从炎症介质的表达探讨肺虚痰阻证的形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     检测肺虚痰阻证模型大鼠及正常大鼠白三烯B4(LTB4)、神经生长因子(NGF)、转化生长因子β1(TGF-β1),粒细胞-巨噬细胞集落刺激因子(GM-CSF)、干细胞因子(SCF)等炎性因子的表达,并观察肺虚痰阻证模型大鼠经补肺化痰中药复方治疗后上述指标的动态变化,从炎症介质的角度探讨肺虚痰阻证的形成机制。
     研究方法:
     1.动物分组:雄性SD大鼠,体重180-200g,随机分组,正常组8只,肺虚痰阻证模型组14只,肺虚痰阻证治疗组14只。
     2.造模方法:肺虚痰阻证模型参照文献(王九林,姜惟,卞慧敏.肺虚痰阻病理模型的研制[J].中国中医基础医学杂志,1996,2(4):44)的方法并加以改进。早上先将大鼠置于较生长环境温度低5℃的冷风下吹10分钟。后将大鼠置于烟熏柜中,每次将0.2g硫磺粉均匀撒于半根清艾条内,点燃烟熏1小时后取出动物,每天上下午定时烟熏大鼠一次,连续42天。平时与正常对照组大鼠饲养于正常环境中,喂食普通饲料。
     3.给药方法:造模完成后,治疗组予补肺化痰方治疗,按10ml/kg/d灌胃,1次/天;模型组和正常对照组每天灌胃等量体积生理盐水,连续14天。
     4.取材、染色及图像分析:大鼠麻醉后腹股沟动脉放血活杀,开胸,结扎左肺支气管,取左肺脏用冰生理盐水清洗后,取左肺中叶,置于10%甲醛中固定,常规石蜡包埋,切片,片厚3um,做HE及免疫组化染色。生理盐水2ml注人右侧气管肺组织内,反复抽吸2次,回收率80%以上。将抽取得肺泡灌洗液(BALF)离心(20℃,2000 r/min离心10 min),收集上清液,置-70℃冰箱冻存待用。
     5.LTB4、SCF、TGF-β1水平的测定:取肺泡灌洗液,采用酶联免疫法(ELISA)检测。具体方法按照试剂盒说明书进行操作。
     6.大鼠肺组织GM-CSF及NGF表达的检测:用免疫组织化学方法。具体方法按照试剂盒说明书进行操作。
     7.统计学处理:采用SPSS 16.0软件进行分析,数据以x±s表示,各组间均数比较采用F检验和t检验,P<0.05为有统计学差异。
     研究结果:
     1.动物一般情况
     正常组大鼠:大鼠活泼好动,反应灵敏,毛发洁白光泽,食欲旺盛,无咳嗽、气促、痰鸣等异常体征。
     模型组大鼠:大鼠活动迟缓、时有咳嗽、咳痰、气促、毛发枯槁发黄、口鼻分泌物增多,食量及饮水量均较正常组多。
     治疗组大鼠:大鼠毛发较模型组有光泽,有少许咳嗽、咳痰。
     2.咳嗽分析
     用浓氨水刺激诱发咳嗽后,3分钟内正常组(1.30±1.059)的咳嗽次数最低,与模型组(3.00±1.054)及治疗组(2.30±0.949)比较差异均有统计学意义(P<0.05);模型组(3.00±1.054)与治疗组(2.30±0.949)比较差异无统计学意义(P>0.05)。
     3.体重
     实验大鼠正常饲养一周后造模,随着造模的进行,模型组大鼠体重增长较正常组明显减缓。造模前(第一周),正常组(235.5±6.12)和模型组(231.57±9.75)大鼠体重差异无统计学意义(P>0.05);实验最后一周(第七周),正常组(450.13±60.30)和模型组(399.11±41.29)大鼠体重差异有统计学意义(P<0.05)。
     4.病理切片
     正常组大鼠:气管、支气管纤毛柱状上皮细胞排列整齐,纤毛排列规则,未见有明显炎症细胞浸润。
     模型组大鼠:气管、支气管杯状细胞增生,腺体肥大、增生,粘液分泌旺盛,纤毛稀少,管腔内充满大量的淋巴细胞、肺泡巨噬细胞、中性粒细胞、嗜酸性粒细胞及黏液。治疗组大鼠:气管、支气管杯状细胞增生,腺体肥大、增生均较模型组减轻,纤毛较模型组增多,管腔内有少量肺泡巨噬细胞、中性粒细胞、嗜酸性粒细胞及黏液。
     5.LTB4.SCF.TGF-β1水平的测定结果:
     大鼠肺泡灌洗液中LTB4模型组(163.944±83.478)>治疗组(156.326±56.388)>正常组(90.820±46.215);SCF模型组(0.600±0.244)>治疗组(0.573±0.207)>正常组(0.368±0.116);TGF-β1模型组(391.714±250.639)>治疗组(380.898±312.992)>正常组(89.428±61.380),以上各指标对照组与模型组,对照组与治疗组比较差异均有统计学意义(P<0.05);模型组与治疗组比较差异无统计学意义(P>0.05)。
     6.大鼠肺组织GM.CSF及NGF表达的检测结果:
     大鼠肺组织中炎症介质所占百分比GM.CSF模型组(65.710±10.163)>治疗组(51.820±12.505)>正常组(46.250±7.440);NGF模型组(75.710±13.986)>治疗组(61.820±11.677)>正常组(61.250±16.421),模型组与正常组、治疗组的阳性细胞所占百分比差异均有统计学意义(P<0.05),染色信号强度模型组(+++)与治疗组(+++)相当;虽然正常组和治疗组的阳性细胞所占百分比差异无统计学意义(P>0.05),但染色信号强度治疗组(+++)>正常组(++)。
     结论:
     模型组IJB4、NGF、TGF-β1、GM-CSF、SCF水平均较治疗组和正常组上调,提示以上炎症介质均参与肺虚痰阻证的病变过程,同时也提示肺虚痰阻证的病变过程是一个慢性炎症过程。补肺化痰方可降低炎症介质的表达水平,可通过其抗炎作用对慢性炎症起一定的预防作用。补肺化痰方治疗肺虚痰阻证的作用机制之一可能就是通过下调炎症介质的表达水平实现的。
Purpose:
     Detection of lung deficiency and phlegm obstruction model rats and normal rats of leukotriene B4 (LTB4), nerve growth factor (NGF), transforming growth factorβ1 (TGF-β1), granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF) such as the expression of inflammatory factors and to observe the lung deficiency and phlegm obstruction model of rat lungs phlegm after the treatment of Chinese herbal compound the dynamic changes of inflammatory mediators from the perspective of lung deficiency and phlegm with the formation mechanism.
     Methods:
     1. Animal groups:male SD rats weighing 180~200g, were randomly assigned to the control group 8, lung deficiency and phlegm syndrome group 14, lung deficiency and phlegm obstruction treated group 14.
     2. Making touch Methods:lung deficiency and phlegm obstruction model according to the literature (Wang Jiulin, Jiang Wei, Hui-Min Bian. Lung deficiency and phlegm pathological model of development [J]. Traditional Chinese Medicine, 1996,2 (4):44) and improved methods. Rats placed in the morning than the first low growth temperature under 5℃in the cold wind blowing for 10 minutes. Smoked cabinet will be placed in rats, each will be spread evenly 0.2g sulfur powder in half of the root Ai Qing, the fire smoke out animals after 1 hour, every day at a time smoked rats, continuous 42 days. Usually with the normal control group reared in normal environments, feeding normal diet.
     3. Treatment:modeling is complete, the treatment group Treatment of phlegm to the lungs, according to 10ml/kg/d orally,1 time/day; model group and control group were administered equal volume of normal saline, for 14 days.
     4. Drawn, staining and image analysis:anesthesia, killed at the groin artery bleeding, thoracotomy, ligation of the left lung bronchus, left lung obtained after washing with normal saline ice, take the middle left lung, placed in 10% formalin fixed, paraffin embedding, slicing, slice thickness 3um, so HE and immunohistochemical staining.2ml saline injection on the right tracheal lung tissue, repeatedly pumping two times, more than 80% recovery rate. The pumping to obtain lavage fluid(BALF) centrifugation(20℃,2000r/min centrifugation 10 min), supernatant collected, frozen standby home-70℃refrigerator.
     5. LTB4, SCF, TGFβ1 in serum:from lavage fluid by enzyme linked immunosorbent assay (ELISA) test. Specific methods to operate according to kit instructions.
     6. Lung tissue expression of GM-CSF and NGF detection:Using immunohistochemical method. Specific methods to operate according to kit instructions.
     7. Statistical analysis:SPSS 16.0 software used to analyze the data to x±s, that the number of each group were compared by F test and t test, P<0.05 as significantly different.
     Results:
     1. Animals generally
     Normal rats:rats lively, responsive, Maofa Jie Bai Guangze, appetite, no cough, shortness of breath, phlegm and other abnormal signs.
     Model group:rats activity slow, sometimes cough, sputum, shortness of breath, hair, withered and yellow, mouth and nose secretions increase, food intake and water intake more than normal group.
     Treated group:Rats in model group than shiny hair, a little cough, sputum.
     2. Cough Analysis
     Cough evoked with concentrated ammonia after 3 minutes of normal group(1.30±1.059) in cough frequency of the lowest, with the model group(3.00±1.054) and treatment group(2.30±0.949) were statistically significant differences (P<0.05);model group(3.00±1.054) and treatment group(2.3±0.949) difference was not statistically significant (P>0.05).
     3. Weight
     Normal feeding rats a week after the modeling, with modeling of conduct, model group compared with normal weight gain was significantly slowed. Before modeling (first week), the normal group (235.5±6.12) and model group (231.57±9.75) body weight difference was not statistically significant(P>0.05); experiment last week (7th week), the normal group (450.13±60.30), and model group(399.11±41.29) body weight was significantly (P<0.05).
     4. Pathologic
     Normal rats:trachea, bronchi, ciliated columnar epithelial cells arranged in neat rows cilia regularly arranged, and no significant infiltration of inflammatory cells.
     Model group:tracheal, bronchial goblet cell hyperplasia, glandular hypertrophy, hyperplasia, mucus secretion exuberant, rare cilia, the lumen filled with a large number of alveolar macrophages, neutrophils, eosinophils and mucus.
     Treatment group:tracheal, bronchial goblet cell hyperplasia, gland hypertrophy, hyperplasia than those of model group, model group, more than cilia in the lumen of a small amount of alveolar macrophages, neutrophils, eosinophils and mucus.
     5. LTB4, SCF, TGFβ1 levels of the measured results:
     LTB4 in BALF in rats of model group (163.944±83.478)>treatment group (156.326±56.388)>normal group (90.820±46.215); SCF model group(0.600±0.244)> treatment group(0.573±0.207)> normal group(0.368±0.116); TGFβ1 model group (391.714±250.639)> treatment group (380.898±312.992)> normal (89.428±61.380), the above indexes in control group and model group, control group and treatment group differences were statistically significant (P<0.05); model group and treatment group difference was not statistically significant(P>0.05).
     6.Rat lung tissue expression of GM-CSF and NGF test results:
     Inflammatory mediators in the lung tissue of the percentage of GM-CSF model group (65.710±10.163)> treatment group (51.820±12.505)> control group (46.250±7.440); NGF model group (75.710±13.986)> treatment group (61.820±11.677)> normal group (61.250±16.421), the model group and normal group, treatment group, the percentage of positive cells was significantly (P<0.05), staining signal strength model group(+++) and treatment group (+++) very; Although the normal group and treatment group the percentage of positive cells was no significant difference (P>0.05), but the signal intensity of the treatment group(+++)> stained normal (++).
     Conclusion:
     Model group LTB4, NGF, TGF-β1, GM-CSF, SCF level than the treatment group and normal group increases, suggesting that these inflammatory mediators are involved in the pathological process of lung deficiency and phlegm obstruction, but also indicate that lung deficiency and phlegm obstruction of the disease process is a chronic inflammatory process. Lungs phlegm may lower the expression of inflammatory mediators, through its anti-inflammatory effect on the prevention of chronic inflammation play a role. Treatment of Deficient Bufei phlegm phlegm obstruction may be one mechanism of action is through down the expression of inflammatory mediators achieved.
引文
[1]方永奇.痰证研究思路探讨[J].中国中医基础医学杂志,1996;12(2):20-23.
    [2]唐丽,曹克先.试从痰瘀论炎症[J].湖南中医杂志,1996;12(2):71.
    [3]何熹延.痰和痰症[M],江苏:江苏科学技术出版社,1977,4:61-63.
    [4]孟庆云.痰病原道说解[J].中医杂志,1996;37(4):200.
    [5]滕修胜.痰概念的演变及内涵[J].中国中医基础医学杂志,1997;3(3):49
    [6]潘桂娟.中医痰病研究与临床[M].北京:中国中医药出版社,1995;7(2):94
    [7]李小兵,林昌松,骆怡然,等.心脑血管痰证患者免疫功能特点初探[J].中国中医基础医学杂志,1997;3(6):50.
    [8]王平,田代志,张茂林,等.肺虚痰阻大鼠巨噬细胞功能和粘附分子CD11b的表达研究[J].中医药学刊,2004;22(7):1167-1195.
    [9]苏庆民.肥胖人痰湿型体质血脂、血糖、胰岛素及红细胞Na+-K+-ATP酶活性的检测及特征[J].中国中医基础医学杂志,1995;1(2):39.
    [10]王东生,袁肇凯.冠心病痰瘀病理临床研究[J].山东中医药大学学报,2003;27(2): 109.
    [11]方永奇,黄可儿.痰证的血液循环特征初探[J].湖北中医杂志,1992;(6):33.
    [12]孙建芝.痰浊证微观辨证指标的实验研究[J].河南中医,1996;16(2):21.
    [13]李宝莉,王廷慧,赵菊梅.206例痰浊中阻型眩晕的血液流变性和血脂血糖变化的观察[J].陕西中医,2003;23(8):692.
    [14]沈乃莹,阎征.HLA-DQAI等位基因与急性脑梗塞多种中医体质类型的相关性研究[J].中医杂志,2001;42(4):237.
    [15]王东生.冠心病痰瘀辨证与外周血单核细胞PDGF-A mRNA表达的关系[J].安徽中医学院学报,2003;22(2):14.
    [16]熊尚全,林如风.冠心病中医辨证与载脂蛋白关系的初步研究[J].福建中医学院学报,1994;4(3):7.
    [17]Mita H, Turikisawa N, Yamada T, et al. Quantification of leukotriene B4 glucuronide in humanurine[J]. Prostaglandins Other Lipid Mediat,2007 ;83(1):42-49.
    [18]Silbaugh SA, Stengel PW, Cockerham SL, et al. Aerosolized LTB4 duces delayed onset increasesin pulmonary gas trapping[J]. Prestaglandins Leukot Essent Fatty Acids,1996; 54:115-121.
    [19]Lee A, Lindo T, Jackson N, et al. Reversal of human neutrophil survival by leukotriene B4 receptor Blockade and 5-lipoxygenaso and 5-lipoxyge nasc activating protein inhibitors[J].Am J Respir Crit Care Med,1999; 160:2079-2085.
    [20]Crooks SW,Stockley RA. Molecules in focus LeukotricncB4 [J]. Int J Biochem Cell Biol,1998; 30:173-178.
    [21]Kannan S. Amplification of extracellular nuclcotide induced leukocyte (s) degranulation by contingent autocrine and paracrine mode of leuk-ot riene mediated chemokine receptor activation[J]. Med Hypotheses, 2002; 59:261-265.
    [22]Mccain RW, Holden EP, Blackwcll TR. Leukotriene B4 stimulates human polymorphnuclear leukocytes to synthesize and release interleukin-8 invitro[J]. Am J Respir Cell Mol Biol,1994; 10:651-657.
    [23]Toda A, Yokomizo T, Shimizu T. Leukotriene B4 receptors[J]. Prostaglandi ns Other Lipid Mediat,2002; 68:575-585.
    [24]Austen KF, Boyce JA. Mast cell lineage development and phenotypic regulation[J]. Leuk Res,2001; 25:511-518.
    [25]Kiener HP, Hofbauer R, Tohidast-Akrad M,et al. Tumor necrosis factor a promotes the expression of stem factor in synovial fibroblasts and their capacityto induce mast cell chemotaxis[J]. Arthritis Rheum,2000 ;43:164-174.
    [26]Oliveira SH, Lukacs NW. Stem cell factor:a hemopoietic cytokine with important targets in asthma[J]. Curr Drug Targets Inflsmm Allergy, 2003,21:313-318.
    [27]Lora JM, Al-Garawi A, Pickard MD, et al. FcepsilonRI-dependent gene expression in human m-ast cells is differentially controlled by T help ertype 2 cytokines[J].Allergy Clin Immunol,2003; 112:1119-1126.
    [28]Webster JC, Huber RM, Hanson RL,et al. Dexamethasone and tumor necrosis factor alpha act together to induce the celluar inhibitor of apoptos is 2 gene and prevent apoptosis in a variety of cell types. Endocr in olog,2002; 143:3866-3874.
    [29]Oliveira SH, Taub DD, Nagel J, et al. Stem cell factor induces eosinoph lactivation and degranulation imediator release and gene array analysis[J]. Blood,2002; 100:4291-4297.
    [30]Metcalf D, Mifsud S, Di Rago L. Stem cell factor can stimulate the form ation of eosinophi-ls by two types of murine eosinophil progenitor cells[J]. Stem Cells,2002; 20:460-469.
    [31]Da Silva CA, Frossard N. Potential role of stem eell factor in the asthma control by glu-cocorticoids[J]. Chem Immunol Allergy,2005; 87: 154-162.
    [32]Orlofsky A, W u Y, Prystowsky MB. Divergent regulation of the murlne C-C ehemokine C10 by Thl and Th2 cytokines.Cytokine,2000; 12:220-228.
    [33]Galli G, Chantry D, Annunziato F, et al. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo:preferent-ial association with the production of type 2cytokines[J]. Eur J Immunol,2000; 30:204-210.
    [34]Holtzman MJ, Morton JD, Shornick LP, et al. Immunity, inflammation, and remodeling in the airway epithelial barrier:epithelial-viral-allerg-icparadigm[J]. Physiol Rev,2002; 82:19-46.
    [35]Rook W. The TGF-β1 paradox in asthma. Trends Immunol,2001; 22(6):299.
    [36]Schuster N, Krieglstein K. Mechanism of TGF-3-mediated apoptosis[J]. Cell Tissue Res,2002; 307:1-14.
    [37]Lutz M, Knaus P. Integration of the TGF-bata pathway into the cellular signaling network. Cell signal,2002; 14(12):977-988.
    [38]ohno I, Nitta Y, Yamauchi K, et al. Transformong growth factorlo, (TGF-β1)gene expression by eosinophils in asthmatic airway inflammation [J].Am J Respir Cell Mol Biol,1996; 15(3):404-409.
    [39]Minshall EM, Leung DYM, Martin RJ, et al. Eosinophil assiociated TGF-β1, mRNA expression a-nd Airwalls Fibrosis in BronchialAsthma[J].Am J Respir Cell Mol Biol,1997; 17(3):326-333.
    [40]Wang ACC, Fu C. Fibronectin regulates the activation of THP-1 cells by TGF-β1[J]. Inflamm Res,2001; 50(2):142-148.
    [41]Freund V, Pons F, Joly V, et al. Upregulation of nerve growth factor expression by human airway smooth muscle cells in inflammatory conditions[J]. Eur Respir J,2002; 20(2):458-463.
    [42]Garaci E, Caroleo MC, Aloe L, et al. Nerve growth factor is an autocr ine factor essential for the survial of macrophages infected with HIV[J]. Proc Natl Acad Sci,U S A,1999; 96(24):14013-14018.
    [43]Barouch R, Kazimirsky G, Appel E, et al. Nerve growth factor regulates TNF-a production in mouse macrophages via MAP Kinase activation[J]. J Leukoc Biol,2001; 69(6):1019-1026.
    [44]Ricci A, Greco S, Mariotta S, et al. Neurtrophin receptor expression in alveolar macrophages, an immunocytochemical study[J].Growth Factor ,2000; 18(3):193-202.
    [45]Moalem G, Gdalyahu A, Shani Y, et al. Production of neurotrophins by activated T cells, implications for neuroprotective autoimmunity[J]. J Autoimmunity,2000; 15(3):331-345.
    [46]D'Onofrio M, de Grazia U, Morrone S,et al. Expression of neurotroph in receptorsin normol and malignant B lymphocytes [J]. Eur C ytokine Netw,2000; 11(2):283-291.
    [47]Bracci-Laudiero L, Aloe L, Banne P, et al.NGF modulates CGRP synthesis in human B-lymphocytes:a possible anti-inflammatory action of NGF? [J]. J Neuroimmunol,2002; 123(1-2):58-65.
    [48]Kobayashi H, Gleich GJ, Butterfield JH, et al. Human eosinophils prod uce neurotrophins and secrete nerve growth factor on immunologic simuli[J]. Blood,2002; 99(6):2214-2220.
    [49]Nassenstein C, Braun A, Nockher WA, et al. Neurotrophin effects on eosinophils in allergic inflammation[J]. Curr Allergy Asthma Rep,2005 ;5(3):204-211.
    [50]Quarcoo D, Schuhe Herhruggen, Lommatzsch M,et al.Nerve growth factor induces increasedairway inflammation via a neuropeptide dependent me chanism in a transgenic animal model of allergic airway inflammatio. Clin Exp Allergy,2004; 34(7):1146-1151.
    [51]Path G, Braun A,Meents N, et al. Augmentation of allergic Early phase reaction by nerve g-rowth factor. Am J Respir Crit Care Med,2002; 166 (6):818-826.
    [52]Tokuoka S, Takahashi Y, Masuda T, et al. Disruption of Antigen-induced airway inflammatio-nand airway hyper-responsiveness in low affinity neurotrophin receptorp 75 gen deficientmice. Br J Pharmacol, 2001; 134(7):1580-1586.
    [53]Piedimonte G. Contribution of neuroimmune mechanisms to airway inflam-mation and remodel-ing during and after respiratory, syncytial virus infection.Pediatr Infect Dis J,2003; 22(2 Suppl):66-74.
    [54]Auais A, Adkins B,Napchan G, et al. Immunomodulatory effects of sensory nerves during re-spiratory syneytial virus infection in rats .Am JPhysiol Lung Cell Mol Physiol,2003; 285(1):105-113.
    [55]Paterakis GS, Tsavaris N,Loukopoulos D.The effect of GM-CSF on reticu locytes, haemoglobin and haematocrit in patlent receiving chemotherap y for solid tumours[J]. Clin Lab Hematol,1996; 18(1):7-12.
    [56]Gasson JC. Molecular physiology of granulocyte-macrophage colony-sti mulating factor[J]. Blood,1991; 77:1131-1145.
    [57]Broudy VC, Kaushansky K, Harlan JM, et al.Interleukin-1 stimulates human endothelial cells to produce granulocyte-macrophage coliny syimulating factor and granulocyte colony-stimulating facyor[J].J Immunol,1987; 139:464-468.
    [58]Matsumoto S, Kobayashi T, Katoh M.Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesi-on develoment[J].Am J Pathol,1998 Jul; 153(1): 109-119.
    [59]Chizzolini C, Rezzonico R, De Luca C, et al. Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1(MMP-1)wh ile decreasing MMP-9 production by granulocyte-macrophage colony-sti mulating factor differentiated human monocytes[J]. J Immunol,2000 Jun 1;164(11):52-60.
    [60]Kay, A. B.et al.(1991)Messenger RNA expression of the cytokine gene clusteer, interleukin 3(IL-3), IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor, in allergen-induced latephase cutaneous reactions in atopic subjects. J. Exp. Med,2000; 173:775-778.
    [61]Williamson, D. J. et al. (1988)The detection and initial characterizatio-n of colony-stimulating factors in synovial fluid. Clin. Exp. Immunol, 2000; 72:67-73.
    [62]Agnholt J, Kelsen J, Brandsborg B, Jakobsen NO, Dahlerup JF. Increased production of granulocyte-macrophage colony-stimulating factor in Crohn's disease-A possible target for infliximab treatment. European Journal of Gastroenterology,2004; 116(7):649-655.
    [63]Fiorucci S, Mencarelli A, Renga B, Dlstrutti E, Morelli A,Croze E, Velick o S, Larsen B, Parkinson J. Critical of toll-like receptors in modulating GM-CSF activity in rodent models of colitis. Gastroentero-logy APR,2006;130(4, suppl.2):A108.
    [64]吴秀艳,秦爱东,王天芳,等.中药化痰方对肺虚痰阻大鼠白细胞粘附分子表达的影响[J].中国煤炭工业医学杂志,2006;9(8):871.
    [65]陈斯宁,徐贞,黄美杏.清肺化痰方对COPD急性加重期痰热郁肺证患者细胞因子的影响[J].云南中医中药杂志,2008;29(9):7.
    [66]王平,吴秀艳,张茂林,等.肺虚痰阻大鼠肺组织核因子-kB和环氧合酶-2mRNA的表达[J].中医药学刊,2004;22(7):1195.
    [67]王九林,姜惟,卞慧敏.肺虚痰阻病理模型的研制[J].中国中医基础医学杂志,1996:2(4):44.
    [68]陈小野.实用中医证候动物模型学[M].北京:北京医科大学中国协和医科大学联合出版社,1993;314.
    [69]沈自尹整理,中医虚证参考标准[J].中西医结合杂志,1986;6(10):598.
    [70]朱文峰.中医诊断学[M].上海:上海科技出版社,1995;147.
    [71]Al-Muhsen SZ, Shalovsky G, Olivenstein R, et al. The expression of stem cell factor and c-kit receptor in human asthmatic airways [J]. Cl-in Exp Allergy,2004; 34:911-916.
    [72]Kiener HP, Hofbauer R, Tohidast-Akrad M, et al. Tumor necrosis factor alpha promotes the expression of stem cell factor in synovial fibroblasts and their capacity to induce mast cell chemotaxis. Arthritis Rheum,2000; 43:164-174.
    [73]Attisano L, Wrana JL. Signal transduction by the TGF-beta super family[J]. Sci,2002; 296(5573):1646-1647.
    [74]Moustakas A, Pardali K, Gaal A, et al. Mechanisms of TGF-beta signal-ing in regulation of cell growth and differentiation [J]. Immunol Lett,2002; 82(12):85-91.
    [75]Shimada M, Minato M, Takado M, et al. Plasma concentrations of granul-ocyte colony-stimulating factor in neonates[J]. Acta Peadiatr,1996; 85(3):351-355.
    [76]Rand AT, Warringa LK, Paul TMK, et al. Modulation and induction of eosinophil chemotaxis by Granulocyte-Macrophage Colony-stimulating factor and interleukin-3[J]. Blood,1991; 77:2694.
    [77]Corrigan CL, Kay AB. CD4T-Lymphocyte activation in acute servere asthma[J], Am Rev Respir Dis.1990; 11 (3):970.
    [78]戴建,殷凯生,史莹,等.米奎莫特对哮喘小鼠TGF-β1及Smads蛋白的影响[J].实用临床医药杂志,2008;12(3):13.
    [79]李泽庚,张杰根,彭波,等.肺气虚证模型大鼠支气管灌洗液TNF-a和LTB4测定的意义[J].天津中医药杂志,2005;22(3):226.
    [80]张艳,邹丽萍,栾斌,等.糖皮质激素对哮喘大鼠肺神经生长因子表达的影响[J]. 实用儿科临床杂志,2007;22(9):685.
    [81]林晓亮,张建华.卡介苗干预对哮喘小鼠肺泡灌洗液干细胞因子、巨噬细胞集落刺激因子表达的影响[J].实用儿科临床杂志,2008;23(4):262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700