-13
    [4]张正兰.大型养路机械的现状及发展方向.铁道建筑,1999(11):33
    [5]程文明.回眸中国铁路机械设备的发展.理论界,2006(4):181-182
    [6]汪星刚.重型工程运输车行走驱动控制系统的研究与实现:[硕士学位论文].武汉:武汉理工大学,2005
    [7]Rabbo,Saber Abd.Identification and analysis of hydrostatic transmission system.International Journal of Advanced Manufacturing Technology,2008,(3):221-229
    [8]王意.行走机械液压驱动发展大观.液压气动与密封,2000,(1):19-28
    [9]田晋跃.静液压传动在路面机械中的应用.液压与气动,1994,(5):16-18
    [10]A.Oida,S.Masuda,T.Tanaka.Studies on a tractor with hydrostatic transmission.Farm Power and Machinery Laboratory,1972,(1):73-91
    [11]王意.流体技术和电子技术的结合与竞争.液压气动与密封,1999,(1):15-16
    [12]Institut f(u|¨)r Antriebstechnik.Nonlinear modelling and black box identification of a hydrostatic transmission for control system design.Mathematical and Computer Modelling,1990,(14):219-224
    [13]史维祥.液压传动几个重要方面的发展.液压气动与密封,2000,(1):36-37
    [14]孙新学,苏暑,周玉平.工程机械液压技术发展综述,液压与气动,2001,(3):6-7
    [15]黄人豪.重大工程及装备中大型液压系统的配置及技术特征.液压气动与密封,2000,(1):17-19
    [16]杨尔庄.对液压系统防漏治漏的建议.液压气动与密封,2001,(1):31
    [17]韩志青,唐定全.抄平起拨道捣固车.北京:中国铁道出版社,2004:12-16
    [18]曲明轩.08-32捣固车作业走行系统的调试.机车车辆工艺,2005,(10): 27-28
    [19]龙京.08-32捣固车作业走行系统研究:[硕士学位论文].长沙:中南大学,2007
    [20]吴强.08-32型捣固车液压作业系统压力不稳定的原因分析及对策措施.上海铁道科技,2005(1):41-42
    [21]毛志华.08-32捣固车作业减速齿轮箱损坏及解决办法.铁道标准设计,2000(1):38-39
    [22]曹昆山.08-32型自动抄平起拨捣固车液压系统液力稳定性计算分析.铁道标准设计,1999(5):67-70
    [23]王意.行走机械的液压复合传动技术.液压气动与密封,2004,(1):18-19
    [24]刘敏,赵方,王慧等.液压传动技术在工程机械行走驱动系统中的应用与发展.机械设计与制造,2006,(6):31-32
    [25]Yuan S H,Hu J B.The efficiency of multi-range hydro-mechanical stepless transmission.Journal of Beijing Institute of Technology [J],1998,7(2):129-134
    [26]赵希民,黄宗益.铲土运输机械设计.北京:机械工业出版社,1989
    [27]李太杰.工程机械底盘理论与性能.北京:人民交通出版社,1989
    [28]姚怀新.工程车辆牵引动力学概述及其研究回顾.北京:人民交通出版社,2005:62-64
    [29]王湘华.工程机械行走系采用液压驱动后的高效性.西部探矿工程,2001,(4):100-101
    [30]Understanding Fundamentals Of Hydrostatic Transmissions,Diesel Progress Engines & Drives,2000.
    [31]P.Vanvuchelen,C.Moons,W.Minten and B.De Moor.Electronic Control of Continuously Variable Transmissions.Rova95 International,2001,(11):100-109
    [32]张利平.液压传动系统设计.北京:化学工业出版社,2005:9
    [33]周士昌.液压系统设计.北京:机械工业出版社,2004:1-2
    [34]杨而庄.二十一世纪液压技术现状及发展趋势.液压与气动,2001,(3):1-2
    [35]姚怀新.工程车辆牵引动力学概述及其研究回顾(2).筑路机械与施工机械化,2005,(4):62-64
    [36]姚怀新.工程机械底盘液压驱动装置性能分析(11).筑路机械与施工机 械化,2004,(10):60-62
    [37]姚怀新.行走机械液压传动与控制.北京:人民交通出版社,2002
    [38]郭俊.全液压推土机行驶静压驱动系统研究:[硕士学位论文].西安:长安大学,2003
    [39]姚怀新.工程机械底盘液压驱动装置性能分析(1).筑路机械与施工机械化,2003,(6):60-62
    [40]Andreas Kugi,Kurt Schlacher,Heinz Aitzetm(u|¨)ller.Modeling and simulation of a hydrostatic transmission with variable-displacement pump.Mathematics and Computers in Simulation,2000,(53):409-414
    [41]姚怀新.工程机械底盘液压驱动装置性能分析(2).筑路机械与施工机械化,2004,(1):59-61
    [42]K.Dasgupta.Analysis of a hydrostatic transmission system using low speed high torque motor.Mechanism and Machine Theory,2000,(35):1481-1499
    [43]姚怀新.工程机械底盘液压驱动装置性能分析(7).筑路机械与施工机械化,2004,(6):61-64
    [44]姚怀新.工程车辆液压元件工作转速的选择及参数匹配.长安大学学报(自然科学版),2002,22(2):69-71
    [45]姚怀新.工程车辆液压元件工作压力的合理选择与匹配.长安大学学报(自然科学版),2002,22(4):70-72
    [46]Mannesmann rexroth control of secondary units with A4vs axial piston units RE92 055/10.97:1-3
    [47]Variable Displacement Pump A4VG125 User's Guide MANNESMANN REXROTH,1988
    [48]HPV-2 Closed Loop Pump,Linde Drive and Motion Technology 2003
    [49]K.L.Navrotskii,Dynamics of an Autonomous Reciprocating Hydraulic Drive,Russian Engineering Research,2003,(4)
    [50]姚怀新.车辆液压驱动系统的控制原理及参数匹配.中国公路学报,2002,(7):115-117
    [51]程立.RM80型全断面道碴清筛机作业工况牵引性能计算及匹配方式分析.铁道标准设计,1998,(3):37
    [52]行走机械用液压及电子控制元件.博世力士乐(中国)有限公司,2004
    [53]毛必显.道依茨风冷柴油机的构造与原理.昆明:铁路大型养路机械培训 中心,2002:12
    [54]严携耄.车辆工程.北京:中国铁道出版社,2003
    [55]魏庆曜.发动机与汽车理论.北京:人民交通出版社,1998
    [56]吴光强.汽车理论.北京:人民交通出版社,2007:38-48
    [57]陈超.汽车ATM换档规律及其评价方法研究:[硕士学位论文].成都:西华大学,2006
    [58]Ignatius A N jabeleke,Richard F Pannett,Pravir K Chawdhry and Cliff Burrows.Modelling and Control of A High Speed Hydrostatic Transmission.FPST-Vol.5,Fluid Power Systems and Technology-1998ASME 1998
    [59]章宏平,黄谊,王积伟.液压与气压传动.北京:机械工业出版社,2000:65-81
    [60]徐灏.机械设计手册.第1卷.北京:机械工业出版社,1991:55
    [61]雷达,刘继力,杨居漳.列车牵引计算规程解释.北京:中国铁道出版社,1984:9-10
    [62]Jose J.Granda.The role of bond graph modeling and simulation in mechatronics systems:An integrated software tool:CAMP-G,MATLAB-SIMULINK.Mechatronics,2002,(12):1271-1295
    [63]JoseJ.Granda Felez J.BONDYN:A Bond Graph Based Simulation program for Multibody systems.Trans.of ASME.J.Of Dyn.Sys Mea AnsLon,1990,(112):717-727
    [64]Edward B.Magrab.An Engineer' s Guide to MATLAB.Original publisher,Pearson Education,Inc,publishing as Prentice Hall,2000.
    [65]周开利,邓春晖.MATLAB基础及其应用教程.北京:北京大学出版社,2007
    [66]张森,张正亮.MATLAB仿真技术与实例应用教程.北京:机械工业出版社,2004
    [67]Bideaux E,Seavarda S.Pneumatie library for AMESim.Fluid Power System and Technology,1998(9):185-195
    [68]Wilfrid Marquis-Favre,ErieBideaux,SergeSeavarda.A Planar Mechanical library in the AMESim Simulation Software.Part Ⅰ:Formulation of Dynamics Equations.Simulation Modeling Practice and Theory,2005(5):17-19
    [69]Wilfrid Marquis-Favre,ErieBideaux,SergeSeavarda.A Planar Mechanical Library in the AMESim Simulation Software.PartⅡ:Library Composition and Illustrative Example.Simulation Modeling Praetice and Theory,2005(6):28-30
    [70]M.Vugdelija,Z.Stojanovie.Determination of a Time Step Interval in Hydraulic Systems Transients Simulation.Advances in Engineering Software.2000,125-129
    [71]付永领,祁晓野.系统建模和仿真-AMESim从入门到精通[M].北京:北京航空航天出版社,2006
    [72]李吉,李华聪.仿真软件AMESim应用研究.航空计算技术,2006,(1):56-58
    [73]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用.液压气动与密封,2005,(3):28-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700