巨噬细胞清道夫受体在动脉粥样硬化形成早期的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在探讨巨噬细胞清道夫受体与脂质代谢的相互作用在As形成早期的作用机制。即(1)转化生长因子-β1(Transforming growth factor-β1, TGF-β1)对THP-1细胞由来巨噬细胞清道夫受体(Scavenge receptor, ScR)A和B(CD36)摄取氧化低密度脂蛋白(oxidized low density lipoprotein, ox-LDL)和ac-LDL(acetylated LDL, ac-LDL)功能和mRNA表达的影响;(2)地拉卓(Dilazep, DZ)对ScR-A和CD36mRNA表达以及对ScR-A摄取ac-LDL的影响。我们利用THP-1由来巨噬细胞培养,同位素标记,通过细胞摄取变性LDL及Northern bloting方法观察。我们发现(1)TGF-β1明显抑制ScR-A对ac-LDL的摄取以及CD36对ox-LDL的摄取;抑制ScR-A和CD36 mRNA的表达,且TGF-β1主要通过ScR-A发挥其抑制As的作用;(2)DZ明显抑制CD36mRNA的表达而对已表达完全的CD36mRNA并无影响,DZ可明显抑制巨噬细胞对ac-LDL的摄取(结合和降解),DZ对ScR-A mRNA表达亦具有明显的抑制作用。我们的结论是(1)TGF-β1通过ScR-A和CD36,但主要通过ScR-A发挥其抑制As的作用;(2)DZ通过抑制CD36和ScR-A mRNA表达对As形成过程尤其形成早期具有预防作用。
Objective: To clarify the mechanisms of interaction between macrophage scavenger receptor and lipid metabolism in the early stage of atherosclerosis formation. detailly, (1) The effect of transforming growth factor-β1 (TGF-β1) on THP-1 derived macrophage scavenger receptor (ScR) class A and B (ScR-B, CD36) uptaking oxidized low density lipoprotein (ox-LDL) and acetylated LDL (ac-LDL), meanwhile, the effect of TGF-β1 on ScR-A and CD36 mRNA expressions were anylyzed. (2) The effect of Dilazep (DZ) on ScR-A uptaking ac-LDL was calculated. At same time, the effect of DZ on ScR-A and CD36 mRNA expression was also cheked.
     Methods:Using macrophages derived monocytes and culture cells, to analyze macrophages uptaking of ac-LDL or ox-LDL, further more using Northern bloting method to check ScR-A and CD36 mRNA expression. Detaily (1) Influence of anti TGF-β1 antibody (Anti TGF-β1 Ab) on uptaking of ac-LDL or ox-LDL was measured respectively. Influence of Anti TGF-β1 Ab on the ScR-A and CD36 mRNA expressions in THP-1 derived macrophages was measured meanwhile, respectively. (2) The effect of DZ on uptaking of ac-LDL by ScR-A and ScR-A mRNA expression was measured (3) The effect of DZ on CD36 mRNA expression was measured.
     Results: (1) Compared with control group of (binding: 8.23μ?g·g-1±1.24 μg·g-1 protein, Association: 45.69 ?μg·g-1±6.92μg·g-1 protein, and degradation: 112.18 ?μg·g-1±20.15μg·g-1 protein), Anti TGF-β1 Ab increased 125I-ac-LDL binding (48.67 ?μg·g-1±6.52μg·g-1protein), Association (412.30μg·g-1±12.21μg·g-1 protein), and degradation (896.48 ?μg·g-1±32.74μg·g-1protein) significantly (P<0.01); Compared with control group (binding 78.56 ?μg·g-1±2.81μg·g-1protein, Association 123.94 ?μg·g-1±12.11μg·g-1 protein, and degradation: 345.38 ?μg·g-1±27.17μg·g-1 protein), Anti TGF-β1 Ab markedly increased 125I-ac-LDL binding 102.32 ?μg·g-1±3.11μg·g-1 protein), Association (412.94 ?μg·g-1±15.21μg·g-1 protein), and degradation (788.94 ?μg·g-1±31.16 μg·g-1 protein), respectively (P<0.01). The ScR-A and CD36 mRNA expressions of THP-1 derived macrophages were increased after treated by Anti TGF-β1 Ab compare with control group. The ratio of ScR-A mRNA of experimental group to control group was 1.7, the ratio of CD36 mRNA was 1.12. (2) Pretreatment of 50 and 100 mmol·L-1 of Dilazep, significantly decreased Ac-LDL binding and degradation with DZ concentration-dependent manner. The macrophage ScR mRNA expression was attenuated by treatment of DZ. (3) The CD36 mRNA expression was markedly attenuated by pretreatment of 50 and 100 mmol·L-1DZ but CD36 mRNA expression was not influenced by treatment of different concentration of DZ on macrophages differentiated from THP-1 monocytes.
     Conclusion: (1) TGF-β1 can influence the formation and development of As through inhibiting the expressions of ScR-A and CD36, and this depressive effect may be mainly depend on ScR-A. (2) DZ could inhibit ac-LDL uptake through attenuate macrophage ScR-A expression. DZ have preventive effect on atherosclerosis formation through down-regulation of CD36 expression. But CD36 expression was not influenced by treatment of DZ on macrophages differentiated from THP-1 monocytes. These results suggest that DZ have preventive effect in the early stage of atherosclerosis formation.
引文
[1] Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease [J]. N Engl J Med, 2004, 8 (2):89-92.
    [2] Shiraishi Y, Watanabe T, Suguro T, et al. Chronic urotensin II infusion enhances macrophage foam cell formation and atherosclerosis in apolipoprotein E-knockout mice[J]. J Hypertens, 2008, 26(10):1955-1965.
    [3] Kodama T, Freeman M, Rohrer L, Zabrecky, Matsudaira P, Krieger M.Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils[J]. Nature. 1990, 343:531-535.
    [4] Rohrer L, Freeman M, Kodama T, Penman M, Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II[J]. Nature. 1990, 343:570-572.
    [5] Ashkenas J, Penman M, Vasile E, Acton S, Freeman M, Krieger M. Structures and high and low affinity ligand binding properties of murinetype I and type II macrophage scavenger receptors[J]. J Lipid Res. 1993, 34:983-1000.
    [6] Matsumoto A, Naito M, Itakura H, Ikemoto S, Asaoka H, Hayakawa I, Kanamori H, Aburatani H, Takaku F, Suzuki H, et al. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions[J]. Proc Natl Acad Sci U S A. 1990, 87:9133-9137.
    [7] Tomokiyo R, Jinnouchi K, Honda M, Wada Y, Hanada N, Hiraoka T, SuzukiH, Kodama T, Takahashi K, Takeya M. Production, characterization, and interspecies reactivities of monoclonal antibodies against human class A macrophage scavenger receptors[J]. Atherosclerosis. 2002, 161:123-132.
    [8] Husemann J, Loike JD, Anankov R, et al. Scavenger receptors in neurobiology and neuropathology: their roleon microglia and other cells of the nervous system [J]. Glia, 2002, 40 (2): 195-205
    [9]孙永慧,杨永宗,清道夫受体A与动脉粥样硬化[J].心血管病学进展, 2005, 26(6),585-587
    [10] Kamada N, Kodama T, Suzuki H. et a1 . Macrophage scavenger receptor(SR-A I/II) deficiency reduced diet-induced atherosclerosis in C57BL/6J mice [J]. J Atheroscler Thromb, 2001, 8(1):1-6.
    [11] Horiuchi S,Sakamoto Y,Sakai M.Scavenger receptors for oxidized and glycated proteins [J]. Amino Acids, 2003, 25(3-4):283-92.
    [12] Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis[J]. Int J Obes Relat Metab Disord, 2003, 27 Suppl 3:S35-40.
    [13] Tsukamoto K, Kinoshita M, Kojima K, et al. Synergically increased expression of CD36, CLA-1 and CD68, but not of ScR-A and LOX-1, with the progression to foam cells from macrophages[J]. J Atheroscler Thromb, 2002, 9(1):57-64.
    [14] Yang YL, Lin SH, Chuang LY, et al. CD36 is a novel and potential anti-fibrogenic target in albumin-induced renal proximal tubule fibrosis[J]. J Cell Biochem, 2007, 101(3):735-744.
    [15] Kopprasch S, Pietzsch J, Westendorf T, et al. The pivotal role of scavenger receptor CD36 and phagocyte-derived oxidants in oxidized low density lipoprotein-induced adhesion to endothelial cells [J]. Int J Biochem Cell Biol, 2004, 36(3):460-471.
    [16] Rahaman SO, Lennon DJ, Febbraio M, et al. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation [J]. Cell Metabolism, 2006,4(3):211-221.
    [17] Leon ML, Zuckerman SH. Gamma interferon: a central mediator in atherosclerosis[J]. Inflamm Res, 2005, 54(10):395-411.
    [18] Kuliczkowska-Plaksej J, Bednarek-Tupikowska G. Scavenger receptor CD36: its expression, regulation, and role in the pathogenesis of atherosclerosis[J]. Postepy Hig Med Dosw(Online), 2006, 60:142-151.
    [19] Jedidi I, Couturier M, Therond P, et al. Cholesterylester hydroperoxides increase macrophage CD36 gene expression via PPAR alpha [J]. Biochem Biophys Res Commun, 2006,351(3):733-738.
    [20] Ishii T, Itoh K, Ruiz E, et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal [J]. Circ R es, 2004, 94(5):609-616.
    [21] Shashkin P, Dragulev B, Ley K. et a1.Macrophage differentiation to foam cells [J]. Curr Pharm Des, 2005, 11(23):3061-72.
    [22] Febbraio M, Podrez EA, Smith JD, et al. Targeted discruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice [J]. J Clin Invest, 2000, 105(8):1049-1056.
    [23] Peiser L, Gordon S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation [J]. Microbes Infect, 2001, 3(2):149-59.
    [24] Moore KJ, Kunjathoor VV, Koehn SL, e t al. Loss of receptor mediated lipid up take via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice[J]. J C lin Invest, 2005, 115(8):2192-2201.
    [25] Naito M, Suzuki H, Mori T, Matsumoto A, Kodama T, Takahashi K. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions [J]. Am J Pathol, 1992, 141:591-599.
    [26] Santiago-Garcia J, Kodama T, Pitas RE. The class A scavenger receptor binds to proteoglycans and mediates adhesion of macrophages to the extracellular matrix [J]. J Biol Chem, 2003, 278:6942-6946.
    [27] Zuckerman SH, Panousis C, Evans G. TGF-beta reduced binding of high-density lipoproteins in murine macrophages and macrophage-derived foam cells [J]. Atherosclerosis, 2001, 155(1):79-85.
    [28] Minami M, Kume N, Kataoka H, et al. Transforming growth factor-β1 increase the expression of lectin-like oxidized low-density lipoprotein receptor-1 [J]. Biochem Biophys Res Commun, 2000, 272(2):357-361.
    [29] Morawietz H, Duerrschmidt N, Niemann B, et al. Induction of the ox-LDL receptor LOX-1 by endothelia-1 in human endothelial cells [J]. Biochem Biophys Res Commun, 2001,284(4):961-965.
    [30] Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator- activated receptors and atherogenesis: regulators of gene expression in vascular cells[J]. Circ Res, 2004, 94(9):1168-1178.
    [31] Nicholson AC, Hajjar DP. CD36, oxidized LDL and PPAR gamma: pathological interactions in macrophages and atherosclerosis[J]. Vascul Pharmacol, 2004,41(425):139-146.
    [32]汪俊元,王安才.他汀类药物对血管重构的干预机制[J].心脏杂志, 2006,18(3):356-358.
    [33]付文波,丁世芳.他汀类药物对高血压病心血管重建作用的研究现状[J].心脏杂志, 2006,18(5):588-590.
    [34] Han J, Zhou X, Yokoyama T, et a l. Pitavastatin down regulates expression of the macrophage type B scavenger receptor, CD36[J]. Circulation, 2004, 109(6):790-796.
    [35] Ruiz Velasco N, Dominguez A, Vega MA. Statins up regulate CD36 expression in human monocytes, an effect strengthened when combined with PPAR gamma ligands Putative contribution of Rho GTPases in statin induced CD36 expression [J]. Biochem Pharmacol, 2004,67(2):303-313.
    [36] L laverias G, Lacasa D,V inals M, et al. Reduction of intracellular cholesterol accumulation in THP-1 macrophages by a combination of rosiglitazone and atorvastatin[J]. Biochem Pharmacol, 2004,68(1):155-163.
    [37] Ozer NK, Negis Y, Aytan N, et al. Vitamin E inhibits CD36 scavenger receptor expression in hypercholesterolemic rabbits [J]. Atherosclerosis, 2006, 184(1):15-20.
    [38] Takeda N, Manabe I, Shindo T, et al. Synthetic retinoid Am 80 reduces scavenger receptor expression and atherosclerosis in mice by inhibiting IL-6[J]. Atherioscler Thromb Vasc Biol, 2006, 26(5):1177- 1183.
    [39] Zhou H. Dilazep and dipyridamole inhibit tissue factor expression on monocytes induced by IgG from patients with antiphospholipid syndrome [J]. Acta Pharmacol Sin. 2004,25:1366-1371.
    [40] Sonoki K, Iwase M, Iino K, et al. Dilazep and fenofibric acid inhibit MCP-1 mRNA expression in glycoxidized LDL-stimulated human endothelial cells [J]. Eur J Pharmacol. 2003, 15;475:139-147.
    [41] Shrestha B, Hidai C, Ikeda H, et al. Endothelin-1 gene expression in endothelial cells is potently inhibited by a vasodilator, dilazep [J]. Hypertens Res. 2004,27:409-415
    [42] Buono C, Li Y, Waldo SW, et al. Liver X receptors inhibit human monocyte-derived macrophage foam cell formation by inhibiting fluid-phase pinocytosis of LDL[J]. J Lipid Res, 2007,48(11):2411-2418.
    [43]刘旭光,安君,所剑,等.地拉卓对THP-1由来巨噬细胞清道夫受体-B(CD36)mRNA表达的影响,中国老年学杂志, 2009; 29(4): 415-416.
    [44]刘旭光,安君,所剑,等.地拉卓对人类单核细胞株由来巨噬细胞摄取乙酰化低密度脂蛋白的影响,中国临床药理学杂志,2009;25 (1): 48-50.
    [45]刘旭光,安君,所剑,等.TGF-β1对巨噬细胞清道夫受体A和B(CD36)功能的影响,吉林大学学报(医学版), 2009;35(2): 284- 287.
    [46] Napolitano M, De Pascale C, Wheeler-Jones C, et al. Effects of lycopene on the induction of foam cell formation by modified LDL[J]. Am J PhysiolEndocrinol Metab, 2007, 293(6):E1820-E1827.
    [47] Bancells C, Benítez S, Villegas S, et al. Novel phospholipolytic activities Associated with electronegative low-density lipoprotein are involved in increased self-aggregation [J]. Biochemistry, 2008, 47(31): 8186-8194.
    [48] Posokhova EN, Khoshchenko OM, Chasovskikh MI, et al. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors[J]. Biochemistry (Mosc), 2008, 73(3):296-304.
    [49] Tsukamoto K, Kinoshita M, Kojima K, et al. Synergically increased expression of CD36, CLA-1 and CD68, but not of ScR-A and LOX-1, with the progression to foam cells from macrophages[J]. J Atheroscler Thromb, 2002, 9(1):57-64.
    [50]安君,阎德民,谷春久.脂蛋白(a)对巨噬细胞清道夫-A表达的影响[J].中华心血管病杂志, 2001, 29(9): 553-556.
    [51] Baccante G, Mincione G, Di Marcantonio MC, et al. Pravastatin up-regulates transforming growth factor-beta1 in THP-1 human macrophages: effect on scavenger receptor class A expression [J]. Biochem Biophys Res Commun, 2004,314(3):704-710.
    [52] Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesteromia [J]. J Biol Chem, 1974,249:5153-5162.
    [53]安君,阎德民,崔英玉,等. TGF-β1对巨噬细胞清道夫-A表达的影响.中华老年心脑血管病杂志[J]. 2001,3:257-259.
    [54] Blobe GC, William P. Schiemann, Harvey F. Lodish. Role of Transforming Growth Factorβin Human Disease [J]. N Engl J Med. 2000, 342:1350-1358.
    [55] Massague J, Chen YG. Controlling TGFβsignaling [J]. Gene Dev. 2000, 14:627-644.
    [56] Zimmerman SD, Thomas DP, Velleman SG, et al. Time course of collagen and decorin changes in rat cardiac and skeletal muscle post-MI [J]. Am J Physiol Heart Cire Physiol. 2001, 281:H1816-H1822.
    [57] Zhu HJ, Burgess AW. Regulation of transforming growth factor-βsignaling [J]. Mol Cell Biol Res Comm. 2001, 4:321-330.
    [58] Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-βis inhibited in transgenic apolipoprotein(a) mice [J]. Nature. 1994, 370:460-462.
    [59] Alex Bobik, PhD; Alex Agrotis, PhD; Peter Kanellakis, BScDistinct Patterns of Transforming Growth Factor-βIsoform and Receptor Expression in Human Atherosclerotic Lesions [J]. Circulation, 1999; 99:2883-2891.
    [60] Ross R. Atheroslerosis: an inflammatory disease. N Engl J Med, 1999, 340:115-126.
    [61] Carmen A. Argmann; Caroline H. Van Den Diepstraten Transforming Growth Factor-β1 Inhibits Macrophage Cholesteryl Ester Accumulation Induced by Native and Oxidized VLDL Remnants [J]. Arterioscler ThrombVasc Biol, 2001, 21:2011.
    [62] Grainger DJ, Mosedale DE, Metcalfe JC, Metcalfe JC, Bottinger EP. Dietary fat and reduced levels of TGF beta 1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions [J]. J Cell Sci, 1994, 370:460-462.
    [63] HO-JIN PARK JONAS B. GALPER. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors up-regulate transforming growth factor-βsignaling in cultured heart cells via inhibition of geranylgeranylation of RhoA GTPase. Proc Natl Acad Sci USA, 1999, 96: 11525–11530.
    [64] Holweq CT, Baan CC, Niesters HC, eL al. TGF-beta1 gene polymorphisms in patients with end-stage heart failure [J]. J Heart Lung Transplant, 2001, 20: 979-984.
    [65] Bobik A, Agrotis A, Kanellakis P. Distinct patterns of transforming growth factor-βisoform and receptor expression in human atherosclerotic lesions: colocalization implicates TGF-βin fibrofatty lesion development [J]. Circulation, 1999, 99: 2 883-891.
    [66] Lutgens E, Cleutjens KB, Heeneman S. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype [J]. Proc Natl Acad Sci USA, 2000, 97: 7 464-469.
    [67] Grainger, DJ. The serum concentration of active transforming growth factor-βis severely depressed in advanced atherosclerosis [J]. Nat Med, 1995, 1:74-79.
    [68] McCaffrey, TA. Genomic instability in the typeⅡTGF-β1 receptor gene inatherosclerotic and restenotic vascular cells [J]. J Clin Invest, 1997, 100: 2 182-188.
    [69] Tanabe S, Tamaki T, Wada Y, et al. Cytoprotective effect of dilazep on hydrogen peroxide perturbed vascular endothelial cells [J].Southeast Asian J Trop Med Public Health, 1992, 23:120.
    [70] Deguchi H, Tekeya H, Wada H, et al. Dilazep, an antiplatelet agent, inhibits tissue factor expression in endothelial cells and monocytes [J]. Blood, 1997, 90:2345.
    [71] Kawabata M, Haneda M, Wang T, et al. Effects of a nucleoside transporter inhibitor, dilazep, on renal microcirculation in rats[J]. Hypertens Res, 2002, 25:615.
    [72]路亚枫,翟艳荃,胡大一.冠心病患者血浆组织因子抗凝血酶复合物水平的变化及其临床意义[J].中华老年医学杂志,2005,24: 269-271.
    [73] James XR, Joan WB, Mark BT, et al. Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol, 2002, 22:1617
    [74] Dwarakanath RS, Sahar S, Reddy MA, et al. Regulation of monocyte chemoattractant protein-1 by the oxidized lipid, 13-hydroperoxyoctadecadienoic acid, in vascular smooth muscle cells via nuclear factor-kappa B (NF-kappa B). J Mol Cell Cardiol, 2004,36(4): 585
    [75] Ortego M, Gomez-Hernandez A, Vidal C, et al. HMG-CoA reductase inhibitors reduce I kappa B kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol.2005; 45(5): 468
    [76] Ikeda U, Matsui K, Murakami Y, et al. Monocyte chemoattractant protein-1 and coronary artery disease. Clin Cardiol.2002; 25:143
    [77] Karasek D, Vaverkova H, Halenka M, et al. Soluble cell adhesion molecules s-VCAM-1 and s-ICAM-1 in subjects with familial combined hyperlipidemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005; 149(1):101
    [78] Doo YC, Han SJ, Park WJ, et al. Associations between C-reactive protein and circulating cell adhesion molecules in patients with unstable angina undergoing coronary clinical implication. Clin Cardiol. 2005; 28(1):47
    [79] Sakai A, Kume N, Nishi E, et al. P selectin and vascular cell adhesion molecule1 are focal lyexpressed in aortas of hypercholesterol emic rabbits before intimal accumulation of macrophagesand T lymphocytes[J]. Arterioscler Thromb Vasc Biol, 1997; 17(2):310
    [80] Guray U, Erbay AR, Guray Y, et al. Levels of soluble adhesion molecules in various clinical presentations of coronary atherosclerosis [J]. Int J Cardiol.2004; 96(2):235
    [81] Vogel RA. Goronary risk factors, endothelial function and atherosclersis:a review[J]. Clin Cardiol 1997; 20(5):426-32.
    [82] Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s [J]. Nature 1993; 362:801.
    [83] Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules [J].Blood 1994; 84:2068.
    [84] Cotran RS. New roles for the endothelium in inflammation and immunity [J]. Am J Pathol 1987; 129:407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700