2型糖尿病亚临床动脉粥样硬化与CD36、SRB1基因的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:亚临床动脉粥样硬化(subclinical atherosclerosis)是动脉粥样硬化(atherosclerosis AS)的早期阶段,指患者无临床症状,但彩色B超证实颈总动脉、股动脉或髂总动脉内中膜厚度≥1.0mm和/或有动脉粥样硬化斑块出现。2型糖尿病(T2DM)多因素干预的主要目的之一是预防亚临床AS的发生发展。B类清道夫受体(scavenger receptor class B,Scarb,SRB)是LDL-c、HDL-c代谢中的重要受体蛋白,包括CD36和B类清道夫受体BⅠ(scavenger receptorclass B typeⅠ,Scarb1,SRB1)两种。CD36抗原是一种细胞膜糖蛋白,存在多种配体(如氧化的和乙酰化的LDL-c等),参与包括脂质代谢和动脉粥样硬化在内的许多生理和病理过程。SRB1是CD36蛋白家族成员,与CD36共享30%的同源序列,为脂蛋白受体中唯一能真正介导细胞与HDL-c作用的膜受体。
     研究目的:对新诊2型糖尿病进行4年的多因素干预,了解代谢控制状况及亚临床AS的发生情况;通过检测CD36、SRB1基因多态性、外周血单核细胞表面CD36表达情况,分析它们与T2DM患者代谢水平及亚临床AS进程的关系。
     第一部分新诊2型糖尿病亚临床动脉粥样硬化的前瞻性多因素干预研究
     目的探讨不同方案干预下新诊断2型糖尿病(T2DM)患者的代谢指标控制及亚临床动脉粥样硬化(AS)发生和发展的情况。
     方法采用前瞻性开放研究,将170例(35-70岁)病程1年以内、无AS的新诊T2DM患者按随机数字表法分为四组,分别为:A组(强化降糖+降压治疗)、B组(强化降糖+降压+调脂治疗)、C组(在B组基础上加服维生素E0.2g/天)及D组(在B组基础上加服复方丹参滴丸30丸/天)。共观察4年,每月随访一次,定期复查空腹血糖(FBS)、餐后2小时血糖(PBS)、糖化血红蛋白(HbAlc)、血脂、收缩压(SBP)、舒张压(DBP)、体重指数(BMI)、腰臀比(WHR)和血管彩超,了解干预4年的代谢控制情况及其颈总动脉(CCA)、股动脉(FA)内中膜厚度(IMT)和/或AS斑块发生的进展。
     结果①170例患者中,实际完成4年多因素干预共149例,失访21例(脱失率12.4%)。②干预4年结束时,149例患者HbAlc、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白(LDL-c)、SBP、DBP水平均较基线显著下降(p<0.01);WHR、HbAlc、TG、TC、LDL-c、SBP、DBP达标率分别为29.5%、54.4%、74.5%、71.1%、73.8%、98.0%和98.7%,较基线显著提高(p<0.01);③共有88例发生亚临床AS,发生率达59.1%;A、B、C、D四组患者亚临床AS发生率分别为69.4%、53.8%、62.2%、51.4%,各组间比较p>0.05;④A、B、C、D四组CCA-IMT、FA-IMT均较基线增加,各组与基线比较p均<0.01;B、C、D三组干预4年后低密度脂蛋白(LDL-c)、胆固醇(TC)显著低于A组(p分别为<0.01、<0.05)。
     结论多因素强化干预尽管可使T2DM患者代谢状况得到很大改善,WHR、HbAlc、TG、TC、LDL-c、SBP、DBP达标率显著提高,但不能完全阻止大血管病变的发生,随着病程的增加,亚临床AS呈进展趋势。
     第二部分清道夫受体B(CD36、及SRB1)基因多态性与2型糖尿病及其亚临床动脉粥样硬化进程的关系
     目的探讨清道夫受体B基因(CD36及SRB1基因)多态性与多因素干预下T2DM亚临床AS发生的关系。
     方法采用PCR-RFLP方法检测470例湖南地区汉族T2DM患者及220例无糖尿病对照组CD36(CD36-rs1984112、CD36-T620C位点)及SRB1-rs5888基因多态性,比较它们基因型及等位基因频率的差异。采用logistic回归模型分析CD36-1984112及SRB1-rs5888基因型及代谢指标对亚临床AS的影响,预测多因素干预下发生亚临床AS的影响因素。
     结果①T2DM患者与健康受试者CD36(CD36-rs1984112位点、CD36-T620C位点)基因型及等位基因频率比较均无显著性差异(p>0.05);SRB1基因型及等位基因频率在T2DM与对照组间比较差异有显著性(p<0.01),T2DM患者携带SRB1-rs5888C/C基因型的频率低于健康人群(46.6%vs 63.2%,p<0.01),携带SRB1-C/T的频率高于健康人群(43.4%vs 30.5%,p<0.01),T2DM患者携带等位基因T的频率高于健康人群(31.7%vs 24.5%,p<0.01);②将所有携带CD36-rs1984112A/A和/或SRB1-rs5888T/T的单倍体型1、2、3、6、9合并为一类(单倍体型A),其他的单倍体型4、5、7、8合并为一类(单倍体型B),两者比较单倍体型A亚临床AS的发病率较B为高(65.4%vs 52.1%,p=0.133);③以亚临床AS是否发生(0、1)为因变量做logistic回归分析显示,多因素干预下影响亚临床AS发生的因素有3个:年龄(OR值1.103)、LDL-c(OR值2.552)、吸烟(OR值2.242),CD36与SRB1基因型及其交互作用、其他代谢指标均未进入logistic回归模型。
     结论①SRB1-rs5888基因型及等位基因频率在T2DM患者与健康受试者中分布不同,T2DM患者携带SRB1等位基因T的频率高于健康人群。②多因素干预下,除年龄外,LDL-c和吸烟是亚临床AS发生的主要危险因素,CD36及SRB1基因多态性可能与亚临床AS进程无关。
     第三部分2型糖尿病单核细胞表面清道夫受体CD36的表达及其影响因素的分析
     目的了解2型糖尿病患者外周血单核细胞表面CD36的表达情况,探讨影响CD36表达的有关因素及CD36表达与亚临床AS的关系。
     方法采用PCR-RFLP方法检测102例湖南地区汉族T2DM患者和8例健康受试者CD36-1984112及SRB1-rs5888基因多态性,采用密度梯度离心法分离T2DM患者和健康受试者外周血单个核细胞,流式细胞仪检测单核细胞表面CD36蛋白表达荧光强度,比较T2DM无AS组、T2DM亚临床AS组及健康对照组CD36的表达。多元线性回归分析CD36表达的影响因素。Logistic回归分析多因素干预下亚临床AS与CD36表达的关系。
     结果T2DM亚临床AS组外周血单核细胞CD36的平均荧光强度(MFI)高于T2DM无AS组(1382.23±658.69 vs 1173.02±339.71道数,p=0.047)。CD36高表达组SBP较低表达组为低,p=0.020,校正年龄后,p=0.010。多元线性回归分析显示,影响T2DM患者CD36表达的因素有:年龄(p=0.005)、性别(p=0.021)、SBP(p=0.027),标化偏回归系数分别为0.28、0.31、-0.21;男、女性T2DM患者分别做多元线性回归分析,影响男性CD36表达的因素为年龄(p=0.002);影响女性CD36表达的因素为DBP(p=0.001)。以是否存在亚临床AS(0、1)为因变量,以CD36单核细胞表面表达的荧光强度等指标作为自变量做logistic回归,留在方程的因素是年龄(p=0.004)、LDL-c(p=0.095),CD36-MFI未进入方程。
     结论①T2DM亚临床AS组外周血单核细胞表面CD36表达较无AS组高。②年龄、性别、SBP是CD36表达的影响因素,增龄、男性、低的SBP可使CD36表达增加;影响男性CD36表达的主要因素是年龄;影响女性CD36表达的因素主要为DBP,DBP越低,CD36的表达越高。③未发现单核细胞表面CD36的表达与亚临床AS的发生有关。
Background Subclinical atherosclerosis specifies the early stage of atherosclerosis (AS),when the presence of intima-medial thickness (IMT≥1.0mm) of common carotid artery (CCA),femoral artery (FA) or common iliac artery (CIA) and/or atherosclerotic plaque was found by color ultrasound in the absence of clinical symptoms. One of the primary purposes of multi-approach intervention on Type 2 Diabetes (T2DM) is to block the progression of subclinical atherosclerosis among these patients. Scavenger receptor class B (Scarb,SR-B) is a group of important receptor protein family, including CD36 and scavenger receptor class B type I (Scarbl,SRBl). CD36 antigen is a cellular membrane glucoprotein, binding to many ligands such as oxidized and acetylizad low density lipoprotein-cholesterol (ox-LDL-c and Ac-LDL-c), participating various physiology and pathology processes, such as lipid metabolism and AS. SRB1 is one member of CD36 protein family, sharing 30% homologisation with the CD36 sequence. SRB1 is the only lipoprotein receptor on membrane that mediates the cellular binding to high density lipoprotein( HDL).
     Objective To investigate the progress of subclinical atherosclerosis in type 2 diabetes patients under multi-approach intervention and its association with polymorphisms of Scavenger receptor class B genes. Four-year multi-approach intervention was carried out in a group of newly diagnosed type 2 diabetes (T2DM) patients. The metabolic status and incidence of subclinical atherosclerosis were monitored periodically. Together with genotyping of CD36 (CD36-rs1984112 and CD36-T620C) and SRBl-rs5888 polymorphisms and phenotyping of CD36 expression by flow cytometry in peripheral blood monouclear cells (PBMC),the associations among CD36/SRB1 gene polymorphisms, metabolic status and the progression of subclinical atherosclerosis were analized.
     PartⅠThe progress of subclinical atherosclerosis in newly diagnosed type 2 diabetes patients under multi-approach intervention - a prospective clinical observation
     Objective To investigate the metabolic status and the incidence/progression of subclinical atherosclerosis (AS) in newly diagnosed type 2 diabetes (T2DM) patients under multi-approach intervention.
     Methods In this prospective case-controlled study, one hundred and seventy newly diagnosed type 2 diabetes patients without AS (35~70 years-old, duration≤1 year) were recruited and allocated into 4 groups (random digits table): group A (intensified control of blood glucose and blood pressure levels), group B (intensified control of blood glucose, blood pressure and blood lipid levels), group C (vitamin E was prescribed on the base of Group-B regimen), group D (Compound Danshen Pill was prescribed on the base of Group-B regimen). All patients were followed-up once a month in a 4-year period. Fasting blood sugar (FBS), postprandial blood sugar (PBS), HbA1c (Glycosylated hemoglobin), lipid profile, SBP (systolic blood pressure), DBP (diastolic blood pressure), BMI (body mass index), WHR (waist-to-hip ratio) and the intima-media thickness (IMT) or AS plaques of common carotid artery (CCA) and femoral artery (FA) were evaluated regularly.
     Results 149 of the 170 cases complied the intervention protocol in the four-year follow up (the losed rate is 12.4%), thus were taken into the final analysis. The levels of HbA1c, TG, TC, LDL-c, SBP and DBP at the end of intervention were significantly lower than the baseline (p<0.01). Also, the normalization rate of WHR, HbA1c, TG, TC, LDL-c, SBP and DBP was 29.5%、54.4%、74.5%、71.1%、73.8%、98.0% and 98.7% respectively, which was significantly higher than that at the beginning of intervention (p<0.01). Subclinical AS was found in 88 patients (59.1 %) by the end of the fourth year. The levels of CCA-IMT and FA-IMT were significantly higher than the baseline levels in group A, B, C and D (p<0.01). The incidence rate of subclinical AS was 69.4%, 53.8%, 62.2% and 51.4% in the four group, respectively (p>0.05). In group B, C and D, serum LDL-c and TC levels were significantly lower than those in group A(p<0.01,p<0.05).
     Conclusions Multi-approach intervention significantly improved the metabolic status of T2DM patients in terms of both levels and normalization-rate of WHR,HbA1c,TG,TC,LDL-c,SBP and DBP. However, the present intervention protocol did not stop the progression of subclinical AS in the 4-year observation.
     Part II The association between polymorphisms of Scavenger receptor class B genes and progress of Subclinical Atherosclerosis in Type 2 Diabetic patients
     Objective To investigate the role of polymorphisms of Scavenger receptor class B genes (CD36 and SRB1 gene) in affecting the progress of Subclinical Atherosclerosis (AS) in newly diagnosed type 2 diabetics under multi-approach intervention.
     Methods 470 cases of T2DM and 220 non diabetic controls from Hunan, southern China were typed for CD36 (CD36-rs1984112, CD36-T620C) and SRBl-rs5888 polymorphisms using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) method. The genotypes and allele frequencies were compared between cases and controls. Logistic regression model was used to analysis the risk factors contributing to the progress of subclinical atherosclerosis (AS) in newly diagnosed type 2 diabetics under multi-approach intervention.
     Results The genotypes and allele frequencies of CD36-rsl984112 in T2DM were not significantly different between cases and controls (p>0.05), either did CD36-T620C (p>0.05). Yet the genotype and allele frequencies of SRBl-rs5888 were found significantly different between T2DM and controls (p<0.01): the frequency of SRB1-rs5888C/C genotype in T2DM was lower than that in controls (46.6% vs. 63.2%, p<0.01), the frequency of SRBl-rs5888C/T genotype in T2DM was higher than that in controls (43.4% vs. 30.5%, p<0.01), SRB1-rs5888 T allele frequency in T2DM was higher than that in controls (31.7% vs. 24.5%, p<0.01). When haplotypes carrying CD36-rs1984112 A/A and /or SRB1-rs5888T/T were combined to haplotype A, and other haplotypes were classified into haplotype B, the incidence of subclinical AS was 65.4% for haplotype A and 52.1% for haplotype B respectively (p=0.133). Logistic regression analysis revealed that the risk factors contributing to subclinical AS were age (OR = 1.103), LDL-c(OR = 2.552) and smoke (OR =2.242), while the genotypes of CD36, SRB1, and the interaction term of both were not significant factors.
     Conclusions SRB1-rs5888 T allele might increase risk of T2DM in Han population in southern China. Age, low-density lipoprotein cholesterol and cigarette smoking were the major determinants of the onset of subclinical AS in T2DM patients.
     Part III The study of CD36 expression of monocyte surface in T2DM and effecting factor of CD36 expression
     Objective To investigate associated factors affecting the expression of CD36 on the surface of peripheral blood monouclear cells (PBMC) in T2DM, and the association between CD36 expression and progress of subclinical atherosclerosis.
     Methods 102 cases of T2DM and 8 non diabetes controls from Hunan, southern China were recruited in this study. The fluorescence intensity of CD36 on the surface of PBMC was analyzed by flow cytometry.CD36-rsl984112 and SRBl-rs5888 polymorphisms were typed by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) method. Multiple linear regression was used to evaluate the relevant factors contributing to CD36 expression. Logistic regression model was used to analysis the relationship between CD36 expression and subclinical atherosclerosis in type 2 diabetics under multifactorial intervention.
     Results The mean florescence intensity (MFI) of CD36 in T2DM with subclinical atherosclerosis was higher than that in the T2DM without atherosclerosis (1382.23±658.69 vs. 1173.02±339.71, p=0.047). SBP (systolic blood pressure) was significantly lower in subjects with high-level of CD36 expression than that in the low-expression subjects (p=0.020). Linear regression analysis showed that factor affecting the CD36 expression were: age (p=0.005), gender (p=0.021), SBP (p=0.027), standardized coefficients Beta was 0.28, 0.31 and -0.21, respectively. In man, age contributes to the CD36 expression levels in males (p=0.002), while in females DBP contributes to the CD36 expression levels (p=0.001). Logistic regression analysis revealed that age (p=0.004) and LDL-c (p=0.095) were remained in the equation while CD36-MFI wasn't contributed to the onset of AS.
     Conclusions CD36 expression level was higher in T2DM with subclinical atherosclerosis in contrast with T2DM without atherosclerosis. Age, gender and SBP affect CD36 expression: CD36 expression on PBMC surface is higher in aging males with lower SBP; Age and DBP are factors affecting the CD36 expression levels in males and female, respectively. CD36 expression is not associated with the progress of subclinical atherosclerosis.
引文
[1] American Diabetes Association. Screening for type 2 diabetes.Diabetes Care 2000; 23 Suppl l:S20-S23.
    [2] Chambless LE, Folsom AR, Davis V et al. Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987-1998. Am J Epidemiol 2002; 155(1):38-47.
    [3] Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macro vascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321(7258):405-412.
    
    [4] Andersson DK, Svardsudd K. Long-term glycemic control relates to mortality in type II diabetes. Diabetes Care 1995; 18(12): 1534-1543.
    
    [5] Abu-Lebdeh HS, Hodge DO, Nguyen TT. Predictors of macrovascular disease in patients with type 2 diabetes mellitus. Mayo Clin Proc 2001; 76(7):707-712.
    
    [6] Tominaga M, Eguchi H, Manaka H et al. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999; 22(6):920-924.
    
    [7] Turner RC, Millns H, Neil HA et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316(7134):823-828.
    
    [8] Pyorala K, Pedersen TR, Kjekshus J et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 1997; 20(4):614-620.
    
    [9] Haffner SM. The Scandinavian Simvastatin Survival Study (4S) subgroup analysis of diabetic subjects: implications for the prevention of coronary heart disease. Diabetes Care 1997; 20(4):469-471.
    
    [10] Girman CJ, Rhodes T, Mercuri M et al. The metabolic syndrome and risk of major coronary events in the Scandinavian Simvastatin Survival Study (4S) and the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Am J Cardiol 2004; 93(2): 136-141.
    
    [11] Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study Lancet 2001; 357(9260):905-910.
    
    [12] Vakkilainen J, Steiner G, Ansquer JC et al. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation 2003; 107(13):1733-1737.
    
    [13] Steiner G. Lipid intervention trials in diabetes. Diabetes Care 2000; 23 Suppl 2:B49-B53.
    
    [14] Steiner G. The Diabetes Atherosclerosis Intervention Study (DAIS): a study conducted in cooperation with the World Health Organization. The DAIS Project Group. Diabetologia 1996; 39(12):1655-1661.
    
    [15] Hobbs FD. Type-2 diabetes mellitus related cardiovascular risk: new options for interventions to reduce risk and treatment goals. Atheroscler Suppl 2006; 7(4):29-32.
    
    [16] Leiter LA. Diabetic dyslipidaemia: effective management reduces cardiovascular risk. Atheroscler Suppl 2005; 6(2):37-43.
    
    [17] Colhoun HM, Betteridge DJ, Durrington PN et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364(9435):685-696.
    
    [18] Steiner G. A new perspective in the treatment of dyslipidemia: can fenofibrate offer unique benefits in the treatment of type 2 diabetes mellitus? Treat Endocrinol 2005; 4(5):311-317.
    
    [19] Santoso T. Prevention of cardiovascular disease in diabetes mellitus: by stressing the CARDS study. Acta Med Indones 2006; 38(2):97-102.
    
    [20] Steiner G. Lipid intervention trials in diabetes. Diabetes Care 2000; 23 Suppl 2:B49-B53.
    
    [21] Ma X, Bacci S, Mlynarski W et al. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet 2004; 13(19):2197-2205.
    
    [22] Yasunaga T, Koga S, Ikeda S et al. Cluster differentiation-36 deficiency type 1 and acute coronary syndrome without major cardiovascular risk factors: case report. Circ J 2007; 71(1): 166-169.
    
    [23] Acton S, Osgood D, Donoghue M et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol 1999; 19(7): 1734-1743.
    
    [24] Acton SL, Kozarsky KF, Rigotti A. The HDL receptor SR-BI: a new therapeutic target for atherosclerosis? Mol Med Today 1999; 5:518-524.
    [25]Osgood D,Corella D,Demissie S et al.Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes:the framingham study.J Clin Endocrinol Metab 2003;88(6):2869-2879.
    [26]Koumanis DJ,Christou NV,Wang XL,Gilfix BM.Pilot study examining the frequency of several gene polymorphisms in a morbidly obese population.Obes Surg 2002;12(6):759-764.
    [1] Cuspidi C, Meani S, Valerio C et al. Carotid atherosclerosis and cardiovascular risk stratification: role and cost-effectiveness of echo-Doppler examination in untreated essential hypertensives. Blood Press 2006; 15(6): 333-339.
    
    [2] Yamasaki Y, Kodama M, Nishizawa H et al. Carotid intima-media thickness in Japanese type 2 diabetic subjects: predictors of progression and relationship with incident coronary heart disease. Diabetes Care 2000; 23(9): 1310-1315.
    
    [3] Matsumoto K, Sera Y, Nakamura H et al. Correlation between common carotid arterial wall thickness and ischemic stroke in patients with type 2 diabetes mellitus. Metabolism 2002; 51(2): 244-247.
    
    [4] Fernandes VR, Polak JF, Edvardsen T et al. Subclinical atherosclerosis and incipient regional myocardial dysfunction in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2006; 47(12): 2420-2428.
    
    [5] Burke GL, Evans GW, Riley WA, Sharrett AR et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 1995; 26(3): 386-391.
    
    [6] Howard G, Burke GL, Evans GW et al. Relations of intimal-medial thickness among sites within the carotid artery as evaluated by B-mode ultrasound. ARIC Investigators. Atherosclerosis Risk in Communities. Stroke 1994; 25(8): 1581-1587.
    
    [7] Chambless LE, Heiss G, Folsom AR et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. Am J Epidemiol 1997; 146(6): 483-494.
    
    [8] Manolio TA, Burke GL, O'Leary DH et al. Relationships of cerebral MRI findings to ultrasonographic carotid atherosclerosis in older adults : the Cardiovascular Health Study. CHS Collaborative Research Group. Arterioscler Thromb Vasc Biol 1999; 19(2): 356-365.
    
    [9] Haffner SM, Lehto S, Ronnemaa T et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339(4): 229-234.
    
    [10] Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486-2497.
    
    [11] Stamler J, Vaccaro O, Neaton JD et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16(2): 434-444.
    
    [12] UK Prospective Diabetes Study (UKPDS) Group.Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-853.
    
    [13] UK Prospective Diabetes Study (UKPDS) Group.UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance Diabetologia 1991; 34(12): 877-890.
    
    [14] Laakso M. Cardiovascular disease in type 2 diabetes: challenge for treatment and prevention. J Intern Med 2001; 249(3): 225-235.
    
    [15] Laakso M. Lipids in type 2 diabetes. Semin Vasc Med 2002; 2(1): 59-66.
    
    [16] Hurst RT, Lee RW. Increased incidence of coronary atherosclerosis in type 2 diabetes mellitus: mechanisms and management. Ann Intern Med 2003; 139(10): 824-834.
    
    [17] Wong ND, Rozanski A, Gransar H et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care 2005; 28(6): 1445-1450.
    
    [18] Brunzell JD, Ayyobi AF. Dyslipidemia in the metabolic syndrome and type 2 diabetes mellitus. Am J Med 2003; 115 Suppl 8A: 24S-28S.
    
    [19] Vijan S, Hayward RA. Pharmacologic lipid-lowering therapy in type 2 diabetes mellitus: background paper for the American College of Physicians. Ann Intern Med 2004; 140(8): 650-658.
    
    [20] Piehlmeier W, Renner R, Fahn J et al. Ten years experience with the disease management programme PROSIT(R) for diabetes. Diabetes Res Clin Pract 2006;74 Suppl 2:S205 -S209.
    
    [21] Idris I, Thomson GA, Sharma JC. Diabetes mellitus and stroke. Int J Clin Pract 2006; 60(1): 48-56.
    [22] Liberopoulos EN, Mikhailidis DP, Elisaf MS. Diagnosis and management of the metabolic syndrome in obesity. Obes Rev 2005;6 (4):283 -296.
    
    [23] Hobbs FD. Type-2 diabetes mellitus related cardiovascular risk: new options for interventions to reduce risk and treatment goals. Atheroscler Suppl 2006; 7(4): 29-32.
    
    [24] Gaede P, Pedersen O. Target intervention against multiple-risk markers to reduce cardiovascular disease in patients with type 2 diabetes. Ann Med 2004 ;36 (5):355 -366 2004.
    
    [25] Pedersen O, Gaede P. Intensified multifactorial intervention and cardiovascular outcome in type 2 diabetes: the Steno-2 study. Metabolism 2003;52(8Suppl 1):19-23.
    
    [26] Gaede P, Vedel P, Larsen N et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348(5): 383-393.
    
    [27] Kempler P. Learning from large cardiovascular clinical trials: classical cardiovascular risk factors. Diabetes Res Clin Pract 2005;68 Suppl 1 :S43 -S47.
    
    [28] Stevens RJ, Coleman RL, Adler AI et al. Risk factors for myocardial infarction case fatality and stroke case fatality in type 2 diabetes: UKPDS 66. Diabetes Care 2004; 27(1): 201-207.
    
    [29] Festa A, Williams K, D'Agostino R et al. The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 2006; 55(4): 1114-1120.
    
    [30] Adler AI, Stratton IM, Neil HA et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000; 321(7258): 412-419.
    
    [31] Gaede P, Pedersen O. Multi-targeted and aggressive treatment of patients with type 2 diabetes at high risk: what are we waiting for? Horm Metab Res 2005;37 Suppl 1:76-82.
    
    [32] Gaede P, Pedersen O. Intensive integrated therapy of type 2 diabetes: implications for long-term prognosis. Diabetes 2004;53 Suppl 3:S39 -47.
    [1] Chambless LE, Folsom AR, Davis V et al. Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987-1998. Am J Epidemiol 2002; 155(1):38-47.
    
    [2] Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 2001; 15:2073-2084.
    
    [3] Acton S, Rigotti A, Landschulz KT et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271(5248):518-520.
    
    [4] Li YS, Shyy YJ, Wright JG et al. The expression of monocyte chemotactic protein (MCP-1) in human vascular endothelium in vitro and in vivo. Mol Cell Biochem 1993; 126(1):61-68.
    
    [5] Yasunaga T, Koga S, Ikeda S et al. Cluster differentiation-36 deficiency type 1 and acute coronary syndrome without major cardiovascular risk factors: case report. Circ J 2007; 71(1):166-169.
    
    [6] Corpeleijn E, van der Kallen CJ, Kruijshoop M et al. Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with Type 2 diabetes mellitus and insulin resistance. Diabet Med 2006; 23(8):907-911.
    
    [7] Acton S, Osgood D, Donoghue M et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol 1999; 19(7): 1734-1743.
    
    [8] Ma X, Bacci S, Mlynarski W et al. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet 2004; 13(19):2197-2205.
    
    [9] Imai M, Tanaka T, Kintaka T et al. Genomic heterogeneity of type II CD36 deficiency. Clin Chim Acta 2002; 321(1-2):97-106.
    
    [10] Endemann G, Stanton LW, Madden KS et al. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268(16):11811-11816.
    
    [11] Arai T, Wang N, Bezouevski M et al. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene.J Biol Chem 1999;274(4):2366-2371.
    [12]Out R,Hoekstra M,Spijkers JA et al.Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice.J Lipid Res 2004;45(11):2088-2095.
    [13]Acton S,Osgood D,Donoghue M et al.Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population.Arterioscler Thromb Vase Biol 1999;19(7):1734-1743.
    [14]Osgood D,Corella D,Demissie S et al.Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes:the framingham study.J Clin Endocrinol Metab 2003;88(6):2869-2879.
    [15]Miyazaki A,Nakayama H,Horiuehi S.Scavenger receptors that recognize advanced glycation end products.Trends Cardiovasc Med 2002 Aug;12(6):258 -62 2002;12:258-262.
    [16]Lam MC,Tan KC,Lam KS.Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages.Atherosclerosis 2004;177(2):313-320.
    [17]Temelkova-Kurktschiev TS,Koehler C,Leonhardt Wet al.Increased intimal-medial thickness in newly detected type 2 diabetes:risk factors.Diabetes Care 1999;22(2):333-338.
    [18]刘志文,周卫东,周智广等.新诊2型糖尿病亚临床动脉粥样硬化进展的影响因素.中华全科医师杂志.2006;5(8),470-474.
    [19]Guvener N,Tutuncu NB,Oto A et al.Major determinants of the carotid intima-media thickness in type 2 diabetic patients:age and body mass index.Endoer J 2000;47(5):525-533.
    [20]Murdolo G,Smith U.The dysregulated adipose tissue:a connecting link between insulin resistance,type 2 diabetes mellitus and atherosclerosis.Nutr Metab Cardiovasc Dis 2006;16 Suppl 1:S35-S38.
    [21]Ahmad J,Ahmed F,Siddiqui MA et al.Inflammation,insulin resistance and carotid IMT in first degree relatives of north Indian type 2 diabetic subjects.Diabetes Res Clin Pract 2006;73(2):205-210.
    [22]陈小燕,周智广,刘明辉等.多因素干预对新诊断2型糖尿病患者亚临床 动脉粥样硬化的影响.中国糖尿病杂志 2006;14(1):11-17.
    
    [23] Behre CJ, Brohall G, Hulthe J et al. Are serum adipovectin concentrations in a population sample of 64-year-old Caucasian women with varying glucose tolerance associated with ultrasound-assessed atherosclerosis? J Intern Med 2006; 260(3):238-244.
    
    [24] Kantartzis K, Rittig K, Balletshofer B et al. The relationships of plasma adiponectin with a favorable lipid profile, decreased inflammation, and less ectopic fat accumulation depend on adiposity. Clin Chem 2006; 52(10): 1934-1942.
    
    [25] Bertoni AG, Goff DC, Jr., D'Agostino RB et al. Diabetic cardiomyopathy and subclinical cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2006; 29(3):588-594.
    
    [26] Mannami T, Katsuya T, Baba S et al. Low potentiality of angiotensin-converting enzyme gene insertion/deletion polymorphism as a useful predictive marker for carotid atherogenesis in a large general population of a Japanese city: the Suita study. Stroke 2001; 32(6): 1250-1256.
    
    [27] Wootton PT, Stephens JW, Hurel SJ et al. Lp-PLA2 activity and PLA2G7 A379V genotype in patients with diabetes mellitus. Atherosclerosis 2006;189 (1):149 -156.
    
    [28] Hozawa A, Folsom AR, Sharrett AR et al. Does the impact of smoking on coronary heart disease differ by low-density lipoprotein cholesterol level?: the Atherosclerosis Risk in Communities (ARIC) Study. Circ J 2006; 70(9):1105-1110.
    
    [29] Grimaldi A, Heurtier A. Epidemiology of cardio-vascular complications of diabetes.Diabetes Metab 1999; 25 Suppl 3:12-20.
    
    [30] Montalcini T, Gorgone G, Gazzaruso C et al. Carotid atherosclerosis associated to metabolic syndrome but not BMI in healthy menopausal women. Diabetes Res Clin Pract 2007; 76(3):378-382.
    [1] Lepretre F, Linton KJ, Lacquemant C et al. Genetic study of the CD36 gene in a French diabetic population. Diabetes Metab 2004; 30(5):459-463.
    
    [2] Handberg A, Levin K, Hojlund K et al. Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: a novel marker of insulin resistance. Circulation 2006; 114(11): 1169-1176.
    
    [3] Lepretre F, Vasseur F, Vaxillaire M et al. A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum Mutat 2004; 24(1): 104.
    
    [4] Ohashi R, Mu H, Yao Q et al. Atherosclerosis: immunopathogenesis and immunotherapy. Med Sci Monit 2004; 10(11):RA255-RA260.
    
    [5] Sampson MJ, Davies IR, Braschi S et al. Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis 2003; 167(1): 129-134.
    
    [6] Cipolletta C, Ryan KE, Hanna EV et al. Activation of Peripheral Blood CD14+ Monocytes Occurs in Diabetes. Diabetes 2005; 54(9):2779-2786.
    
    [7] Vinals M, Bermudez I, Llaverias G et al. Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovasc Res 2005; 66(1):141-149.
    
    [8] Puccetti L, Sawamura T, Pasqui AL et al. Atorvastatin reduces platelet-oxidized-LDL receptor expression in hypercholesterolaemic patients. Eur J Clin Invest 2005; 35(1):47-51.
    
    [9] Farhangkhoee H, Khan ZA, Barbin Y et al. Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction. Diabetologia 2005; 48(7):1401-1410.
    
    [10] Yamashita S, Hirano KI, Kuwasako T et al. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem 2006DOI: 10.1007/s11010-005-9031-4
    
    [11] Han J, Hajjar DP, Febbraio M et al. Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem 1997; 272(34):21654-21659.
    
    [12] Lim HJ, Lee S, Lee KS et al. PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs. Prostaglandins Other Lipid Mediat 2006; 80(3-4):165-174.
    [13] Tan GD, Fielding BA, Currie JM et al. The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. Diabetologia 2005; 48(1):83-95.
    [14] Huh HY, Pearce SF, Yesner LM et al. Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation. Blood 1996; 87(5):2020-2028.
    [15] Yesner LM, Huh HY, Pearce SF et al. Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler Thromb Vasc Biol 1996; 16(8):1019-1025.
    [16] Ditiatkovski M, Toh BH, Bobik A. GM-CSF deficiency reduces macrophage PPAR-gamma expression and aggravates atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26(10):2337-2344.
    [17] Huang JT, Welch JS, Ricote M et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 1999; 400(6742):378-382.
    [18] Avallone R, Demers A, Rodrigue-Way A et al. A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway. Mol Endocrinol 2006; 20(12):3165-3178.
    [19] Bonta PI, van Tiel CM, Vos M et al. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler Thromb Vasc Biol 2006; 26(10):2288-2294.
    [20] Boyer JF, Balard P, Authier H et al. Tumor necrosis factor alpha and adalimumab differentially regulate CD36 expression in human monocytes. Arthritis Res Ther 2007; 9(2):R22.
    [21] Xu W, Yu L, Zhou W et al. Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem Biophys Res Commun 2006; 351(2):376-382.
    [22] Kwok CF, Juan CC, Ho LT. Endothelin-1 decreases CD36 protein expression in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2007; 292(2):E648-E652.
    [23] Luan Y, Griffiths HR. Ceramides reduce CD36 cell surface expression and oxidised LDL uptake by monocytes and macrophages. Arch Biochem Biophys 2006; 450(1):89-99.
    [1] Armesilla AL, Vega MA. Structural organization of the gene for human CD36 glycoprotein. J Biol Chem 1994; 269(29): 18985-18991.
    [2] Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108(6):785-791.
    [3] Li YS, Shyy YJ, Wright JG et al. The expression of monocyte chemotactic protein (MCP-1) in human vascular endothelium in vitro and in vivo. Mol Cell Biochem 1993; 126(1):61-68.
    [4] Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 2001 Oct ;15 (12):2073 -84 2001; 15:2073-2084.
    
    [5] Miyaoka K, Kuwasako T, Hirano K et al. CD36 deficiency associated with insulin resistance. Lancet 2001; 357(9257):686-687.
    [6] Yamashita S, Hirano KI, Kuwasako T et al. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem 2006DOI: 10.1007/s11010-005-9031-4
    [7] Glatz JF, Bonen A, Luiken JJ. Exercise and insulin increase muscle fatty acid uptake by recruiting putative fatty acid transporters to the sarcolemma. Curr Opin Clin Nutr Metab Care 2002; 5(4):365-370.
    [8] Handberg A, Levin K, Hojlund K, Beck-Nielsen H. Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: a novel marker of insulin resistance. Circulation 2006; 114(11): 1169-1176.
    
    [9] Lepretre F, Vasseur F, Vaxillaire M et al. A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum Mutat 2004; 24(1): 104.
    
    [10] Kadlecova M, Cejka J, Zicha J, Kunes J. Does Cd36 gene play a key role in disturbed glucose and fatty acid metabolism in Prague hypertensive hypertriglyceridemic rats? Physiol Res 2004; 53(3):265-271.
    
    [11] Sampson MJ, Davies IR, Braschi S, Ivory K, Hughes DA. Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis 2003; 167(1): 129-134.
    
    [12] Liang CP, Han S, Okamoto H et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004; 113(5):764-773.
    
    [13] Iwashima Y, Eto M, Hata A et al. Advanced glycation end products-induced gene expression of scavenger receptors in cultured human monocyte-derived macrophages. Biochem Biophys Res Commun 2000; 277(2):368-380.
    [14] Ohgami N, Miyazaki A, Sakai M et al. Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism. J Atheroscler Thromb 2003; 10(1): 1-6.
    
    [15] Miyazaki A, Nakayama H, Horiuchi S. Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med 2002; 12(6):258-262.
    
    [16] Greene DJ, Skeggs JW, Morton RE. Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). J Biol Chem 2001; 276(7):4804-4811.
    
    [17] Perez-Martinez P, Perez-Jimenez F, Bellido C et al. A polymorphism exon 1 variant at the locus of the scavenger receptor class B type I (SCARB1) gene is associated with differences in insulin sensitivity in healthy people during the consumption of an olive oil-rich diet. J Clin Endocrinol Metab 2005; 90(4):2297-2300.
    
    [18] Englyst NA, Taube JM, Aitman TJ, Baglin TP, Byrne CD. A novel role for CD36 in VLDL-enhanced platelet activation. Diabetes 2003; 52(5): 1248-1255.
    
    [19] Bonen A, Parolin ML, Steinberg GR et al Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 2004; 18(10): 1144-1146.
    
    [20] Coort SL, Luiken JJ, van der Vusse GJ, Bonen A, Glatz JF. Increased FAT (fatty acid translocase)/CD36-mediated long-chain fatty acid uptake in cardiac myocytes from obese Zucker rats. Biochem Soc Trans 2004; 32(Pt 1):83-85.
    
    [21] Wilmsen HM, Ciaraldi TP, Carter L et al. Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Am J Physiol Endocrinol Metab 2003; 285(2):E354-E362.
    
    [22] Coort SL, Coumans WA, Bonen A et al. Divergent effects of rosiglitazone on protein-mediated fatty acid uptake in adipose and in muscle tissues of Zucker rats. J Lipid Res 2005; 46(6):1295-1302.
    
    [23] Acton S, Rigotti A, Landschulz KT et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271(5248):518-520.
    
    [24] Temel RE, Parks JS, Williams DL. Enhancement of scavenger receptor class B type I-mediated selective cholesteryl ester uptake from apoA-I(-/-) high density lipoprotein (HDL) by apolipoprotein A-I requires HDL reorganization by lecithin cholesterol acyltransferase. J Biol Chem 2003; 278(7):4792-4799.
    
    [25] Connelly MA, Williams DL. Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr Opin Lipidol 2004; 15(3):287-295.
    [26] Van Eck M, Twisk J, Hoekstra M et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem 2003; 278(26):23699-23705.
    
    [27] Ansell BJ, Fonarow GC, Fogelman AM. High-density lipoprotein: is it always atheroprotective? Curr Atheroscler Rep 2006; 8(5):405-411.
    
    [28] Tancevski I, Frank S, Massoner P et al. Increased plasma levels of LDL cholesterol in rabbits after adenoviral overexpression of human scavenger receptor class B type I. J Mol Med 2005; 83(11):927-932.
    
    [29] Brundert M, Heeren J, Bahar-Bayansar M et al. Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR-BI. J Lipid Res 2006; 47(11):2408-2421.
    
    [30] Wang DQ, Carey MC. Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. Biochim Biophys Acta 2002; 1583(2): 141-150.
    
    [31] Braun A, Zhang S, Miettinen HE et al. Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Proc Natl Acad Sci U S A 2003; 100(12):7283-7288.
    
    [32] Chambless LE, Folsom AR, Davis V et al. Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987-1998. Am J Epidemiol 2002; 155(1):38-47.
    
    [33] Nicholson AC, Han J, Febbraio M, Silversterin RL, Hajjar DP. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci 2001; 947:224-228.
    
    [34] Silverstein RL, Febbraio M. CD36 and atherosclerosis. Curr Opin Lipidol 2000; 11(5):483-491.
    
    [35] Nozaki S, Kashiwagi H, Yamashita S et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest 1995; 96(4): 1859-1865.
    
    [36] Febbraio M, Podrez EA, Smith JD et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049-1056.
    
    [37] Han J, Nicholson AC, Zhou X et al. Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. J Biol Chem 2001; 276(19):16567-16572.
    
    [38] Nozaki S, Kashiwagi H, Yamashita S et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. JClin Invest 1995; 96(4):1859-1865.
    [39] Lamharzi N, Renard CB, Kramer F et al. Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL. Diabetes 2004; 53(12):3217-3225.
    
    [40] Nicholson AC, Frieda S, Pearce A, Silverstein RL. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler Thromb Vasc Biol 1995; 15(2):269-275.
    
    [41] Puente N, Daviet L, Ninio E, McGregor JL. Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler Thromb Vasc Biol 1996; 16(8):1033-1039.
    
    [42] Pietsch A, Erl W, Lorenz RL. Lovastatin reduces expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells. Biochem Pharmacol 1996; 52(3):433-439.
    
    [43] Pietsch A, Weber C, Goretzki M, Weber PC, Lorenz RL. N-3 but not N-6 fatty acids reduce the expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells. Cell Biochem Funct 1995; 13(3):211-216.
    
    [44] Drover VA, Ajmal M, Nassir F et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest 2005; 115(5):1290-1297.
    
    [45] Huby T, Doucet C, Dachet C et al. Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues. J Clin Invest 2006; 116(10):2767-2776.
    
    [46] Lam MC, Tan KC, Lam KS. Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages. Atherosclerosis 2004; 177(2):313-320.
    
    [47] Nakagawa-Toyama Y, Hirano K, Tsujii K et al. Human scavenger receptor class B type I is expressed with cell-specific fashion in both initial and terminal site of reverse cholesterol transport. Atherosclerosis 2005; 183(1):75-83.
    
    [48] Trigatti BL, Krieger M, Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23(10):1732-1738.
    
    [49] Zhong S, Liu C, Haviland D, Doris PA, Teng BB. Simultaneous expression of apolipoprotein B mRNA editing enzyme and scavenger receptor BI mediated by a therapeutic gene expression system. Atherosclerosis 2006; 184(2):264-275.
    
    [50] Gong M, Wilson M, Kelly T et al. HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J Clin Invest 2003;111(10):1579-1587.
    [51] Tancevski I, Wehinger A, Schgoer W et al. Aspirin regulates expression and function of scavenger receptor-BI in macrophages: studies in primary human macrophages and in mice. FASEB J 2006; 20(9): 1328-1335.
    
    [52] Hong SC, Zhao SP, Wu ZH. Effect of probucol on HDL metabolism and class B type I scavenger receptor (SR-BI) expression in the liver of hypercholesterolemic rabbits. IntJCardiol 2007; 115(1):29-35.
    
    [53] Hirano K, Ikegami C, Tsujii K et al. Probucol enhances the expression of human hepatic scavenger receptor class B type I, possibly through a species-specific mechanism. Arterioscler Thromb Vasc Biol 2005; 25(11):2422-2427.
    
    [54] Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93:229-240.
    
    [55] Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2):241-252.
    
    [56] Li AC, Brown KK, Silvestre MJ et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4):523-531.
    
    [57] Svensson L, Camejo G, Cabre A et al. Fatty acids modulate the effect of darglitazone on macrophage CD36 expression. Eur J Clin Invest 2003; 33(6):464-471.
    
    [58] Chawla A, Barak Y, Nagy L et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001;7(1):48-52.
    
    [59] Moore KJ, Rosen ED, Fitzgerald ML et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7(1):41-47.
    
    [60] Kim H, Haluzik M, Gavrilova O et al. Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes. Diabetologia 2004; 47(12):2215-2225.
    
    [61] Tan GD, Fielding BA, Currie JM et al. The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. Diabetologia 2005; 48(1):83-95.
    
    [62] Ferreira V, van Dijk KW, Groen AK et al. Macrophage-specific inhibition of NF-kappaB activation reduces foam-cell formation. Atherosclerosis 2006.doi.org/10.1016/j.atherosclerosis.2006.07.018.
    
    [63] Marcil V, Delvin E, Sane AT, Tremblay A, Levy E. Oxidative stress influences cholesterol efflux in THP-1 macrophages: role of ATP-binding cassette A1 and nuclear factors. Cardiovasc Res 2006; 72(3):473-482.
    [64] Kase ET, Wensaas AJ, Aas V et al. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway. Diabetes 2005; 54(4): 1108-1115.
    [65] Zingg JM, Ricciarelli R, Azzi A. Scavenger receptors and modified lipoproteins: fatal attractions? IUBMB Life 2000; 49(5):397-403.
    [66] Zingg JM, Ricciarelli R, Azzi A. Scavenger receptor regulation and atherosclerosis. Biofactors 2000; 11(3): 189-200.
    [67] Fazio S, Linton MF. Interplay between apolipoprotein E and scavenger receptor class B type I controls coronary atherosclerosis and lifespan in the mouse. Circulation 2005; 111(25):3349-3351.
    [68] Zhang S, Picard MH, Vasile E et al. Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation 2005; lll(25):3457-3464.
    [69] Ji Y, Jian B, Wang N et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 1997; 272(34):20982-20985.
    [70] Lopez D, Sanchez MD, Shea-Eaton W, McLean MP. Estrogen activates the high-density lipoprotein receptor gene via binding to estrogen response elements and interaction with sterol regulatory element binding protein-1 A. Endocrinology 2002; 143(6):2155-2168.
    [71] Galman C, Angelin B, Rudling M. Prolonged stimulation of the adrenals by corticotropin suppresses hepatic low-density lipoprotein and high-density lipoprotein receptors and increases plasma cholesterol. Endocrinology 2002; 143(5):1809-1816.
    [72] Cao WM, Murao K, Imachi H et al. Insulin-like growth factor-i regulation of hepatic scavenger receptor class BI. Endocrinology 2004; 145(12):5540-5547.
    [73] Svensson PA, Englund MC, Snackestrand MS et al. Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques. BMC Cardiovasc Disord 2005; 5:25.
    [74] Auboeuf D, Rieusset J, Fajas L et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 1997; 46(8):1319-1327.
    [75] Chinetti G, Griglio S, Antonucci M et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273(40):25573-25580.
    
    [76] Chinetti G, Gbaguidi FG, Griglio S et al. CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 2000; 101(20):2411-2417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700